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Abstract: Hyperglycemia is associated with several complications in the brain, which are also
characterized by inflammatory conditions. Astrocytes are responsible for glucose metabolism in the
brain and are also important participants of inflammatory responses. Oxylipins are lipid mediators,
derived from the metabolism of polyunsaturated fatty acids (PUFAs) and are generally considered to
be a link between metabolic and inflammatory processes. High glucose exposure causes astrocyte
dysregulation, but its effects on the metabolism of oxylipins are relatively unknown and therefore,
constituted the focus of our work. We used normal glucose (NG, 5.5 mM) vs. high glucose (HG,
25 mM) feeding media in primary rat astrocytes-enriched cultures and measured the extracellular
release of oxylipins (UPLC-MS/MS) in response to lipopolysaccharide (LPS). The sensitivity of HG
and NG growing astrocytes in oxylipin synthesis for various serum concentrations was also tested.
Our data reveal shifts towards pro-inflammatory states in HG non-stimulated cells: an increase in the
amounts of free PUFAs, including arachidonic (AA), docosahexaenoic (DHA) and eicosapentaenoic
(EPA) acids, and cyclooxygenase (COX) mediated metabolites. Astrocytes cultivated in HG showed a
tolerance to the LPS, and an imbalance between inflammatory cytokine (IL-6) and oxylipins release.
These results suggest a regulation of COX-mediated oxylipin synthesis in astrocytes as a potential
new target in treating brain impairment associated with hyperglycemia.

Keywords: astrocytes; high glucose; inflammation; interleukin 6 (IL-6); oxylipins; eicosanoids;
toll-like receptors (TLRs); tolerance

1. Introduction

Oxylipins represent a superfamily of bioactive lipid mediators, derived from the
metabolism of polyunsaturated fatty acids (PUFAs), through a complex network of bio-
chemical reactions [1–3]. Oxylipins have fundamental roles in a diverse set of homeostatic
and inflammatory processes, and therefore, their synthesis is under intensive considera-
tion. The conversion of PUFAs into oxylipins occurs via four major pathways, involving
cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases
(CYP450), and non-enzymatically [1,4,5]. When cells are stimulated, it is important that
different PUFAs, and even some of their derivatives, are released from membrane phospho-
lipids and metabolized into oxylipins simultaneously [6,7]. Therefore, there is a competition
between pathways for their substrates [1,4]. Essential for oxylipin synthesis, PUFAs are
subdivided into omega-3 (n-3) and omega-6 (n-6) groups; docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) belong to n-3, and linoleic acid (LA) and arachidonic acid (AA)
belong to the n-6 group. An imbalance between n-3 and n-6 PUFAs is generally attributed to
chronic inflammation [8,9], although the system of oxylipins synthesis is currently viewed
as being more complicated [3,10]. For example, the oxylipins of the n-6 group include
both pro-inflammatory compounds and resolution substances, which are responsible for
restoring the system after the pro-inflammatory stimulus has been applied [2,3,10]. The
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complexity of the oxylipin metabolism system has led to the development of mass spec-
trometric detection methods, making it possible to simultaneously measure several tens
of oxylipins, derivatives of various PUFAs [11–13]. The measurement of oxylipin profiles
reveals new steps in understanding the role of oxylipins in various pathologies.

Astrocytes are glial cells that fulfill a large number of various homeostatic mainte-
nance functions and also play an active role in neuroinflammation, and therefore have a
critical contribution to neurological disorders, including neurodegenerative and demyeli-
nating diseases, epilepsy, trauma, ischemia, infection, and cancer [14–16]. Understanding
astrocyte biology at the cellular and molecular levels is the cornerstone of modern re-
search [17]. As a regulator of brain inflammation, astrocytes can release various immune
and inflammatory mediators, such as pro- and anti-inflammatory cytokines/chemokines
and oxylipins [3,16,18]. The data reveal that oxylipin profiles associate with different states
of polarization to generate a pro-inflammatory or anti-inflammatory phenotype [19]. This
association manifests itself both in native cells and in their responses to a pro-inflammatory
stimulus. The data open an approach for the regulation of astrocyte function via modulation
of oxylipin synthesis.

It is known that hyperglycemia, as a state of increased glucose concentrations in body
fluids, causes neurotoxicity and other cerebral complications [20,21]. Patients with diabetes
exhibit symptoms of neuroinflammation, cognitive impairment and neurodegenerative
disorders [22–24].

It was shown that changes in glucose levels play an important role in the development
of various pathologies, including epilepsy, which could be addressed by using ketogenic
diets to limit carbohydrate intake [25,26]. Indeed, abnormal glucose levels, either too high
or too low, can cause seizures [27]. Epilepsy was associated with glycogen in the brain and,
therefore, with glucose levels [28]. Increased levels of ketone bodies in ketosis can also be
achieved by altering blood glucose levels [26]. The availability of glycogen contributes to
maintaining the proper balance between excitatory and inhibitory neurotransmission [28].
Thus, consumption, storage of glucose, acute reaction to changes, or adaptation of glucose
in long-term applications play an important role in brain function and pathology. It became
obvious that these processes change not only energy consumption but also the relationships
between different systems, primarily the metabolic and innate immune systems.

Besides their special roles in neuroinflammation [14,16], astrocytes are the primary
contributors to glucose metabolism in the brain [29]. In the brain glycogen is present
mainly in astrocytes [28–30]. It is not surprising that these cells contain three types of perox-
isome proliferator-activated receptors (PPARs) with interconnecting regulatory processes
between them [31]. PPARs are transcription factors that play an important role in various
metabolic processes, including glucose production [32]. Astrocyte functions are regulated
by PPAR receptor agonists and antagonists [33]. It was shown that cell culturing rat brain
astrocytes for 2 days in a medium with a high glucose concentration (25 mM) modulated
the expression of PPARs (a decrease in PPARα and PPARβ mRNA levels without changing
the PPARγ mRNA level) [34]. Although it is known that oxylipins activate PPAR [32], the
dependence of their synthesis on glucose concentration has not been previously evaluated.

At present, various experimental cellular models of hyperglycemia in astrocytes
have been suggested [35–37]. An impairment of pro-inflammatory cytokines’ release
and oxidative/nitrosative stress was reported [34,36,37]. Data support the assumption
that glucose is a direct modulator of changes in those functions of astrocytes that are
associated with inflammatory processes. It was shown that a transcription factor, NF-
kB, and mitogen-activated protein kinase (MAPK) p38 and JNK, are involved in the
glucose-induced glial toxicity [34,36]. Both in vivo models of hyperglycemia and in vitro
models of long-term cultivation of cells in a high glucose (HG) medium demonstrated an
impairment of astrocyte functions, such as a decrement in gap junctional communication
or oxidative stress induction [35,36,38]. Thus, the relationship between hyperglycemia and
disturbances in the innate immune system has been shown; however, it is unknown how
the synthesis of oxylipins is involved in these processes. Therefore, we compared the effect
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of HG on the oxylipin release in rat primary astrocytes and their ability to respond to a
lipopolysaccharide (LPS) stimulation.

2. Results
2.1. Changes in the Oxylipin Profiles in Astrocytes, Cultured in Normal and High Glucose

To compare oxylipin profiles, primary rat astrocytes were cultured in medium with
normal (5.5 mM) or high (25 mM) glucose concentrations. In the experiment, cells were stim-
ulated with lipopolysaccharide (LPS, 100 ng/mL) for 4 h. Oxylipins in supernatants were
extracted and measured using ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS). We obtained oxylipin profiles for four groups: (1) normal
(NG) naive cells; (2) high (HG) glucose naive cells; (3) NG cells, stimulated by LPS; (4) HG
cells, stimulated by LPS (Figure 1). For details of data, see Supplementary Table S1.

Detected oxylipins can be subdivided into three groups: (1) free PUFAs (Figure 1A);
(2) derivatives of LOX-pathway (Figure 1B); and (3) derivatives of COX-pathway (Figure 1C).
The PUFAs group contains three acids: EPA, DHA, and AA. Although cell cultivation in
HG increases the total content of PUFAs nearly twofold, LPS stimulation does not lead to an
increase in the content of PUFAs in the medium (Figure 1A). The ratio between substances
is maintained (Table S1).

Based on the previous data [3,4], we classified the following metabolites as the
LOX metabolic pathway: 12- and 5-hydroxyeicosatetraenoic acids (12-HETE, 5-HETE),
9-hydroxyoctadecadienoic acid (9-HODE), 8-, 14-, and 17-hydroxydocosahexaenoic acids
(8-HDoHE, 14-HDoHE, and 17-HDoHE). Cell cultivation in HG or LPS stimulation did
not modulate the content of these pathway substances (Figure 1B). We detected the fol-
lowing derivatives of AA: 12-hydroxyheptadecatrenoic acid (12-HHT), prostaglandins
(PGs) 6-keto-PGF2a, PGA2, PGE2, PGD2, PGF2a, thromboxane B2 (TXB2), 11-HETE, and
also 13-HDoHE, which is a derivative of DHA. All of these oxylipins are attributed to the
COX pathway of oxylipin synthesis [4,39,40]. Cell cultivation in HG increases the total
content of COX derivatives (Figure 1C). The sensitivity of COX-mediated synthesis for
LPS stimulation decreases for the HG group (Figure 1C). Indeed, we observed a nearly
twofold increase in the concentration of COX derivatives in LPS versus naive groups for
HG cells and near fourfold for NG cells (Figure 1C). Thus, although many more metabolites
of the COX pathway are released at high glucose, the response to the stimulation of the
pro-inflammatory stimulus became less pronounced. COX-mediated derivatives contained
both pro-inflammatory and anti-inflammatory or resolution relative substances [2,3]. A
detailed analysis of this group of substances reveals variations in their sensitivity for HG
and LPS stimulations (Figure 1D).

For the characterization of oxylipin profiles, we compared pie plots, calculated
for the COX-mediated metabolites, released from naive or LPS-stimulated astrocytes
(Figure 2). The plot considers compounds regarding their concentration (%), where total
COX-mediated substances concentration is taken as 100%. There is a significant change
in the profile during incubation in HG, which is also notable following LPS stimulation
(Figure 2). In comparison to NG/HG naive cells, there is a decrease in the proportion of a
substance among others for 12-HHT, 6-keto-PGF2a, PGA2, PGD2, PGF2a, TXB2, 11-HETE,
and 13-HDoHE (Figure 2). Only the proportion of PGE2 significantly increased (Figure 2).
Since PGE2 is usually referred to as a marker of the inflammatory process [39], it can
be assumed that there is a shift in HG towards the inflammatory process even in naive
cells. For LPS-stimulated oxylipin profiles, the increase in PGE2 proportion is also notable
(Figure 2). Note that a proportion of 6-keto-PGF2a decreased in LPS-stimulated oxylipin
profiles for HG compared to NG (Figure 2).
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Figure 1. Dependence of detected oxylipins on glucose concentrations in the culture medium in 
LPS-stimulated cells cultivated in normal (5.5 mM) or high (25 mM) glucose medium. Primary rat 

Figure 1. Dependence of detected oxylipins on glucose concentrations in the culture medium in LPS-stimulated cells
cultivated in normal (5.5 mM) or high (25 mM) glucose medium. Primary rat astrocytes were cultivated in normal (5.5 mM)
or high (25 mM) glucose medium and then stimulated with lipopolysaccharide (LPS, 100 ng/mL) for 4 h. Concentrations of
oxylipins in the supernatants were measured using ultra-performance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS). The values represent a mean ± SEM from three independent experiments. (A) the concentrations of
the detected PUFAs were summed up; (B) the concentrations of the detected LOX-derived metabolites were summed
up; (C) the concentrations of the detected COX-derived metabolites were summed up; (D) the results expressed as a fold
change, relative to the naive cells, incubated in 5.5 mM glucose medium. * p < 0.05, compared with the unstimulated cells
under normal glucose conditions, # p < 0.05, compared with the LPS-stimulated cells under normal glucose conditions.
Abbreviations: C-control, PUFAs-polyunsaturated fatty acids, LOX-lipoxygenase, COX-cyclooxygenase, TXB2-thromboxane
B2, HETE-hydroxyeicosatetraenoic acids, HDoHE-hydroxydocosahexaenoic acids, HHT-hydroxyheptadecatrenoic acid,
6-keto-PGF1a-6-keto-prostaglandin F1a, PGA2-prostaglandin A2, PGJ2-prostaglandin J2, PGE2-prostaglandin E2, PGD2-
prostaglandin D2, PGF2a-Prostaglandin F2a.
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Figure 2. Comparison of COX-mediated metabolites in astrocytes, cultivated in normal (5.5 mM) and high (25 mM) glucose
medium. Primary rat astrocytes were cultivated in normal (5.5 mM) or high (25 mM) glucose medium and then stimulated
with lipopolysaccharide (LPS, 100 ng/mL) for 4 h. Concentrations of oxylipins in supernatants were measured using
ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Pie plots showing the distribution
of COX-mediated metabolites, released from (A) naive or (B) LPS-stimulated astrocytes. Abbreviations: TXB2-thromboxane
B2, HETE-hydroxyeicosatetraenoic acids, HDoHE-hydroxydocosahexaenoic acids, HHT-hydroxyheptadecatrenoic acid,
6-keto-PGF1a-6-keto-prostaglandin F1a, PGA2-prostaglandin A2, PGJ2-prostaglandin J2, PGE2-prostaglandin E2, PGD2-
prostaglandin D2, PGF2a-Prostaglandin F2a.

2.2. Effect of Serum on Oxylipin Profiles in Astrocytes, Cultured at Normal and High Glucose

To further characterize oxylipin synthesis in NG and HG astrocytes, we decreased the
amount of serum in the experimental culture medium and tested 10% (normal concentration
for cell cultivation), 5%, and 1% of the serum. This was carried out for several reasons.
Firstly, oxylipins bind with extracellular proteins [11,41], and these processes may influence
oxylipin profiles and cellular responses [42–44]. Secondly, in our experimental protocol,
HG as a stressor has a long-term application, therefore, we added a set of experiments with
an acute stressor. Serum as a stressor for astrocytes was reported previously [45].

We obtained that in naive cells, in both the NG and HG groups, the serum affects the
medium/cell oxylipins equilibrium (the less serum, the fewer oxylipins) (Figure S1). This
effect was observed for TXB2, 11-HETE, 13-HdoHE, 12-HHT, 6-keto-PGF1a, PGA2, and
PGE2. In the case of PGD2, PGE2, and PGF2a, the concentration of the compound, detected
in the extracellular medium, does not depend on the serum concentration (Figure S1).
Therefore, for most oxylipins, the simple assumption of the dependence of oxylipins’
concentrations on their binding with the serum proteins, works well. However, the non-
dependence for three PGs reveals certain additional effects of low serum concentration. To
test these assumptions, we tested how serum affects the LPS-mediated cellular response
in astrocytes.
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We obtained unexpected results when estimating the influence of serum concentration
on the LPS-stimulated release of metabolites (Figure 3). During the first stage, we compared
the total concentrations of metabolites, divided into PUFA, LOX-mediated, and COX-
mediated metabolites. We obtained that the summarized level of PUFAs depends on
the serum (in 10% FBS more than in 1% FBS) and the glucose (more in HG than in NG,
with the greatest difference observed in 10% serum). Simultaneously, the stimulation
of LPS cells does not significantly affect the concentration of the summarized PUFAs
(Figure 3A). Cell cultivation in HG or LPS stimulation, with different serum concentrations,
did not modulate the content of LOX-derived metabolites (Figure 3B). Different serum
concentrations do not affect the total amount of COX metabolites, while HG increases the
total level of these metabolites in all tested serum concentrations (Figure 3C).

A detailed analysis of the COX-mediated group of substances reveals variations in
their sensitivity for serum, HG, and LPS stimulations. We presented the data as a “fold to a
control”, which means that the synthesis of a compound in the naive cells at an appropriate
serum concentration was taken as 1. A decrease in serum concentration leads to an increase
in TXB2, 11-HETE, 13-HDoHE, PGA2, and PGD2. The release of 12-HHT, 6-keto-PGF2a,
PGE2, and PGF2a was not dependent on serum concentration. Therefore, upon stimulation
of the oxylipins synthesis by LPS, the serum acts as an additional stimulus, and a change
in serum concentration affects the amount of emitted oxylipins and their ratio.

2.3. Effect of Serum Level and Different Glucose Concentrations in the Culture Medium on the
IL-6 Release

For further characterization of the inflammatory response in astrocytes cultivated in
NG and HG, we compared the release of IL-6 in LPS-stimulated cells in the presence of 10%
and 1% of serum. It is known that the synthesis and release of IL-6 were at a detectable
level only in the presence of LPS, not in the naive cells [46,47], therefore it can be used as a
marker of astrocyte activation upon stimulation.

There is no difference in IL-6 release between cells, cultivated in NG and HG (Figure 4A).
A decrease in serum concentration resulted in a nearly twofold increase in LPS-stimulated
IL-6 release, although there was no difference between the NG and HG groups (Figure 4A).
Thus, culturing cells in HG does not change the release of the pro-inflammatory cytokine,
i.e., the work of the ensemble of the cell response to the pro-inflammatory stimulus is
impaired (the ratio between the released cytokines and oxylipins).

Glial fibrillary acidic protein (GFAP) formed part of the cytoskeleton of mature as-
trocytes and other glial cells and was used as a marker of injured astrocytes [14]. To
characterize the differences between the NG and HG groups, we measured the level of
GFAP expression (Figure 4B). Expression levels of GFAP decreased in the HG group com-
pared to the NG group (Figure 4B). Both groups did not respond to 4 h LPS stimulation by
altering the level of GFAP expression (Figure 4B).
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Figure 3. Dependence of detected oxylipins on serum concentrations in the culture medium in
LPS-stimulated cells, cultivated in normal (5.5 mM) or high (25 mM) glucose medium. Primary
rat astrocytes were cultivated in normal (5.5 mM) or high (25 mM) glucose medium with FBS con-
centration at 10%, 5%, and 1%, and then stimulated with lipopolysaccharide (LPS, 100 ng/mL) for
4 h. Concentrations of oxylipins in supernatants were measured using ultra-performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS). The values represent a mean ± SEM
from three independent experiments. (A) the concentrations of the detected PUFAs were summed
up; (B) the concentrations of the detected LOX-derived metabolites were summed up; (C) the con-
centrations of the detected COX-derived metabolites were summed up; (D) the results expressed
as fold change, relative to the control, with the corresponding percentage of serum. * p < 0.05, com-
pared with the LPS-stimulated cells under normal glucose conditions, with 10% FBS; # p < 0.05,
compared with the LPS-stimulated cells under high glucose conditions, with 10% FBS. Abbre-
viations: PUFAs-polyunsaturated fatty acids, LOX-lipoxygenase, COX-cyclooxygenase, TXB2-
thromboxane B2, HETE-hydroxyeicosatetraenoic acids, HDoHE-hydroxydocosahexaenoic acids,
HHT-hydroxyheptadecatrenoic acid, 6-keto-PGF1a-6-keto-prostaglandin F1a, PGA2-prostaglandin
A2, PGE2-prostaglandin E2, PGD2-prostaglandin D2, PGF2a-Prostaglandin F2a.
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Figure 4. Dependence of GFAP expression and IL-6 release from serum concentration in the culture medium in LPS-
stimulated cells, cultivated in normal (NG, 5 mM) or high (HG, 25 mM) glucose medium. (A) Primary rat astrocytes
were cultivated in NG or HG medium with FBS concentration at 10% or 1%, and then stimulated with lipopolysaccharide
(LPS, 100 ng/mL) for 4 h. IL-6 protein release was measured by ELISA in supernatant samples. The results are expressed
as pg/mg. (B) primary rat astrocytes were cultivated in NG or HG medium with FBS concentration at 10%, and then
stimulated with LPS, 100 ng/mL) for 4 h. Protein levels were evaluated by western blotting and normalized to the loading
control β-tubulin. The values represent a mean ± SEM from three independent experiments. * p < 0.05, compared with the
naive cells, # p < 0.05, compared with the LPS-stimulated cells with 10% FBS, ˆ p < 0.05 compared with the indicated bars.
Abbreviations: GFAP-glial fibrillary acidic protein, FBS-bovine fetal serum, IL-interleukin.

3. Discussion

Our data reveal that astrocyte cultivation in the high concentration of glucose (25 mM)
demonstrated impairment in the innate immune system statements. Compared with
astrocytes cultivated in a normal concentration of glucose (5.5 mM), cells from an HG
cultivation medium exhibit the following properties: (1) an inflamed state of the naive cells
measured by oxylipins levels; (2) an imbalance between the pro-inflammatory cytokine
(IL-6) and oxylipins’ release; and (3) a tolerance in the oxylipins’ synthesis response to the
pro-inflammatory stimulus, LPS.

It has been known for more than a decade that metabolism and immunity are closely
linked, and lipids play an important role in this link [48]; however, molecular mechanisms
are still largely unknown. Primary cell cultures are extensively used to facilitate the study
of the molecular mechanisms involved in various physiological and pathophysiological
processes. Astrocyte-enriched cultures are usually used for glial cell response studies [49].
Although Dulbecco’s Modified Eagle’s Standard Medium (DMEM) contains 25 mM or
5.5 mM glucose, glucose concentration in the culture medium used is often not indicated.
Supplementation with 5.5 mM glucose in culture media approximates normal blood glucose
levels in vivo, glucose levels approaching 10 mM are close to pre-diabetic levels, whereas
25 mM is considered to be a diabetic-like condition. Relatively recently, it became clear that
the glucose concentration differences can affect intracellular signaling responses in various
cell types (for example, [50]), including glial cells [51,52].

Various glucose applications have been tested for astrocytes: short-term (study of
the glucose effect for several hours) [36,37], medium-term (48 h) [34,37], and long-term
(two or more weeks of cultivation from cellular preparation) [35,51,52]. The data in the
short-term glucose stimulation demonstrate the involvement of innate immune signaling
pathways in the response, such as the activation of NF-kB and p38 MAPK, and pro-
inflammatory cytokines’ release [36–38]. Such glucose effects may induce cellular responses
of adaptation. The data relating to experiments with a middle-term application of high
glucose concentration are in accordance with this assumption. Indeed, HG enhanced the
LPS-stimulated pro-inflammatory cytokine release, increased p38, decreased JNK MAPK
activities, and increased PGE2 release [34]. The long-term cultivation of cells in an HG
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medium resulted in the impairment of gap junctional communication [35], metabolic
efficiency and capacity [53], activated the AMP-activated protein kinase (AMPK) signaling
pathway, increased glycogen storage and ATP, and decreased proliferation [51]. One study
claims that long-term HG cultivation reduces the ability of astrocytes to respond to LPS,
but this phenomenon has not been studied in detail [52]. Interestingly, a decrease in glucose
concentration below the normal level (2 mM) also induces the pro-inflammatory responses
on astrocytes, manifested by increased pro-inflammatory cytokines’ release [54]. It is
known that changes in the glucose transporter’s expression and functions correlate with
diseases in the brain [55], which are also attributed to diseases with neuroinflammatory
complications. Our data and those of others indicate that the relationship between glucose
metabolism and inflammatory responses is related to maintaining the homeostasis system
in the brain, and its changes are manifested in various pathologies.

It is important to note that it is currently difficult to assess the intracellular mechanisms
of glucose modulation of the cellular response to inflammatory stimuli, firstly because
of the differences in the experimental protocols, and secondly because of the multiple
reactivities of cells to extracellular glucose concentrations. Differing glucose addition times
and media change protocols can affect the readings. For example, we found that GFAP
levels depend only on glucose concentration and not on LPS stimulation. The absence of
changes after stimulation can be explained by the short time of action of LPS (4 h); the
data are consistent with others [56]. A change in GFAP level was found 24 h or more
after stimulation with LPS [37,57]. From another point of view, it should be borne in
mind that the protocol in Wang’s work with colleges [37] included the stage of processing
cells without glucose in the medium, which may be the reason for the difference in the
obtained data.

The synthesis of oxylipins at the cellular level and the mechanism of their action via
special receptors is a complex system. Oxylipins are generated by complex enzymatic
reactions that begin with PUFA release from membrane phospholipids by phospholipase
A2 (PLA2) [7,40]. It is known that various PLA2s are responsible for the release of AA
and DHA in astrocytes [58]. Some of the oxylipins can be included in the composition of
phospholipids and released by them [6]. Therefore, it is difficult to directly relate solely
the oxylipins released into the extracellular medium, with their enzymatic synthesis. The
scarcity of data concerning cellular oxylipin synthesis does not identify the connection
between PUFAs and oxylipin profiles in the naive cells, cultivated in HG and NG with
intracellular processes of oxylipin synthesis. For COX-mediated branches of metabolism,
we detected, besides PGs and Tx, the following derivatives of AA: 12-HHT, 11-HETE, and
also 13-HDoHE, which is a derivative of DHA. Note that DHA works as an inhibitor for
COX-1 [59] and a substrate for COX-2 [60]. In addition, PGF2a may be the result of several
enzyme activities: PGF synthase (from PGH2), PGD211 keto-reductase (from PGD2), and
PGE2 9 keto-reductase (from PGE2) [61]. 12-HHT may result from the Tx synthase pathway
or non-enzymatically from PGH2. Therefore, its synthesis is solely dependent on COX
activities [62]. An elucidation of the reasons for changes in oxylipin profiles at the level
of intracellular oxylipin metabolism is the subject of further research. Our data reveal the
tune regulation of oxylipin synthesis and its significant dependence on glucose metabolism
in astrocytes.

The observed increase in the synthesis of prostaglandins at high glucose levels is in
good agreement with the data relating to a decrease in the proliferation of astrocytes [51]
and the data on the summation of the effects of prostaglandins in suppressing prolifera-
tion [63]. Our data support the view of astrocytes as key cells at the crossroad of metabolic
and inflammatory pathways.
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4. Materials and Methods
4.1. Reagents

Lipopolysaccharide (cat.no. L2630) was from Sigma-Aldrich, St. Louis, MO, USA, ML355
(cat.no. 18537). Streptomycin–penicillin (cat.no. A063), trypsin (cat.no. P037), EDTA, fetal
bovine serum (cat.no BS-110/500) were from PanEco, Moscow, Russia. Culture medium
Dulbecco’s Modified Eagle Medium (DMEM) (1 g/L glucose cat.no. 21885-025) and Dul-
becco’s Modified Eagle Medium (DMEM) (4.5 g/L glucose cat.no. 41966-029) were from
Gibco, Thermo Fisher Scientific, Waltham, MA, USA. ELISA kit for IL-6 (cat.no. 550319) was
from BD Biosciences, San Diego, CA, USA. Antibodies against β-Tubulin (D3U1W) #86298
were from Cell Signaling Technology, Danvers, MA, USA and Glial Fibrillary Acidic Protein
(GFAP) M0761 was from DAKO Agilent, Santa Clara, CA, USA. Secondary horseradish per-
oxidase conjugated antibodies (anti-mouse) (Cell Signaling Technology, Danvers, MA, USA)
and western blotting substrate ECL (Thermo Fisher Scientific, cat.no 32209, Waltham, MA,
USA) were used. The oxylipins standards were as follows: 6-keto PGF1α-d4 (cat.no. 315210),
TXB2-d4 (cat.no. 319030), PGF2α-d4 (cat.no. 316010), PGE2-d4 (cat.no. 314010), PGD2-d4
(cat.no. 312010), 5(S)-HETE-d8 (cat.no. 334230), 12(S)-HETE-d8 (cat.no. 334570), 15(S)-
HETE-d8 (cat.no. 334720), EPA-d5 (cat.no, 10005056), DHA-d5 (cat.no. 10005057), AA-d8
(cat. No. 390010) and were from Cayman Chemical, Ann Arbor, MI, USA. Oasis® PRIME HLB
cartridges (60 mg, 3cc, cat.no. 186008056) were obtained from Waters, Eschborn, Germany.

4.2. Primary Astrocyte Cell Culture

Astrocyte-enriched cultures were obtained from newborn rats of both sexes as previ-
ously reported [34,58]. More than 95% of the cells were positive for the astrocyte marker
glial fibrillary acidic protein in these cultures, and only <2% were positive for a microglia-
specific marker. In brief, brains from newborn rats were triturated by the use of nylon
meshes of 250 and 136 mL pore width, in consecutive order. Dissociated cells were plated
into culture flasks. The cells were subsequently cultured in DMEM (1 g/L D-glucose or
4.5 g/L D-glucose, 10% bovine fetal serum (FBS), 50 units/mL streptomycin, 50 µg/mL
penicillin) at 37 ◦C, with 10% CO2. After 5 days of cultivation in DMEM, the culture
medium was replaced with a fresh medium, and flasks were placed on a shaker at 200 RPM
for 4 h to dissociate microglial cells. The culture medium was changed to a fresh one.
After 2 days, the monolayer of astrocytes was trypsinized and plated into six-well plates
and maintained for 2 days in DMEM. After this, the medium was changed, and the cells
were used for experiments. At each change of medium, the cells were cultured only with
the glucose concentration upon their preparation. This was performed to eliminate the
possible reaction of cells to changes in glucose concentration. After the cell experiments,
the supernatant was collected and stored with 0.005% BHT at −80 ◦C for further analysis.

4.3. UPLC-MS/MS Conditions and Sample Preparation

After the cell experiments, the supernatant was collected and stored at −80 ◦C for
further analysis. The cell-free culture media were taken for the solid-phase lipid extraction
(Oasis®PRIME HLB cartridge (60 mg, 3 cc)). The cartridge was washed with 2 mL of 15%
methanol containing 0.1% formic acid, and the lipids were sequentially eluted with 500 µL
of anhydrous methanol and 500 µL of acetonitrile. The resulting samples were mixed,
concentrated by the evaporation of the solvent under a gentle stream of nitrogen, and
stored at −80 ◦C. For the identification of lipid mediators, the respective lipid extracts
were analyzed using an 8040 series UPLC-MS/MS mass spectrometer (Shimadzu, Ky-
oto, Japan) in multiple-reaction monitoring mode at a unit mass resolution for both the
precursor and product ions as described previously [63]. Briefly, the lipid compounds
were separated by reverse-phase UPLC (injection volume 20 µL) using Phenomenex C8
column (2.1 mm × 150 mm × 2.6 µm) with the flow rate of 0.4 mL/min. The elution was
performed using an acetonitrile gradient in 0.1% (v/v) formic acid. The target PUFAs
and oxylipins were identified and quantified by comparing their MS, MS/MS, and UPLC
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(retention times, peak areas) data with the data obtained for deuterated internal standard
compounds using Lipid Mediator Version 2 software (Shimadzu, Kyoto, Japan).

4.4. Western Blot Analysis

Western blot analysis was performed as described earlier [47]. In brief, cells were
lysed in a radio immunoprecipitation assay (RIPA) buffer. The protein concentration was
determined by the standard Bradford assay. After blocking, the PVDF membranes were
subsequently subjected to a Phosphate-Buffered Saline with Tween 20 0.05%, with a respec-
tive primary antibody at 4 ◦C overnight with constant rotation. Secondary species-specific
antibodies were applied at the concentration of 1:10,000 for 1 h at room temperature. The
signals were detected using the Pierce ECL Plus Western Blotting Substrate (Thermo Sci-
entific, Waltham, MA, USA). Mild stripping buffer (Abcam, Cambridge, UK) was used
to re-probe western blot membranes. Densitometry was carried out on three different
experiments. The band intensity was measured using a ChemiDoc™ XRS+ gel documen-
tation system (Bio-Rad, Hercules, CA, USA). Densitometry was performed with ImageJ
(1.51 s) software (National Institute of Health, Bethesda, MD, USA) using β-tubulin as the
loading control.

4.5. Determination of IL-6 Enzyme-Linked Immunoassay

ELISA for IL-6 was performed using the BD OptEIA, (cat No.:550319; BD Biosciences,
San Jose, CA, USA) antibody kits following the manufacturer’s instructions. Optical density
was measured using a microplate reader Synergy H4 (BioTek, Winooski, VT, USA).

4.6. Data Analysis and Statistics

The data are expressed as mean ± SEM. The normality of data sets was assessed
using the Shapiro–Wilk test. The data were subjected to a two-way ANOVA, followed
by Bonferroni’s post hoc test, in order to determine the statistical significance, p < 0.05
was considered statistically significant. All of the experiments were repeated at least
three times.

5. Conclusions

Our data reveal shifts towards pro-inflammatory states in HG, non-stimulated, naive
cells and also a more pro-inflammatory mixture of LPS-stimulated oxylipin synthesis in
HG in comparison to NG. Astrocytes cultivated in HG showed a tolerance to LPS. The data
suppose a regulation of COX-mediated oxylipin synthesis as a potential new target in the
treatment of brain impairment associated with hyperglycemia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11050311/s1, Figure S1: Dependence of detected oxylipins on serum concentration in
the culture medium in naive cells., Table S1: Mean +/− standard deviation of oxylipins (ng/mg) for
normal glucose (5.5 mM) or high glucose (25 mM) cultivated cells.
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