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Background
Magnetic resonance imaging (MRI) system signal is sensitive to motion whereas patient 
motion is a common behaviour among subjects during brain and cardiac MRI acquisi-
tion sessions [1–3]. Major motion-related challenges include involuntary patient actions 
such as cardiac motion, respiratory motion and irregular heart beats. Other motion-
related challenges include head motion and the movement of extremities. Steps taken to 
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mitigate the effects of these motion-related challenges often requires trade-offs between 
MRI system operating parameters [4–6]. There is trade-off between high temporal reso-
lution which account for cardiac and respiratory motion and large field of view which 
amplifies distortions. Concern for the comfort of elderly patients, unpredictable actions 
of very young children and the mentally unstable patients calls for compromise between 
signal-to-noise ratio, image resolution and length of scan time.

These challenges introduce distortions such as noise, bias fields and blur which limits 
the acquisition of high quality image. The focus of this report is on blur. Blur can be 
considered a unique type of distortion in comparison to noise and bias fields. Blurred 
boundaries is the consequence of partial volume effect in regions where the boundary 
between two different tissues is not orthogonal to image slice [7, 8]. Beyond the acquisi-
tion stage blur can be introduced into an image as a result of postacquisition process-
ing and the manifestation of pathological conditions. Reported MRI findings in patients 
with focal cortical dysplasia (FCD) is the cortical thickening and blurring of the grey-
white matter boundary [9, 10]. Post acquisition processing methods such as Karhunen–
Loeve transform and the use of linear filters for de-noising of cardiac and brain MRI 
images are known for the blurring of edges with the consequent loss of diagnostic infor-
mation [11, 12].

Blur, like all distortion processes, is uniformly propagated throughout an image. How-
ever, the effect of blur is not uniformly distributed in MRI images because the human 
anatomy is structurally heterogeneous. Blur weakens the strength of edges which define 
the visibility of details within an image [13]. Blur erodes the texture features that charac-
terize smoothly varying regions such as the cardiac ventricles and the brain white mat-
ter. It causes loss of sharpness in the high density of edges that describe the cortical grey 
matter region and reduces the contrast between the different anatomical structures [14].

Blur assessment is, and will continue to be an active research area in the image pro-
cessing community because the reliability of metrics derived from MRI images for the 
diagnostic evaluation of cardiac and neurological diseases, to a large extent, is depend-
ent on edge information. Edge information is strongly related to the level of blur in an 
image. Several physiological parameters are based on edge-based metrics derived from 
MRI images. The physiological parameters include cardiac ejection fraction, myocar-
dial wall motion, blood flow velocity, myocardial perfusion, whole brain volume meas-
urement, whole brain atrophy, white matter atrophy and cortical grey matter atrophy 
[15–19].

Most current blur assessment algorithms are designed for a general class of images 
with focus on consumer electronics such as digital cameras, television, video and mobile 
devices. Generally, the algorithms begins with the extraction of an edge map from the 
test image. Blur quality index is derived after the edge map is further analyzed in one 
or combinations of the spatial domain, frequency domain or multi-resolution decom-
position. In this report we categorize current blur assessment methods into recent and 
earlier contributions. Recent contributions include the reports in [20–24]. Earlier con-
tributions include the reports in [25–30]. It is not possible to list all the current con-
tributions. However, we will describe the unique design features which distinguish the 
aforementioned recent contributions.
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The concept of increased dynamic range was introduced in [20]. Increasing the 
dynamic range of generated contrast maps significantly improve blur prediction. 
Another report measure the blurriness in an image from the steepness of probability 
density function. The probability density function models the histogram of discrete 
cosine transform coefficients of edge maps [21]. Color, edge, and structural informa-
tion is the technique used to discriminate images with different levels of blur in [22]. 
Exact Zernite moments which reflects human visual characteristics was extracted from 
test images in [23]. The exact Zernite moments are combined with contrast information 
from gradient magnitude to measure the level of blur in the image. Changes in structural 
information resulting from blurriness was encoded with orthogonal moments and visual 
saliency model in [24].

One of the few contributions focused on medical images is the edge sharpness assess-
ment by parametric (ESAP) modeling [23]. Sharpness assessment in ESAP begins with 
manual selection of region of interest from edge map extracted from the test image. The 
intensity level of edge pixels that are appropriate to describe edge sharpness are read and 
fitted with a sigmoid function. Sharpness quality score is computed from the parameters 
of the sigmoid function. Another report is based on the Moran statistics [31]. Moran 
statistics, originally proposed to estimate noise level, is a function of the spatial autocor-
relation of mapped data [32]. The peak ratio of Moran’s histogram quantifies the degree 
of image blurring based on the notion that the quantity of image blurring is dependent 
upon the ratio between the processed peak of Moran’s histogram and the original image.

The region-of-interest incorporated in ESAP is a novelty. However the authors 
acknowledge that ESAP may not correlate with human visual perception. Furthermore, 
manual selection of the region-of-interest limits its application where large volumes of 
MRI data are processed. The versatility of the report based on Moran statistics is limited 
because it is a full-reference method.

In this report we propose a new approach to assess blur distortion in MRI images. The 
concept behind blur quality evaluation is the existence and persistence of edge infor-
mation at different image resolutions [21]. Across increasing Gaussian scales, edges in 
higher quality images have higher persistence than lower quality images. Blur quality 
is derived from the relationship between three image features. The proposed method 
incorporates human visual characteristics. The test image is simultaneously fed into two 
parallel difference of Gaussian (DOG) filters which operate with different parameters at 
multiscale representation. The different parameters constrains one filter to successively 
attenuate edges and the other filter to highlight edges over the same fixed range of mul-
tiscale representation. Image quality score variable is the distance between the features 
extracted from the output of each filter at the end of multiscale representation.

The next section describes the methods for our proposed quality assessment "Experi-
ments" section describe the objective and the subjective performance evaluation experi-
ments of the proposed quality metric. Results from the experiment are displayed and 
discussed in "Results" and "Discussion" sections, respectively. Challenges, limitations 
and future work is in "Challenges, limitations and future work" section. "Conclusion" 
section concludes this report.
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Methods
The flow chart in Fig.  1 and the images in Fig.  2 explains the six sequential steps to 
implement the proposed blur assessment method. Three symbols used in the flowchart 
are diagonals, circles and rectangles. A diagonal represents each step in the implementa-
tion of the proposed method. The circles are the output of numeric computations and 
the rectangles are images. The black, brown, purple and blue rectangles are the origi-
nal image TIM, foreground image FRG, rescaled original image RIM and difference of 
Gaussian filtered images DoG1, DoG2, respectively. 

Step 1: intensity standardization

The original image is rescaled REX to produce a new image Id shown in Fig.  2a with 
intensity levels that lies between 0 and 255. The algorithm standardizes the intensity of 
all test images by rescaling their intensity levels to lie within the same fixed range. Inten-
sity standardization ensures the standardization of contrast measures. Standardization 
of contrast measures makes it possible to compare predicted blur assessment indices for 
different images and images with different contents.

Step 2: extraction of foreground

The foreground region shown in Fig. 2b was extracted FRX from the rescaled original 
image shown in Fig.  2a to determine the region covered by the anatomical structures 
within the image grid. The area of foreground region is required to compute feature 
descriptors in subsequent steps of the algorithm. There are three successive stages within 
the foreground extraction step. The first step is global threshold set at the first moment 
of the rescaled orginal image. The output of the global threshold is a binary image. The 
global threshold is followed by morphological hole filling operation of the binary image. 

Fig. 1  Flow chart of the proposed method for the assessment of blur in MRI images
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Fig. 2  The implementation of blind blur assessment in MRI images. a The test image has its pixel intensity 
level rescaled to lie between 0 and 255. b Foreground of the test image in a is extracted. c The identical edge 
map from the initial parameters of the low and high energy difference of Gaussian filters. d The output image 
of the low energy filter at the conclusion of the multiscale representation. e The output image of the high 
energy filter at the conclusion of the multiscale representation. f The edge map extracted from the image in 
d. g The edge map extracted from the image in e. h Variation of image features from the output of the low 
and high energy filters at different Gaussian scales. i The predicted contrast, sharpness and total blur quality 
scores based on the analysis of the plot in h 
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After the hole filling operation, there is morphological cleaning operation of the same 
binary image. In the cleaning operation, small regions ≥ 800 pixels that are unfilled in 
the hole filling operation are detected and eliminated.

Step 3: compute image feature

The mean mET of the rescaled original image is computed MEX from the indices of 
foreground pixels extracted in step 2.

Step 4: parallel multiscale DoG filtering

Two duplicate copies of the rescaled original image are generated. Each duplicate is sep-
arately and simultaneously convolved with two difference of Gaussian filters (DOG). The 
filters, DoG(σ1,σ2)(x, y) and DoG(σ3,σ4)(x, y) are defined as:

where σ1, σ2, σ3 and σ4 are the widths of the Gaussian filter Gσ (x, y) : 

The motivation behind the use of DOG filter is its efficient application in edge detection 
for feature enhancement, blob detection, face detection and quality evaluation [33–36]. 
The DOG filter was implemented using the matlab code available in [37, 38]. Human vis-
ual system characteristics are incorporated into the algorithm by tuning each DOG filter 
to different parameters and for multiscale representation MSX of the rescaled original 
image. The parameters θ1, θ2 for each filter are defined as:

where L, the range of the multiscale representation, is defined as:

where d1 and d2 are the row and the column dimensions of the image, respectively. The 
output of each filter, at each scale of the multiscale representation are denoted DoG1 
and DoG2 in the flow chart shown in Fig. 1.

Based on the parameter definitions in Eq.  3, the initial output from both filters are 
identical because, the initial parameters of both filters are equal:

The initial output from one of the filters is shown in Fig. 2c. In subsequent multiscale 
representations each filter is tuned to different parameters. The first filter successively 
increases the level of details while the second filter successively attenuates the level of 
details. Based on these characteristics the filters are referred to as low and high energy 

(1)
DoG(σ1,σ2)(x, y) =

(

Gσ1(x, y)− Gσ2(x, y)
)

DoG(σ3,σ4)(x, y) =
(

Gσ3(x, y)− Gσ4 (x, y)
)

(2)G(x, y) =
1

√
2πσ

exp

(

−
x2 + y2

2σ 2

)

(3)
θ1 = {σ1, (σ1 + σ2)}, σ1 = 1, σ2 = {1, 2, 3, . . . , L}
θ2 = {σ3, (σ3 + σ4)} σ3 = {1, 2, 3, . . . , L}, σ4 = 1

(4)L =
√
d1+ d2

2

(5)θ1 = θ2 = {1, 2}.
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DOG filters, respectively. The output from each filter, at the end of the multiscale repre-
sentation, are displayed in Fig. 2d, e.

Step 5: extract edge map

At each scale of the multiscale representation, an edge map is extracted from each filter. 
The mean (mED1), (mED2) of the edge map from each filter is also computed (MEX) 
from the indices of the foreground pixels. The edge map is the local contrast feature 
image extracted from the output of the filter using local contrast filters. The edge map 
extracted from the output (shown in Fig. 2d, e) of each filter are displayed in Fig. 2f, g, 
respectively. The extracted edge information is sensitive to the size of filter. Heuristic 
approach was adopted to determine the appropriate filter size. During the performance 
evaluation of the algorithm, it was observed that the use of 3× 3 and 7× 7 filter sizes 
does not predict quality score which correlated with subjective evaluation by human 
observers. Specifically, filter size of 3× 3 underestimate image quality while filter size 
of 7× 7 overestimate image quality. We recommend fixed filter size of 5× 5 for images 
with dimensions 256× 256 and 512× 512, respectively.

Step 6: compute blur quality index

The level of blur is evaluated from the relationship between image features in each DOG 
filter. The plot in Fig.  2h show how the first moment of the edge map extracted from 
each DOG filter vary with different multiscale representations. The blue and red colored 
plots are for the first and second filters, respectively. Points A and B on the plot repre-
sent the first moment of each edge map at the conclusion of the multiscale represen-
tation. The distance between A and B is D. The yellow colored plot represents the fist 
moment of the rescaled original image. The fist moment of the rescaled original image 
serves as a reference for measuring the persistence of edges in each filter at different 
Gaussian scales. There are three image features of interest. The first feature of interest is 
the mean of the rescaled original image µId . The second and third features of interest are 
the first moments µCA , µCB of the edge map extracted from each filter at the conclusion 
of the multiscale representation.

The followings hold:

Hereafter, we analyze the plot of the multiscale representation and show that the plot 
can be used to predict QSX quality index (Fig. 2i) for ideal, extremely degraded and real 
MRI images.

1 Ideal image

An ideal MRI image is piecewise constant [39]. The edge map in an ideal MRI image 
is optimized. There are no more details to highlight by the first DOG filter. At the end 
(point A in Fig. 2h) of the multiscale representation, the final output image IA from the 
first DOG filter closely approximates the rescaled original image Id . Therefore, 

(6)
µCB ≤ µCA ,

µCA ≤ µId ,

µId ≤ (µId + µCB).
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 The second DOG filter successively attenuates edges in the ideal image. At the end 
(point B in Fig. 2h) of the multiscale representation, there is almost complete depletion 
of details in the rescaled original image. Therefore, 

 The distance DL1 between the mean of the edge map at A and the mean of the edge map 
at B: 

2 Extremely degraded image

There is absence of details or very sparse details in an extremely degraded MRI image. 
There are no more details to highlight. At the end of the multiscale representation, the 
first DOG filter replicates the extremely degraded image. Therefore, 

 The second DOG filter will completely erode the sparse details in the extremely 
degraded image. Therefore, 

 The distance DL2 between the mean of the edge maps at the output of each filter is: 

3 Real image

We postulate that the distance between the edge maps at the output of the low and the 
high energy filters is a useful variable for predicting the blur index of an MRI image. The 
quality index for a real MRI image will lie between the quality index of an extremely 
degraded image and the quality index of an ideal image: 

 The contrast between the edge and the non-edge regions in the rescaled original image 
is the contrast quality score. The contrast quality score q1 is determined by normalizing 
the distance DL with the mean µId of the image: 

 where (µCA − µCB) ≤ µId expresses the condition for the validity of q1. The sharpness of 
the rescaled original image is the sharpness quality score.

(7)
IA ≈ Id ,

CA ≈ Id ,

µCA ≈ µd .

(8)µCB ≈ 0.

(9)DL1 ≈ �µCA − µCB� = µCA .

(10)µCA ≈ 0.

(11)µCB ≈ 0.

(12)DL2 = �µCA − µCB� ≈ 0.

(13)0 ≤ (DL1,DL2) ≤ 1.

(14)q1 =
�µCA − µCB�

µId

, (µCA − µCB) ≤ µId
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The sharpness quality score q2 is determined by normalizing the distance DL with the 
(µId + µCB): 

 where (µCA − µCB) ≤ (µId + µCB) expresses the condition for the validity of q2.
The total quality score Q is the average of the contrast and sharpness quality scores:

The difference in the computed values between the contrast and sharpness quality scores 
is the second term µCB in the normalizing constant in Eq.  15. The choice of µId and 
(µId + µCB) as the normalizing constant in Eqs. 14 and 15 is based on the expression in 
Eq. 13. The normalizing constant ensures that the blur quality index is defined within a 
lower and upper limit {0 ≤ (q1, q2) ≤ 1}.

Experiments
Performance evaluation of our proposed method was carried out using brain and cardiac 
MRI volume data. The brain MRI volume data were provided by NeuroRx research Inc. 
(https​://www.neuro​rx.com), BrainCare Oy. (http://brain​care.fi/) and the Alzheimer’s 
disease neuroimaging initiative (ADNI) (http://www.adni.loni.usc.edu). The cardiac MRI 
volume data were short axis MRI provided by Department of Diagnostic Imaging of the 
Hospital for Sick Children in Toronto, Canada (http://www.sickk​ids.ca/Diagn​ostic​Imagi​
ng/index​.html). The cardiac MRI data were originally used as test data in the report [40].

There are 1200 slices from 25 short axis cardiac MRI volume data. The dimension of 
each cardiac slice is 256× 256 pixels along the long axis. The slices of the brain MRI 
volume data are 500 T2, 250 T1 and 300 Fluid Attenuated Inversion Recovery (FLAIR) 
images. The brain MRI slices from NeuroRx and ADNI have dimension 256× 256 pix-
els. The data from BrainCare have dimension 448× 390 pixels.

The new blur assessment method was implemented in the MatLab computing envi-
ronment. Gaussian blur and motion blur at different levels were artificially induced on 
the test data. Gaussian blur was simulated by convolving a slice with rotationally sym-
metric low pass filter of width w, {w : 3 < w < 15} pixels. The range of the filter size was 
scaled from level 1 to level 15. The motion blur was induced on a slice by convolving it 
with a special filter which approximates the linear motion of a camera. The linear motion 
is described by two parameters, the linear distance in pixels and the angular distance in 
degree. Both parameters were scaled from 1 to 15 in unit step.

The performance of our proposed method was evaluated objectively and validated 
subjectively in four categories of experiments, The categories of the experiments are 
Cardiac MRI, T2, T1 and FLAIR brain MRI. Subjective evaluation was facilitated using 
QuickEval [41], a web-based tool for psychometric image evaluation provided by the 
Norwegian Colour and Visual Computing Laboratory (http://www.colou​rlab.no/quick​
eval) at the Norwegian University of Science and Technology, Gjovik, Norway. The 
observers are one radiologist and one medical imaging professional. The observers 
assigns a score between 0 and 100, in steps of 1, to each slice. Each score assigned by the 

(15)q2 =
�µCA − µCB�
µId + µCB

, (µCA − µCB) ≤ (µId + µCB)

(16)Q =
q1 + q2

2
.

https://www.neurorx.com
http://braincare.fi/
http://www.adni.loni.usc.edu
http://www.sickkids.ca/DiagnosticImaging/index.html
http://www.sickkids.ca/DiagnosticImaging/index.html
http://www.colourlab.no/quickeval
http://www.colourlab.no/quickeval
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observer is divided by 100 to ensure that the subjective and objective scales are in the 
same range. Each observer was first presented with an undistorted version of an MRI 
slice, followed by increasing distortion levels of the original slice. The distorted levels are 
5, 10 and 15. The mean opinion score (MOS) was used in the validation studies because 
it is popular and simple to implement [42]. The relationship between the score predicted 
by our proposed method and the subjective scores assigned by human observers was 
computed using the spearman rank correlation coefficient [43].

Results
Objective evaluation

Brain MRI without perceived distortion

Six slices from a T2 weighted brain MRI volume data are shown in Fig. 3a–f. The varia-
tion of image features (mean of the edge maps) at different Gaussian scales for the low 
and the high energy DOG filters are shown in Fig. 3g, h. The plot in Fig. 3i show the con-
trast, sharpness and the total quality scores for 15 slices from the MRI volume data. The 
results shows that the slices in same MRI volume data have different levels of blur. The 
minimum and maximum blur levels are ≈ 0.7 and ≈ 0.85, respectively. 

Cardiac MRI without perceived distortion

Six slices from a cardiac MRI volume data are shown in Fig. 4a–f. Figure 4g, h show the 
variation of image features at different Gaussian scales for the low and the high energy 
DOG filters. The plot in Fig. 4i show the contrast, sharpness and the total quality scores 
for 13 slices from the MRI volume data. Blur levels in the cardiac slices contained in the 
same volume data vary from 0.45 to 0.83. 

Gaussian blur

The image in Fig.  5a is a slice from a FLAIR brain MRI volume data. The images in 
Fig. 5b–f are the same image in Fig. 5a but were blurred with Gaussian filter at levels 
4, 7, 10, 13 and 15, respectively. Given specific level of Gaussian blur, the variation of 
the image features at different Gaussian scales for the low and the high energy DOG 
filters are displayed in Fig. 5g, h, respectively. The contrast, sharpness and the total qual-
ity scores for Gaussian blur levels that vary from 0 to 15 are shown in Fig.  5i. In the 
absence of distortion, the blur level is 0.65. Increasing blurriness decreases the quality of 
the image from 0.65 to 0.35, for blur level of 15.

Figure  6a is a slice from cardiac MRI volume data. The images in Fig.  6b–f are the 
same image in Fig. 6a but were blurred with Gaussian filter at levels 4, 7, 10, 13 and 15, 
respectively. Given specific Gaussian blur, the variation of the image features at different 
Gaussian scales for the low and the high energy DOG filters are displayed in Fig. 6g, h, 
respectively. The contrast, sharpness and the total quality scores for Gaussian blur levels 
from 0 to 15 are shown in Fig. 6i. There is ≈ 50% decrease in the predicted quality index 
as the blur level increase from 0 to 15. 
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Motion blur

Figure 7a is a conventional T1 weighted brain MRI slice. Its motion blurred versions for 
motion blur levels of 4, 7, 10, 13 and 15 are shown in Fig. 7b–f, respectively. Variation of 
the image features for different Gaussian scales for the low and the high energy DOG fil-
ters are displayed in Fig. 7g, h, respectively. The contrast, sharpness and the total quality 

Fig. 3  Six slices with slice numbers a 1, b 4, c 8, d 11 , e 13 and f 15 from T2 brain MRI volume data from 
BrainCare. g Variation of image features of each slice from the output of the low energy Gaussian filter at 
different Gaussian scales. h Variation of image features of each slice from the output of the high energy 
Gaussian filter at different Gaussian scales. i Contrast, sharpness and total quality scores of 15 slices from the 
MRI volume data
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scores for motion blur levels from 0 to 15 are displayed in Fig. 7i. The predicted quality 
scores deceases from ≈ 0.6 to ≈ 0.15 for motion blur level which increased from 1 to 15. 

A slice in a cardiac MRI volume data is shown in Fig. 8a. Its motion blurred versions 
are shown in Fig.  8b–f for motion blur levels of 4, 7, 10, 13 and 15, respectively. The 

Fig. 4  Six slices with slice numbers a 1, b 3, c 5, d 7 , e 9 and f 11 from short axi MRI volume data from 
Department of Diagnostic Imaging of the Hospital for Sick Children in Toronto. g Variation of image features 
of each slice from the output of the low energy Gaussian filter at different Gaussian scales. h Variation of 
image features of each slice from the output of the high energy Gaussian filter at different Gaussian scales. i 
Contrast, sharpness and total quality scores of 15 slices from the MRI volume data
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variation of the image features for different Gaussian scales for the low and the high 
energy DOG filters are displayed in Fig. 8g, h. The plot of the motion blur levels from 0 
level to 15 level versus contrast, sharpness and the total quality scores are displayed in 
Fig. 8i. The quality scores decrease from 0.6 to 0.3 for motion blur level which increase 
from 1 to 15. 

Fig. 5  a FLAIR brain MRI slice from ADNI and its degraded versions at motion blur levels b 4, c 7, d 10, e 
13 and f 15, g variation of image features of each slice from the output of the low energy Gaussian filter 
at different Gaussian scales. h Variation of image features of each slice from the output of the high energy 
Gaussian filter at different Gaussian scales. i Contrast, sharpness and total quality scores for different levels of 
motion blur
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Subjective validation

Results from the subjective evaluation of our proposed method are tabulated in Tables 1, 
2, 3, 4, 5, 6, 7 and 8. Tables 1, 2, 3, and 4 are the results for cardiac, T2, conventional T1 
and FLAIR brain MRI volume data degraded by motion blur. Corresponding results for 
degradation by Gaussian blur are displayed in Tables 5, 6, 7 and 8.

Fig. 6  a Short axis cardiac MRI slice and its degraded versions at motion blur levels b 4, c 7, d 10, e 13 and f 
15, g variation of image features of each slice from the output of the low energy Gaussian filter at different 
Gaussian scales. h Variation of image features of each slice from the output of the high energy Gaussian filter 
at different Gaussian scales. i Contrast, sharpness and total quality scores for different levels of motion blur
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Tables  1, 2, 3 and 4 shows that for motion blur level which increase from 0 to 15, 
observers agreement decrease, from 0.80 to 0.71, from 0.85 to 0.70, from 0.78 to 0.68 
and from 0.75 to 0.70, for cardiac, T2, conventional T1 and FLAIR brain MRI volume 
data, respectively. Corresponding results for Gaussian blur as shown in Tables 5, 6, 7 and 
8 are from 0.80 to 0.65, from 0.85 to 0.70, from 0.78 to 0.70 and from 0.85 to 0.68.

Fig. 7  a Conventional T1 brain MRI slice from NeuroRx and its degraded versions at Gaussian blur levels b 4, 
c 7, d 10, e 13 and f 15, g variation of image features of each slice from the output of the low energy Gaussian 
filter at different Gaussian scales. h Variation of image features of each slice from the output of the high 
energy Gaussian filter at different Gaussian scales. i Contrast, sharpness and total quality scores for different 
levels of Gaussian blur
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Discussion
Edge information is highly desired in medical images because it can potentially reveal 
details on the structures associated with normal anatomy and various pathological con-
ditions [13]. The proposed blur assessment method predict the level of blur distortion in 
an image by generating and analyzing an edge map.

Fig. 8  a Short axis cardiac MRI slice and its degraded versions at Gaussian blur levels b 4, c 7, d 10, e 13 and 
f 15, g variation of image features of each slice from the output of the low energy Gaussian filter at different 
Gaussian scales. h Variation of image features of each slice from the output of the high energy Gaussian filter 
at different Gaussian scales. i Contrast, sharpness and total quality scores for different levels of Gaussian blur
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Table 1  Results from validation studies for short axis cardiac MRI volume data degraded 
by motion blur

Motion blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 1200 0.70 0.73 0.80

5 1200 0.61 0.65 0.80

10 1200 0.40 0.45 0.75

15 1200 0.30 0.4 0.71

Table 2  Results from validation studies for T2 brain MRI volume data degraded by motion 
blur

Motion blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 500 0.85 0.8 0.85

5 500 0.78 0.75 0.80

10 500 0.45 0.50 0.75

15 500 0.4 0.45 0.70

Table 3  Results from  validation studies for  conventional T1 brain MRI volume data 
degraded by motion blur

Motion blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 250 0.75 0.73 0.78

5 250 0.70 0.65 0.75

10 250 0.40 0.42 0.72

15 250 0.35 0.38 0.68

Table 4  Results from  validation studies for  FLAIR brain MRI volume data degraded 
by motion blur

Motion blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 300 0.68 0.70 0.75

5 300 0.63 0.65 0.75

10 300 0.43 0.40 0.70

15 300 0.35 0.30 0.70

Table 5  Results from validation studies for short axis cardiac MRI volume data degraded 
by Gaussian blur

Gaussian blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 1200 0.70 0.73 0.80

5 1200 0.60 0.60 0.70

10 1200 0.45 0.42 0.70

15 1200 0.40 0.35 0.65
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An important characteristics of the proposed method is its standardized quality index. 
The quality index lies between 0, the quality index for an extremely degraded image and 
1, the quality index for an ideal image. The standardized quality index makes the algo-
rithm suitable for application in large clinical trials for evaluating and comparing MRI 
images acquired from different scanners and different clinical trial sites.

The results displayed in Figs.  3 and 4 demonstrate that the proposed algorithm can 
assess the variations in the level of blur in the different slices contained within an MRI 
slice. The criteria for the diagnosis of MS lesions include the presence of periventricular 
and juxtacortical lesions which are located by the boundary between different brain tis-
sues. Performance evaluation results show that our proposed method will be useful in 
the clinical trials to assess the reliability of edge information contained in the MRI data.

The plots displayed in Figs. 3, 4, 5, 6, 7 and 8 show general decrease in the contrast and 
sharpness quality scores for increasing levels of blur. This is a clear evidence that our 
proposed method can fairly compare and discriminate images based on their levels of 
blur.

The subjective evaluation results shown in Tables 1, 2, 3, 4, 5, 6, 7 and 8 is evidence 
that the multiscale representation effectively incorporates HVS characteristics in our 
proposed method. In all the categories of the experiment there is very good correlation 

Table 6  Results from  validation studies for  T2 brain MRI volume data degraded 
by Gaussian blur

Gaussian blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 500 0.85 0.80 0.85

5 500 0.75 0.75 0.81

10 500 0.40 0.45 0.75

15 500 0.40 0.35 0.70

Table 7  Results from  validation studies for  conventional T1 brain MRI volume data 
degraded by Gaussian blur

Gaussian blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 250 0.75 0.73 0.78

5 250 0.72 0.70 0.73

10 250 0.42 0.45 0.70

15 250 0.35 0.35 0.70

Table 8  Results from  validation studies for  FLAIR brain MRI volume data degraded 
by Gaussian blur

Gaussian blur 
degradation level

Number of slices Average objective 
score

Average subjective 
scores

Correlation 
coefficient

0 300 0.68 0.70 0.85

5 300 0.65 0.60 0.73

10 300 0.40 0.42 0.70

15 300 0.35 0.35 0.68
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between the objective scores predicted by our proposed method and the subjective eval-
uation assigned by human observers. The minimum and the maximum correlation coef-
ficient is 0.65 and 0.85, respectively.

Challenges, limitations and future work
Two major challenges may limit the accurate prediction of quality scores. The first is 
accurate segmentation of the foreground. Inaccurate segmentation can result in wrong 
computation of image features such as the mean of the test image and the mean of the 
edge map. If the foreground region is underestimated or overestimated the blur quality 
index will not correlate with the perceptual quality index. The second challenge is the 
sensitivity of the algorithm to the size of filter. Future work will focus on how to optimize 
the size of filter for different dimensions of the image. We hope to incorporate segmen-
tation algorithm so that the algorithm can output blur assessment index for local regions 
within a slice. This approach will make the algorithm suitable for blur assessment in 
pathological conditions such as focal cortical dysplasia.

Conclusion
This report propose a new approach to assess the blur level in a MRI image. The pro-
posed method is based on the concept that the quality of an image is measured from 
the existence and persistence of structural information at different Gaussian scales. The 
contrast and sharpness features in the image are extracted by simultaneously convolving 
the image with two multiscale difference of Gaussian filters. The multiscale difference 
of Gaussian filters extract edge information from the test image and also incorporates 
human visual system characteristics into the algorithm. The parameters of each differ-
ence of Gaussian filter is tuned to either highlight or erode edges. After the conclusion of 
multiscale representation, blur level is assessed from the difference between the contrast 
and sharpness quality features in the images at the output of each filter.

The proposed method was evaluated on cardiac and brain MRI images and validated 
subjectively using human observers. Performance evaluation shows that the proposed 
method addresses most of the drawbacks associated with current blur assessment meth-
ods for MRI images. The quality prediction which lies between 0 and 1 makes it possible 
to compare the quality scores for different images and images with different contents. 
Features extracted from the test image are the first moments. This makes the algo-
rithm computationally efficient. The blind nature of the proposed method coupled with 
computational efficiency makes the proposed method suitable for automated environ-
ments and different applications such as clinical trials where large volumes of data are 
processed.
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