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ABSTRACT

Advanced sequencing technologies have generated
a plethora of data for many chromatin marks in mul-
tiple tissues and cell types, yet there is lack of a
generalized tool for optimal utility of those data. A
major challenge is to quantitatively model the epige-
netic dynamics across both the genome and many
cell types for understanding their impacts on dif-
ferential gene regulation and disease. We introduce
IDEAS, an integrative and discriminative epigenome
annotation system, for jointly characterizing epige-
netic landscapes in many cell types and detecting
differential regulatory regions. A key distinction be-
tween our method and existing state-of-the-art algo-
rithms is that IDEAS integrates epigenomes of many
cell types simultaneously in a way that preserves
the position-dependent and cell type-specific infor-
mation at fine scales, thereby greatly improving seg-
mentation accuracy and producing comparable an-
notations across cell types.

INTRODUCTION

With a plethora of epigenetic data sets generated by ad-
vanced sequencing technologies (1,2), a key challenge is
to build quantitative models elucidating how epigenomic
variation across both the genome and different cell types
relates to gene expression changes and phenotypic diver-
sity (3,4). A popular approach for characterizing epige-
netic landscapes is genome segmentation (5,6), which as-
signs states to genomic segments exhibiting unique combi-
natorial patterns of chromatin marks. The inferred epige-
netic states have proven useful for studying gene regulation
and disease, since hypotheses based on these state assign-
ments have been confirmed by functional experiments (7).

Existing genome segmentation tools (5,6,8,9) were mostly
developed for segmenting a single genome. Genome-

concatenation (5) and data stacking (5,10) strategies have
been used to apply single genome segmentation methods to
analyze multiple cell lines. While the genome-concatenation
approach uniformly segments multiple cell types together,
it ignores the position dependency of regulatory events. For
example, a DNA segment that acts as a promoter in one cell
type is likely to be a promoter in other cell types, but without
consideration of position dependency, that segment may be
assigned to a spurious state across cell types. In contrast,
the data stacking approach takes position specificity into
account, but it does not produce segmentations for each
cell type individually. Interpreting the states learned from
stacked data can be a challenging task, especially when data
from a large number of cell types is stacked. Also, both
strategies treat multiple cell types equally, which may over-
train on closely related cell types at the expense of distant
ones.

Extensions from single genome segmentation tools have
been developed to borrow local information across cell
types. TreeHMM (11) uses a Bayesian network to com-
bine information across cell types at each position. Two
limitations of treeHMM are that it requires a known cell
type hierarchy that is invariant across the genome, and
it requires data binarization. A bigger issue is that exact
inference of treeHMM is computationally intractable for
analyzing a large numbers of cell types. Variational ap-
proximation is therefore used to obtain approximate solu-
tions, which unfortunately has no upper bounds for infer-
ence errors. HiHMM (12) handles multiple epigenomes via
infinite-state hidden Markov models (iHMM (13)). Each
epigenome has its own iHMM parameters to account for
cell type specificity, and these iHMM parameters share in-
formation across cell types via a common prior. HiHMM
however ignores the position-dependent events across cell
types. GBR (14) uses position-pair graphs to transfer infor-
mation between pairs of interacting genomic positions and
across cell types. GBR takes existing segmentations as in-
put, and it relies on the user to choose the cell types from
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which information will be transferred. Also, GBR still seg-
ments one genome at a time by using other cell types as pri-
ors, and thus it does not develop a coherent segmentation
model for all cell types jointly.

We introduce IDEAS, an integrative and discriminative
epigenome annotation system, to jointly segment multiple
genomes by quantitatively modeling position-dependent
and cell type-specific epigenetic events at fine scales. Our
approach is a 2D segmentation method that identifies co-
occurrence patterns of epigenetic features (and inferred reg-
ulatory events) both along the genome and across cell types.
Horizontally along the genome within each cell type, the
method identifies positional organization of inferred reg-
ulatory events in a region that are commonly observed in
many cell types. For instance, if an enhancer is observed up-
stream of a target gene, it would be intuitively more likely to
observe transcriptional activity at the gene, even though the
two loci may be 100 kb away. Vertically across cell types at
each position, we also detect co-occurrence of inferred reg-
ulatory events. For instance, a transcription initiation event
at a locus in one cell type may increase our confidence for
observing similar activities in other cell types, but reduce
our expectation for seeing transcription termination events
at the position. IDEAS can capture these horizontal and
vertical state correlations that help to improve segmenta-
tion accuracy.

MATERIALS AND METHODS

Overview of the IDEAS model

The IDEAS model has three key components. First, it lo-
cally partitions cell types into groups based on similarity
of their local epigenetic landscapes, and assumes that local
regulatory regimes are similar among cell types in the same
group. This step effectively borrows information across cell
types, but selectively, i.e. only from cell types exhibiting sim-
ilar epigenetic landscapes in a local region. This approach
bypasses the direct modeling of complex cell type depen-
dencies, thereby producing computationally tractable mod-
els even if the number of cell types grows large. Secondly,
the model assigns genomic positions into classes based on
distinct and reoccurring position-dependent epigenetic pro-
files learned from all cell types. Many genomic positions
are epigenomically conserved among cell types due to their
underlying DNA sequences, such as regions ubiquitously
bound by transcription factors, transcription start sites,
and non-functional regions in the genome. This step cap-
tures the major co-occurrence patterns of epigenetic events
among cell types at each position, thereby improving seg-
mentation accuracy as well as state comparability across cell
types at the position. Thirdly, the model assigns epigenetic
states to each position in each cell type, conditioning on
the previous two components. Taken together, our model
can gain power when position and cell type specificity are
present in the data (see simulation study in Supplementary
Note Section 1).

The IDEAS method not only outputs the genome seg-
mentations as similarly produced by existing tools, but also
reports local cell type clusters and position classes that
capture the co-occurrence pattern of epigenetic states both
along the genome and among cell types. The output of

IDEAS thus can be used to describe complex epigenetic ar-
chitectures among multiple cell types, identify potential reg-
ulatory loci in the genome and their cell type specificity, and
reveal changes in cell type relationships. An illustration of
the IDEAS model is shown in Figure 1A.

Model implementation

Let X denote the data of p epigenetic marks collected from
N cell types at L genomic locations. We allow replicate data,
so the total sample size is M = n1+. . .+nN, where ni ≥ 1 de-
notes the number of replicates for cell type i. We describe
the joint distribution of X by a Bayesian mixture of multi-
variate Gaussian density functions. Let xi j denote the data
(ni×p values) observed in cell type i at position j, πi jk de-
note the corresponding mixture distribution (for all possible
states k in cell type i at position j), and f (x|�k) denote the
density function for state k with parameter �k. We express
the IDEAS model in form of

Pr (X|π,�) =
∏
i j

∏
r

{∑
k

πi jk f (xi j |�k)

}

where the inner product is taken over replicates r = 1,. . . ,ni.
The parameter space for π is much larger than the sample
size and hence requires regularization. Also, we want to bor-
row information across cell types and the genome. This is
achieved by treating π as random measures with Bayesian
hierarchical priors. Specifically, we impose two constraints:
(i) πi j . are identical for all cell types i that are in the same
cell type cluster at position j; and (ii) πi j . have the same prior
distribution of states given by the class of position j. While
the first constraint borrows information from locally related
cell types, the latter constraint combines genome-wide in-
formation to identify distinct and recurring co-occurrence
pattern of epigenetic states.

We use a set of infinite-state hidden Markov models
(iHMM) (13) to realize both local cell type clustering and
position classification. For cell type clustering, we imple-
ment one iHMM for each cell type. The states in an iHMM
denote the cell-type cluster membership. That is, at each
position, the cell types in the same iHMM states belong
to the same cluster. For position classification, we imple-
ment another iHMM with its state representing the position
classes. The cell type clustering and position classification
combined together represent a latent structure in the data,
in which each latent class has a distinct emission probabil-
ity of epigenetic states that are cell type and position spe-
cific. We use a Dirichlet process (15,16) to model the num-
ber of epigenetic states. Finally, the observed data is emit-
ted from those epigenetic states, conditionally independent
of cell type relationships and position classes. Our utility of
iHMMs and Dirichlet processes means that the model by it-
self can choose the number of states to fit the data, and via
Bayesian regularization, we will always obtain finite model
sizes in finite samples. The user however can fix the num-
ber of states in the model if needed, thereby allowing other
model selection procedures to be applied. An illustration of
IDEAS model hierarchy is shown in Figure 1B.

Our setup of the model allows us to analytically integrate
out the position and cell type specific state distribution pa-
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Figure 1. Illustration of IDEAS model. (A) Rationale for the IDEAS method. Input data include multiple epigenetic marks in many cell types. IDEAS
updates three model components iteratively: clustering cell types by local epigenetic landscape similarity; classifying genomic positions based on regulatory
profiles learned from all cell types; and conditionally inferring epigenetic states at each position in each cell type. The output of the IDEAS model includes
genome segmentation in each cell type, local cell type clusters, genomic position classes, and co-occurrence patterns of epigenetic states. (B) An illustrative
hierarchy of the IDEAS model assuming five cell types. Unknown model parameters are shown in hollow shapes and observations are shown in filled
circles. Arrows indicate model dependency. Only a small set of example connections between the cell type clustering component and the epigenetic state
component are shown. Other model parameters such as emission and hyper model parameters are not displayed.

rameters π , the space of which is in principle infinite. This
leads to a collapsed model that is inference-wise substan-
tially simplified for multi-genome segmentations. IDEAS
has a linear time complexity with respect to the number of
cell types analyzed, and thus it is capable for segmenting
up to hundreds of cell types jointly even if the cell type re-
lationships are complex. Yet simultaneously, our model is
substantially richer than existing methods that can power-
fully capture the multi-cellular epigenetic dynamics at fine
details. We use Markov chain Monte Carlo sampling meth-
ods, followed by maximization, to train the IDEAS model.
Additional details of the IDEAS model and its inference
can be found in online Supplementary Methods.

Input data set of chromatin marks

We applied IDEAS to an ENCODE dataset containing
14 epigenetic marks (H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H3K27ac, H3K27me3, H3K36me3, H4K20me1,
POL2RA, CTCF, Duke DNase, UW DNase, FAIRE and
Control) in six human cell types (GM12878, H1-hESC,
HeLa-S3, HepG2, HUVEC and K562). The 84 EN-
CODE data sets (Supplementary Table S1) were down-

loaded from https://sites.google.com/site/anshulkundaje/
projects/wiggler. The data sets from the website have al-
ready been uniformly processed and normalized by the EN-
CODE pipeline. We followed the same procedure taken in
(17) to take the maximum signal per 200bp window as the
input to our method, and we took log2(x+1) transforma-
tion of the input data to reduce signal skewness. However,
we want to point out that both ChromHMM and IDEAS
are not restricted to 200bp window sizes. We removed repet-
itive regions and blacklist regions as provided in (17) The
final input data matrix for IDEAS consisted of 13 763 197
windows and 84 tracks of data. Additional data sets used
for comparison and validation in this study were obtained
from the sources listed in Supplementary Methods online.

Assignment of mnemonics to IDEAS states

We overlapped the states generated by IDEAS with the
states generated by ChromHMM (5) on the same data,
and we calculated the fold enrichment of overlap for each
state pair relative to random matching. If a pair of states
had both the maximum absolute overlap and the maxi-
mum fold enrichment, we assigned the mnemonics of the

https://sites.google.com/site/anshulkundaje/projects/wiggler
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ChromHMM state to the corresponding IDEAS state. We
assigned mnemonics to the remaining IDEAS states by
comparing their mean signal patterns of the epigenetic
marks with those of ChromHMM (Supplementary Figure
S1) and selecting the closest match. If multiple states of
IDEAS matched to one ChromHMM state, we added nu-
merical indices to the mnemonics to distinguish them. For
a few states involving strong CTCF signals, we assigned dif-
ferent mnemonics to reflect their enriched chromatin signa-
tures and spatial relationships to genes. A summary of the
mnemonics assigned to IDEAS states and the rationales are
provided in Supplementary Table S2.

Reproducibility of segmentation

We evaluated the reproducibility of the segmentation of
IDEAS presented in this paper by generating three addi-
tional segmentation results using independently and ran-
domly initialized model parameters. We calculated an over-
all agreement between a pair of segmentation results by
rand index. We further quantified the reproducibility of
each state using correlation coefficients. In particular, for
each state to be replicated (a target state), we converted the
segmentation matrix into a binary vector with 1s denoting
the instances of the state, and 0s denoting the instances of all
other states. For each state in a replication run (a replicate
state), we similarly generated a binary vector and we cal-
culated the correlation coefficient between the two binary
vectors. We did this for all replicate states and identified the
one with the highest correlation coefficient with the target
state as a ‘match’. We recorded the correlation coefficients
between the target and replicate runs in a square matrix R,
with each element Rij in the matrix denoting the correlation
coefficient between the ith target state and the replicate state
that best matched to the jth target state. In this way, the di-
agonal elements in R quantified the reproducibility of each
target state, but the off diagonal elements in each column
in R quantified the cases where different target states were
captured by a single replicate state, and the off diagonal el-
ements in each row in R quantified the cases where a target
state was split into multiple replicate states. Due to large
sample size, a non-reproducible state would have a near 0
correlation coefficient even though we used the largest cor-
relation as the best match. Finally, we took average of the
correlation matrices from the three independent runs.

Gene expression analysis

To estimate state effects on gene expression (with genes de-
fined by GENCODE (18) version19), we first calculated
the percentage of states in a region of interest. We then re-
gressed gene expression values in two replicates of each cell
type on the percentage of states in the same cell type using
a linear regression model. State effects on gene expression
were measured by regression coefficients. To quantify the
relationship between differential gene expression and state
assignments across cell types, we performed ANOVA anal-
ysis by partitioning the 12 expression values per gene into
groups. Grouping was based on the states assigned to each
cell type at a position of interest, i.e. expression values of cell
types assigned with the same states were grouped together.

We then quantified the amount of expression variability ex-
plained by the state assignments at the position by r2.

Enhancer and CTCF analysis

For EP300 analysis, we pooled the Enh, Enh1 and Enh2
states of Segway together, as they all represented strong en-
hancers but had different mnemonics in different cell types.
Both IDEAS and ChromHMM had a single Enh state de-
noting strong enhancers in all cell types. For the precision
recall analysis, we evaluated enhancer predictions in each
cell type separately. For FANTOM5 enhancers (19), we
matched the cell types of our predictions and the reference
enhancers. For VISTA enhancers (20) tested in transgenic
mice, there was no cell type information. We therefore over-
lapped our predicted enhancers in each cell type with the
same set of VISTA enhancers. Our rationale for comparing
to the developmental enhancers from the VISTA enhancer
browser was that several enhancers were shared across cell
types, so they could be useful to evaluate the predicted en-
hancers in the cell types in this study. We pooled all results
from all cell types together to calculate an overall precision
and recall value. Recall was calculated as the percentage of
positive enhancer regions overlapped with the correspond-
ing states by each program. Genome-wide fold enrichment
was calculated as the ratio between the observed basepair
coverage of enhancer regions and the expected basepair cov-
erage in the genome-scale by chance. Note that fold enrich-
ment is proportional to one minus false discovery rate, and
thus a large fold enrichment indicates a small false discovery
rate. Precision was calculated as the percentage of basepairs
in the states within the reference regions (including both
positive and negative enhancers) overlapped with positive
enhancer regions.

For CTCF analysis, the cell types for manually curated
and non-ENCODE CTCF sites obtained from CTCFB-
SDB2.0 (21) did not match with the ENCODE cell types.
We therefore merged the CTCF states in the six cell types
together and then compared with the reference CTCF sites.
Again, our rationale for comparing CTCF occupancy in
different cell types is that CTCF binding sites are often com-
monly bound in many cell types. If two CTCF states over-
lapped, we used the mnemonics of the CTCF state with the
larger mean CTCF signals. Power was calculated as the per-
centage of CTCF sites overlapped with a predictor state by
at least 1basepair. Genome-wide fold enrichment was cal-
culated as the ratio between the observed basepair coverage
of CTCF regions and the expected basepair coverage in the
genome-scale by chance.

GWAS enrichment analysis

We used both the lead SNPs from GWASCatalog (22) and
their proxy SNPs obtained from SNAP (23) as ‘disease vari-
ants’ in the enrichment analysis. Fold enrichment was cal-
culated as the ratio between the number of disease SNPs
within the prediction regions and the number of disease
SNPs within randomly shuffled regions. We shuffled the pre-
diction regions randomly within each chromosome and we
kept the size distribution of those regions. The p-values of
enrichment were estimated by randomly shuffling the pre-
diction regions 10 000× and checking how frequent the
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number of disease SNPs within the shuffled regions were
greater than or equal to the number observed in the origi-
nal prediction regions. FDR was calculated by p.adjust() in
R.

RESULTS

We applied IDEAS to an ENCODE dataset containing 14
epigenetic marks in six human cell types (see Methods).
This dataset has been previously analyzed (17) by two state-
of-the-art algorithms, ChromHMM (5) and Segway (6).
While ChromHMM trained a 25-state model via genome
concatenation, Segway segmented each cell type separately
and assigned 55 mnemonics to the segments in all cell types.
IDEAS generated a 36-state model (Figure 2A). On average
90.3% of the IDEAS segmentation was concordant with the
segmentations obtained from additional runs using inde-
pendent and random initial values of model parameters. As
shown in Figure 2B, a majority of the 36 states by IDEAS
were reproducible, especially for states carrying strong sig-
nals in at least one epigenetic mark. A few states (DnaseD1,
Low2, Repr1, H4K20) were not reproduced in additional
runs of IDEAS, which had relatively low signals in all marks
and were rare (<0.2% in total) in the genome. Some states
with similar epigenetic profiles were merged or split in other
runs of IDEAS. The 36-state segmentation by IDEAS can
be accessed at http://main.genome-browser.bx.psu.edu un-
der Regulation → IDEAS36.

Many of the 36 states inferred by IDEAS shared com-
mon signatures as captured by other methods (Supplemen-
tary Figure S1). Comparison with orthogonal datasets re-
vealed that the functional roles inferred for the IDEAS’s
states were consistent with known patterns of DNA methy-
lation (Figure 2C), spatial distribution relative to genes
(Supplementary Figure S2), and effects on RNA output
(Figure 2D; Supplementary Figure S3), thereby confirming
the ability of IDEAS to detect known function-associated
states, such as enhancers, promoters, repressors, transcrip-
tion elongation, and heterochromatin. IDEAS also detected
some novel states, including distinct chromatin signatures
at CTCF occupancy sites enriched near transcription start
sites (TSS), promoter flanking regions, and transcription
end sites (TES) (Figure 2A; Supplementary Figure S2).

Consistent segmentation across cell types improves annota-
tion accuracy

IDEAS’s state assignments were considerably more homo-
geneous across cell types than those produced by other
methods (Figure 3A). The greater homogeneity improved
the accuracy of genome segmentation. We first evaluated
enhancer prediction by IDEAS using EP300 datasets, which
were not used in the training data. All three methods
captured 71–75% EP300 peaks in four or five states, but
the state compositions overlapping EP300 differed among
methods (Supplementary Figure S4). More of the EP300
peaks were covered by enhancer-labeled states for IDEAS
(65% in Enh, EnhF and EnhWF) than for ChromHMM
(48% in Enh, EnhW and EnhF) or Segway (59% in Enh,
EnhF1, EnhPr and EnhF3) (Supplementary Figure S4). For
all three methods, the other states capturing substantial

numbers of EP300 peaks had features of TSS. A TSS-
labeled state from IDEAS, TssCtcf, had both a TSS signa-
ture and CTCF occupancy, potentially revealing a state with
enhancer activity (EP300) and cohesin (a frequent part-
ner of CTCF) close to a TSS. When further tested with
validated enhancers in the VISTA enhancer library (20),
FANTOM5 enhancers, and CAGE usage data (19), IDEAS
yielded notably better predictions by its enhancer-labeled
states (Enh, EnhF, EnhW) than by other methods (Supple-
mentary Figures S5 and S6). IDEAS also performed better
in FANTOM5 and CAGE data when compared with En-
hancerFinder (24), a supervised method that was trained
on VISTA enhancers, suggesting an advantage of using un-
supervised approaches to identify novel enhancers that are
not represented in the training data. We note, however, that
EnhancerFinder was trained on a different set of predictors
and cell types, and it was specifically developed for predict-
ing developmental enhancers, which may contribute to the
performance difference observed here.

We next evaluated CTCF occupancy prediction using
manually curated CTCF sites and experimentally validated
CTCF sites from non-ENCODE studies in CTCFBSDB2.0
(21). The CTCF-labeled states for IDEAS captured sub-
stantially more CTCF sites (57.7%) than for ChromHMM
(21.2%) and Segway (25.0%), respectively, on the manu-
ally curated CTCF. Similarly, the CTCF-labeled states for
IDEAS also captured more CTCF sites (93.3%) than for the
other two methods (73.9% and 78.0%, respectively) on the
non-ENCODE CTCF. In addition, IDEAS yielded similar
or better fold enrichments than ChromHMM and Segway
(Supplementary Figures S7 and S8). Taken together, the re-
sults suggest that IDEAS had a better sensitivity and speci-
ficity for predicting CTCF occupancy than the other two
methods. Among all positions carrying at least one CTCF-
labeled state in the six cell types, 29.2% of those positions
for IDEAS were ubiquitous (with the same CTCF-labeled
state assignments in all six cell types, Supplementary Fig-
ure S9), denoting common occupancy of CTCF in all cell
types. The variance of CTCF signals at those ubiquitous
CTCF sites was notably smaller than those at the variable
CTCF sites (Supplementary Figure S10). In comparison,
the proportions of ubiquitous CTCF binding predicted by
ChromHMM and Segway were much smaller (5.3% and
11.4%, respectively).

We further used RNA-seq data to evaluate the predic-
tive power of epigenetic states on gene expression. Each epi-
genetic state potentially represents a cis-regulatory module
(CRM) that may promote or repress the expression of its
target genes. Should the inferred states be a good predictor
for CRMs, the effect of a state on gene expression would
be only related to its occurrence around the gene, but not
depend on cell types. Using a linear regression model, we
predicted gene expression by the states within a region of
fixed distance to each gene (Supplementary Figure S11). In
all cell types and at various distances to genes, the segmen-
tations from IDEAS consistently yielded the best predic-
tion of gene expression compared to those of other meth-
ods, with the largest power gain in H1hESC. Importantly,
comparing between cell types, IDEAS produced the most
homogeneous state effect estimates on gene expression (Fig-
ure 3B).

http://main.genome-browser.bx.psu.edu
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Figure 2. IDEAS model generated 36 states in ENCODE data. (A) Heatmap of the mean signals of the 14 marks in 36 IDEAS states. State mnemonics
are shown on the right. (B) Reproducibility for the corresponding states shown in (a), measured by correlation coefficients. Reproducible states have high
correlation coefficients along the diagonal; off diagonal strong correlation coefficients within a row indicates that the target state was split into multiple
states in replication; off diagonal strong correlation coefficients within a column indicates that multiple target states were merged in one state in replication.
(C) Boxplot of the methylation levels in IDEAS states, sorted by median. (D) Heatmap of the estimated state effects on gene expression by regressing gene
expression on the percentage of states within 2 kb upstream of transcription start sites.

We also examined the impact of using epigenetic data
in stacked mode in ChromHMM, which does preserve po-
sition specific information. The drawback to this mode is
that data from all cell types are used simultaneously but
without the cell type identity being considered. To inter-
pret the resulting states, Mortazavi et al. (10) trained self-
organizing maps (SOMs), which did uncover cell-specific
candidate regulatory regions. We compared our enhancer
predictions to those from the ChromHMM-SOM maps,
and found substantial concordance in the results (Supple-
mentary Figure S12). The GM12878-specific enhancer pre-
dictions from IDEAS also identified an additional cluster
of states in the SOM not described in Mortazavi et al. Thus
the single coherent model from IDEAS can recapitulate
and expand on results from analysis by running in series
ChromHMM (stacked mode) followed by SOMs.

Dynamic segmentations predict differential gene expression

Our improved state assignments across cell types enabled
robust detection of epigenomically constitutive and vari-
able positions. We define a genomic position as epigenom-
ically ‘variable’ if the cell types received different state
assignments at the position. IDEAS marked 46.6% of
the genome epigenomically ‘variable’, which was a much
smaller proportion than the 84.4% and 99.1% variable posi-
tions by ChromHMM and Segway, respectively. The nearly
100% differentially annotated positions by Segway was due
to its disjoint segmentation done in each cell type sepa-
rately, which created inconsistent state inference between
cell types. The variable positions inferred by IDEAS were
enriched in enhancer and repression states, whereas the con-
stitutive sites mainly contained low signal, elongation and
TSS states (Supplementary Figure S13).



Nucleic Acids Research, 2016, Vol. 44, No. 14 6727

ChromHMMIDEAS Segway

−0.5

0

0.5

1

Q
ui

es T
ss

C
tc

f
C

tc
fO

G
en

3'
E

lo
nW E
lo

n
T

ss
F

P
ro

m
P

A
rt

Lo
w

R
ep

rW
R

ep
r

P
ro

m
F

P
ol

2
G

en
5'

R
ep

rD
D

na
se

D
E

nh
W

E
nh

Fa
ire

W
D

na
se

U
H

4K
20

E
nh

F
E

nh
W

F

EnhWF
EnhF
H4K20
DnaseU
FaireW
Enh
EnhW
DnaseD
ReprD
Gen5'
Pol2
PromF
Repr
ReprW
Low
Art
PromP
TssF
Elon
ElonW
Gen3'
CtcfO
Ctcf
Tss
Quies

C
tc

fO T
ss

Q
ui

es
E

lo
n2

E
lo

nW
E

lo
n1

E
lo

n
G

en
3'

G
en

5'
G

en
3'

1
G

en
3'

2
G

en
5'

1
G

en
5'

2
P

ro
m

P
2

T
ss

F
P

ro
m

F
Lo

w
1

Lo
w

3
R

ep
r2

R
ep

r3
R

ep
r1

C
tc

f
R

ep
r7

Fa
ire

Lo
w

7
Lo

w
2

Lo
w

5
Lo

w
6

Lo
w

4
E

nh
W

f3
E

nh
W

R
ep

r5
R

ep
r6

R
ep

r4
E

lo
nW

1
E

lo
nW

2
E

lo
nW

3
E

nh
1

E
nh

F
3

E
nh

P
r

P
ro

m
P

D
na

se
D

R
ep

r
E

nh
P

E
nh

W
f2

E
nh

W
f1

P
ro

m
P

1
E

nh
E

nh
W

2
E

nh
W

1
E

nh
F

1
E

nh
F

2
E

nh
W

f
E

nh
2

E
nh

F

EnhF
Enh2
EnhWf
EnhF2
EnhF1
EnhW1
EnhW2
Enh
PromP1
EnhWf1
EnhWf2
EnhP
Repr
DnaseD
PromP
EnhPr
EnhF3
Enh1
ElonW3
ElonW2
ElonW1
Repr4
Repr6
Repr5
EnhW
EnhWf3
Low4
Low6
Low5
Low2
Low7
Faire
Repr7
Ctcf
Repr1
Repr3
Repr2
Low3
Low1
PromF
TssF
PromP2
Gen5'2
Gen5'1
Gen3'2
Gen3'1
Gen5'
Gen3'
Elon
Elon1
ElonW
Elon2
Quies
Tss
CtcfO

Lo
w

1
Lo

w
R

ep
rW

Z
er

o
Fa

ire
W

1
E

lo
n

R
ep

r2
T

ss
C

tc
f

T
ss

W
T

ss
G

en
3

P
ro

m
C

tc
f

G
en

3C
tc

f
C

tc
f

C
tc

fO
P

ro
m

F
1

T
ss

F
Fa

ire
W

2
Q

ui
es

A
rt

2
P

ol
2

G
en

5
Lo

w
2

D
na

se
D

2
R

ep
rD

P
ro

m
P

D
na

se
D

1
E

nh
W

F
2

E
nh

W
A

rt
1

E
nh

W
F

3
H

4K
20

E
nh

W
F

1
R

ep
r1

P
ro

m
F

2
E

nh
F

E
nh

Enh
EnhF
PromF2
Repr1
EnhWF1
H4K20
EnhWF3
Art1
EnhW
EnhWF2
DnaseD1
PromP
ReprD
DnaseD2
Low2
Gen5
Pol2
Art2
Quies
FaireW2
TssF
PromF1
CtcfO
Ctcf
Gen3Ctcf
PromCtcf
Gen3
Tss
TssW
TssCtcf
Repr2
Elon
FaireW1
Zero
LowReprW
Low1

Lo
w

1
E

lo
n

G
en

3
G

en
5

Lo
w

R
ep

rW
Fa

ire
W

2
R

ep
r2

T
ss

F
E

nh
W

Z
er

o
P

ol
2

G
en

3C
tc

f
T

ss
C

tc
f

P
ro

m
C

tc
f

E
nh

T
ss

W
T

ss
E

nh
W

F
2

P
ro

m
F

1
Fa

ire
W

1
D

na
se

D
1

C
tc

fO
R

ep
rD

C
tc

f
Q

ui
es

R
ep

r1
A

rt
1

D
na

se
D

2
P

ro
m

F
2

E
nh

W
F

1
P

ro
m

P
E

nh
W

F
3

A
rt

2
Lo

w
2

E
nh

F
H

4K
20

Q
ui

es
G

en
3

E
lo

n
E

lo
nW P
ol

2
T

ss
G

en
5

T
ss

F
P

ro
m

P
A

rt
C

tc
fO

R
ep

rW E
nh

R
ep

r
E

nh
W

R
ep

rD
C

tc
f

D
na

se
D

E
nh

F
P

ro
m

F
Lo

w
H

4k
20

Fa
ire

W
E

nh
W

F
D

na
se

U

Q
ui

es T
ss

P
ro

m
F

Lo
w

1
R

ep
r1

R
ep

r3
R

ep
r2

C
tc

fO
G

en
3

E
lo

n
E

lo
nW

Lo
w

5
R

ep
r4

Lo
w

2
Lo

w
3

G
en

5
E

nh
Lo

w
6

E
nh

P
r

R
ep

r5
E

nh
F

1
E

nh
F

2
T

ss
F

E
lo

n1
E

lo
n2

E
nh

1
Fa

ire
E

nh
F

Lo
w

7
R

ep
r6

E
lo

nW
1

E
nh

F
3

G
en

3.
1

G
en

3.
2

P
ro

m
P

2
G

en
5.

1
G

en
5.

2
E

nh
W

f3
R

ep
r

E
nh

W
P

ro
m

P
1

E
nh

W
1

D
na

se
D

P
ro

m
P

E
nh

W
2

C
tc

f
E

nh
W

f1
E

nh
W

f2
E

nh
P

R
ep

r7
E

lo
nW

3
E

nh
2

E
nh

W
f

E
lo

nW
2

Lo
w

4

0.0

0.2

0.4

0.6

0.8

1.0

IDEAS

C
os

in
e 

si
m

ila
rit

y

ChromHMM Segway

●

●

●

●

●

●

●

●

●

IDEAS ChromHMM Segway

0.0

0.2

0.4

0.6

C
os

in
e 

si
m

ul
ar

ity 0.8

1.0

A

B

Figure 3. Homogeneity of state assignments and similarity of state effects on expression across cell types. (A) Each heatmap shows the correlation coef-
ficients of pairs of states assigned at the same positions across cell types. (B) Barplot of the average cosine similarity of state effects on gene expression
estimated between pairs of cell types. In each cell type and at each genomic interval relative to genes (defined in Supplementary Figure S2), we linearly
regressed gene expression on the state composition. State effects are the regression coefficients. Cosine similarity for a state between a pair of cell types was
then calculated from the vectors of state effects over all genomic intervals. We finally averaged the cosine similarity across all pairs of cell types. The insert
shows the distribution of cosine similarity for all states.

We evaluated the reliability of our variable and consti-
tutive state assignments at each position using independent
gene expression data. As epigenetic states have different im-
pacts on gene expression, we expected that genes differ-
entially expressed among cell types would have more dy-
namic state assignments at their nearby positions across cell
types; and vice versa, silent genes or genes ubiquitously ex-
pressed among cell types would have more constitutively
assigned states at their nearby positions across cell types.
We calculated state assignment heterogeneity, which is the
probability that two randomly selected cell types will have
different state assignments at a position, at different po-
sitions within genes and at varying distances from genes.
As shown in Figure 4A, IDEAS produced a dynamic pat-
tern of state assignment heterogeneity as a function of dis-
tance to genes and differential gene expression. Specifically,
the states assigned by IDEAS were more heterogeneous
among cell types at positions near highly differentially ex-
pressed genes, as compared to distant positions to genes
or at genes not differentially expressed among cell types.
In comparison, ChromHMM yielded a similar pattern but
had a weaker signal-to-noise ratio. Segway results showed a
very different pattern with heterogeneous states assigned at
most positions among cell types, except for the TSS regions
of non-differentially expressed genes. This result again re-
flected the inconsistent state assignments produced by dis-

joint segmentation in each cell type separately. In addi-
tion, the state assignment heterogeneity for IDEAS had the
strongest correlation with gene expression variability across
cell types (Supplementary Figure S14).

We further performed analysis of variance (ANOVA) to
relate position-wise state assignments to gene expression
changes across cell types. At each position and for a tar-
get gene, we grouped cell types by the state assignments at
the position, and we calculated r2 for the expression vari-
ability of the target gene explained by the state assignments.
As shown in Figure 4B, for all methods, the differential ex-
pression patterns of genes were best explained by the state
assignments near TSS and within genes. In addition, the
greater the changes in gene expression among cell types, the
more they were explainable by the state assignments. Com-
paring the r2 values for all methods between TSS and distal
regions to genes, and between differentially expressed and
ubiquitous genes, IDEAS yielded the strongest signal-to-
noise ratio. In contrast, the overall large r2 values for Seg-
way reflected over fitting in small samples (12 expression
values per gene).

Cell type specific regions are enriched of GWAS variants

About 75% of the epigenomically variable sites marked
by IDEAS were locally clustered, forming epigenomically
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Figure 4. Differential gene expression explained by state assignments across cell types. (A) Each plot shows the mean state assignment heterogeneity (the
probability of two randomly selected cell types having different state assignments at a position) as a function of distance to gene (x-axis, see Supplementary
Figure S2 for details) and standard deviation of expression changes across cell types (y-axis). Since the state heterogeneity values for different methods are
very different, we show relative heterogeneity by subtracting the minimum value, which is indicated in the color legend. The same color map is used for all
methods in this panel. (B) Mean proportion of differential gene expression (r2) explained by state assignments across cell types, as a function of distance
to gene and standard deviation of expression changes. The same color map is used for all methods in this panel.

‘variable regions’, which were captured by IDEAS’s local
cell type clustering. We refer to a genomic region for which
the cell types were clustered in at least two groups as an
epigenomically variable region, and otherwise the region is
constitutive. Defining ‘cell type specific regions’ as regions
with one cell type forming a cluster and the other cell types
forming another cluster, we obtained the cell type specific
regions for each cell type. A substantially larger proportion
(29.6%) of the genome was unique to H1hESC than the pro-
portions (1–4%) unique to other cell types. The H1hESC-
specific regions were driven by weak enhancer, Pol2 and
H4K20 states (Supplementary Figure S15). Overall, cell
type specific regions were enriched either in enhancers or
near but not at TSS (Supplementary Figure S16).

The cell type specific positions and regions identified by
IDEAS were enriched for disease and trait-associated ge-
netic variants in the NHGRI GWAS Catalog (22) (Figure
5). The enriched traits were highly unique and relevant to
the corresponding cell types. GM12878, for instance, is a
lymphoblastoid cell line. Positions and regions with epi-
genetic marks specific to GM12878 were enriched in ge-
netic variants associated with many autoimmune diseases,
including multiple sclerosis, rheumatoid arthritis, Crohn’s
disease, type 1 diabetes and celiac disease. HepG2 is de-
rived from a liver carcinoma and has been used to study
metabolism disorders. Positions and regions with epige-
netic marks specific to HepG2 were enriched in variants

for metabolism-related traits such as iron levels, choles-
terol levels, metabolite levels, gamma-glutamyl transpepti-
dase and fibrinogen. K562 is derived from a chronic myeloid
leukemia patient and has both erythoid and megakary-
ocytic properties. Positions and regions with epigenetic
marks specific to K562 were enriched in variants for blood-
related traits, coagulation and erythroid phenotypes. For
some traits, the rationale is less obvious for why genetic vari-
ants associated with those traits were enriched in particular
cell type specific positions and regions. These cases may rep-
resent novel trait-cell type relationships and may be better
understood by incorporating additional cell types. Finally,
we performed the same analysis on the cell type specific po-
sitions derived from the results for ChromHMM and Seg-
way. While the results for ChromHMM revealed a substan-
tially smaller number of enriched traits and less intuitive
trait-cell type relationships (Supplementary Figure S17), we
obtained no significant results for cell type specific positions
predicted by Segway.

DISCUSSION

We introduced a powerful new tool, IDEAS, for jointly seg-
menting multiple genomes. While our approach globally
share information across both the genome and cell types,
it also preserves local position specific and cell type specific
information. IDEAS can be broadly utilized in a range of
studies involving one or multiple chromatin marks in one or
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mark the groups of traits most significantly enriched in the corresponding cell types.
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many cell types, tissues and conditions (see method evalua-
tion in Supplementary Note Section 2). For one cell type,
IDEAS reduces to a quantitative hidden Markov model,
but it can model replicate data without taking averages. For
multiple cell types, IDEAS can scale up to segment more
than 100 cell types simultaneously. We tested IDEAS using
the 127 epigenomes in the Roadmap Epigenomics project
(6) on chromosome 21 (Supplementary Note Section 3) and
obtained comparable segmentations to those released by the
Roadmap Epigenomics project. As the number of cell types
increases, however, we expect fewer regions will be unique
to each cell type, for which advanced testing methods (25)
will become useful for testing state enrichment in groups of
cell types.

While IDEAS can produce more favorable results than
the current state-of-the-art algorithms and other methods
(Supplementary Note Section 4), it is also computation-
ally efficient. A runtime comparison using the ENCODE
data on chromosome 22 showed that IDEAS ran as fast
as ChromHMM and 20∼30 times faster than Segway us-
ing a single core computer, and IDEAS supports parallel
computing (Supplementary Note Section 5). The compu-
tational efficiency of IDEAS is significant considering the
richness of its model. Our approach avoided the exponen-
tially growing model complexity with respect to the number
of cell types, which would be required by standard methods
that model both position and cell type dependence. Impor-
tantly, we used local cell type clustering to flexibly account
for complex cell type relationships that may further change
along the genome by functions of the underlying DNA se-
quences. We note, however, that our current model for posi-
tion classification is a standard approach that has quadratic
complexity with respect to the number of position classes
involved, which is another target for improvement.

Genome segmentation methods, including IDEAS, are
clustering algorithms that have local mode issues in gen-
eral, i.e. segmentations generated in independent runs of the
algorithm may not be identical. Segmentation results may
vary depending on the initial values of the model parame-
ters. While a majority of the states generated by IDEAS in
this study were reproduced in independent runs, especially
for the states carrying strong signals in at least one mark, a
few states were not reproduced either due to low signals or
similar epigenetic profiles with other states. For the latter
case, the union of those similar states could be more con-
cordant between runs than evaluated individually. We will
implement and evaluate advanced methods for alleviating
these local mode issues in the future. Potential solutions in-
clude simulated annealing (26) and methods that combine
results from different runs followed by model retraining.

While we used the same scales for comparisons, we note
that the color maps used in this manuscript may exagger-
ate some of the differences or similarities between methods
(27). Also, due to limitation of the model assumptions, some
epigenetic states inferred by IDEAS may not correspond to
biologically functional elements. Furthermore, genome seg-
mentation is an unsupervised method that may not work as
well than some specialized methods for calling specific types
of regulatory elements, such as enhancers. IDEAS currently
uses Gaussian densities in its mixture model, for which we
suggest using log2 transformation on very skewed data. Al-

ternatively, other probability functions (28) that better ac-
count for the variance inflation in sequencing read counts
may be more appropriate. While IDEAS encourages homo-
geneous state assignments, it may miss subtle signal varia-
tion across cell types. To improve the accuracy and sensitiv-
ity of IDEAS, we may further incorporate known cell type
relationships and model the enrichment of epigenetic states
in some reoccurring subsets of cell types. Nevertheless, our
ENCODE data application has demonstrated the utility of
IDEAS for characterizing functional classes of DNA se-
quences, detecting cell type similarity and specificity, and
relating epigenetic landscapes to phenotypes.
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The software implementing the IDEAS method is available
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