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Abstract
The hypocretins (Hcrts) are two alternatively spliced neuropeptides
(Hcrt1/Ox-A and Hcrt2/Ox-B) that are synthesized exclusively in the
hypothalamus. Data collected in the 20 years since their discovery have
supported the view that the Hcrts play a broad role in the control of arousal with
a particularly important role in the maintenance of wakefulness and
sleep-to-wake transitions. While this latter point has received an overwhelming
amount of research attention, a growing literature has begun to broaden our
understanding of the many diverse roles that the Hcrts play in physiology and
behavior. Here, we review recent advances in the neurobiology of Hcrt in three
sections. We begin by surveying findings on Hcrt function within normal
sleep/wake states as well as situations of aberrant sleep (that is, narcolepsy). In
the second section, we discuss research establishing a role for Hcrt in mood
and affect (that is, anxiety, stress, and motivation). Finally, in the third section,
we briefly discuss future directions for the field and place an emphasis on
analytical modeling of Hcrt neural activity. We hope that the data discussed
here provide a broad overview of recent progress in the field and make clear
the diversity of roles played by these neuromodulators.
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Introduction
In 1998, two research studies published within a month of 
each other described a set of novel hypothalamic peptides. 
The first group to describe them was led by Gregor Sutcliffe  
at the Scripps Research Institute in La Jolla, California. The  
Sutcliffe group used subtractive RNA hybridization to charac-
terize a cDNA clone with restricted expression in the dorsal and 
lateral hypothalamus (LH). This cDNA clone encoded a prepro-
protein termed preprohypocretin. This was the putative precursor 
to two peptides that they named hypocretin-1 (Hcrt1/Ox-A) and 
hypocretin-2 (Hcrt2/Ox-B) with respective receptors OX

1
R and 

OX
2
R. Their name was a combination of hypo for their hypotha-

lamic origin and cretin based on their sequence homology to the 
gut hormone secretin1. At the same time, Masashi Yanagisawa’s 
group at University of Texas Southwestern was characterizing  
ligands for orphan G-protein-coupled receptors as a means 
to determine their role in various physiological processes. 
The group found two extracts within the hypothalamus that 
bound and activated two orphan receptors with unknown func-
tions. When supraphysiological doses of peptide were injected  
intracerebroventricularly, these peptides promoted food intake. 
Owing to this effect, the group named the peptides “orexins”  
based on the Greek word for appetite (orexis)2. Indeed, the two 
groups were describing the same peptides, and today hypocre-
tin and orexin are synonymous. Here, we will review some of  
the most recent findings in the neurobiology of Hcrt in relation to 
arousal, emotional processing, and motivation and finally discuss 
future directions for analytical modeling of Hcrt networks.

As new tools have become increasingly accessible to research-
ers at all levels, we have seen an explosion of studies using  
specific methodologies for the study of neural circuitry, namely 
the use of optogenetics and chemogenetics for the manipula-
tion of neural circuits, fiber photometry and microendoscopy 
for the measurement of cellular activity via genetically encoded  
calcium indicators (for example, GCaMP6f), and precise genetic 
tools (for example, transcription activator-like effector nucle-
ases [TALENs]; targeting-induced local lesions in genomes  
[TILLING]; and clustered regularly interspaced short palindromic 
repeats [CRISPR/Cas9]) and high-throughput sequencing to  
characterize and manipulate genes. Optogenetics is a technique in 
which neurons are genetically modified to express light-sensitive 
ion channels (for example, channelrhodopsins and archaerho-
dopsins). Subsequent photostimulation of these neurons can acti-
vate or inhibit cells on the basis of the wavelength and intensity 
of light used3. Chemogenetics uses modified G-protein-coupled 
receptors (designer receptors exclusively activated by designer 
drugs, also known as DREADDs) that are largely activated 
by a metabolite of clozapine N-oxide (CNO) when injected  
systemically4. Excitatory or inhibitory DREADDs can be selec-
tively expressed in neuronal populations of interest (for example, 
in a Cre- or Flp-dependent manner) which then can be manipu-
lated by injections of CNO5. Additionally, the expression of 
calcium indicators allows the measurement of cell activity in 
relation to behavior via fiber photometry or microendoscopy6. 
Most recently, genome editing via CRISPR/Cas9 systems and  
developmental engineering can quickly produce knock-outs or 
knock-ins for multiple gene targets in a single generation7–10. 

As our review focuses primarily on advances made within the 
past 3 years, there is an overwhelming representation of these 
methodologies, which already have significantly advanced our  
understanding of the Hcrt circuit7,11,12.

Part I: hypocretin and arousal
Hcrt cell bodies reside exclusively within the hypothalamus 
and project broadly throughout the brain and spinal cord13. They 
receive major inputs from a diversity of afferents covering all of 
the major neurotransmitter systems14. The increasing database 
of research on Hcrt shows that these neuropeptides may not be 
necessary for the generation of sleep or wakefulness per se but 
rather for coordinating and stabilizing these states. Hcrt activity 
regulates sleep-to-wake transitions via its many interactions  
with other neuroanatomical and neurotransmitter systems15,16. 
Thus, many of the recent findings discussed here are a com-
bination of studies done directly on Hcrt circuitry or studies 
done on other systems that either coordinate activity with or are  
modulated by Hcrt.

Sleep and wakefulness
Hcrt deficiency underlies the majority of cases of narcolepsy17–20. 
Narcolepsy is characterized by unexpected sleep episodes  
during times of wakefulness, excessive daytime sleepiness, 
rapid eye movement (REM)-like episodes that can co-occur with  
conscious wakefulness, and disrupted nocturnal sleep21,22.  
Further support for aberrant state boundaries in narcolepsy was 
recently published showing intrusions of REM sleep during 
wakefulness as well as intrusions of non-REM (NREM) 
sleep during wakefulness23. While it is established that Hcrt  
neuron degeneration contributes to the etiology of narcolepsy 
in many cases, recent evidence has characterized how sleep and  
wakefulness are impacted through the progression of Hcrt cell 
loss17,18,24. Studies in mice at different stages of Hcrt neuron 
degeneration found that loss of these neurons reduces the likeli-
hood of long wake bouts but increases the likelihood of short 
wake bouts (that is, wakefulness is fragmented) as a result of 
waking primarily during the first 30 seconds of NREM sleep 
and a reduced likelihood of returning to sleep within the first  
60 seconds of wakefulness24. 

While early observations demonstrated that Hcrt deficiency  
underlies narcolepsy, a causal role for Hcrt in sleep-to-wake tran-
sitions was shown only in 200725. Optogenetic manipulations of 
Hcrt circuitry revealed that activation of this neuronal popula-
tion induces wakefulness in mice while optogenetic inhibition  
promotes NREM sleep25,26. Likewise, chemogenetic studies  
targeting Hcrt neural activity have shown that injections of 
CNO in mice expressing excitatory (Gq) DREADDs promote  
wakefulness but that engagement of inhibitory (Gi) DREADDs 
decreases wakefulness and increases time in NREM sleep27. 
Thus, Hcrt clearly plays a critical role in the regulation of sleep-
to-wake transitions, but its various effects on these processes  
are regulated by the many brain regions and neurotransmitter 
systems with which it interacts. Indeed, research has demon-
strated important interactions between Hcrt and histaminergic  
neurons within the tuberomammillary nucleus (TMN), cholin-
ergic and GABAergic neurons of the basal forebrain (BF), 
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dopamine (DA) neurons within the ventral tegmental area (VTA), 
and norepinephrine (NE) neurons of the locus coeruleus (LC), 
among others28 (Figure 1). Recent advances in our understand-
ing of the roles of these regions in sleep/wake regulation and  
their possible interactions with the Hcrt system are outlined  
below.

As we discuss below, histaminergic neurons of the TMN play a 
role in arousal, but the ways in which Hcrt influences TMN- 
mediated arousal are not clear. TMN histaminergic neurons become 
active during wake onset and are silent during sleep29,30. Optoge-
netic silencing of histaminergic TMN neurons induces NREM 
sleep and inhibits wakefulness31. Hcrt activates TMN neurons  
and increases histamine release at their terminals, suggesting 
that Hcrt activation of TMN neurons supports wakefulness32–34.  
However, mice and zebrafish that lack the rate-limiting enzyme 
in histamine synthesis (histamine decarboxylase) show normal 
sleep-to-wake transitions upon optogenetic stimulation of Hcrt 
neurons35,36. These data suggest that histaminergic signaling 
in the TMN may serve a redundant function in Hcrt-mediated 
arousal. Recent findings also show that histaminergic regulation 
of wakefulness within the TMN may be via co-transmission 
of GABA. Small interfering RNA (siRNA)-mediated knock-
down of the vesicular GABA transporter (VGAT) or genetic 
knockout of the VGAT gene in histaminergic neurons results  
in hyperactivity and sustained wakefulness37. Future studies 
should characterize how manipulations of GABA transmission in  
the TMN impacts Hcrt-induced wakefulness specifically.

The BF is an attention- and arousal-sustaining structure contain-
ing cholinergic, GABAergic, and glutamatergic cells that are 
depolarized by Hcrt38. Similarly, the region expresses both Hcrt 
receptors, and there is a higher density of OX

2
R than OX

1
R39. 

This difference may be meaningful, as studies in organotypic 
slice cultures show that Hcrt depolarizes cholinergic cells of 
the BF via actions at OX

2
R but not OX

1
R38. However, injections 

of Ox-A into the BF of rats resulted in wakefulness in regions 
of the BF that show stronger expression of OX

1
R40. Chemoge-

netic studies demonstrate that activation of cholinergic neurons  
of the BF decreases electroencephalogram (EEG) delta power 
(specifically during NREM sleep) and promotes cortical desyn-
chronization without behavioral wakefulness41. In contrast,  
activation of GABAergic neurons in this region produces sus-
tained wakefulness whereas inhibition increases NREM sleep42. 
Further genetic targeting studies show that subsets of GABAer-
gic neurons in the region exhibit a diversity of responses  
across arousal states43–45. For example, parvalbumin-positive 
(PV+) GABAergic neurons are more active during wakefulness 
and REM sleep than during NREM sleep whereas somatostatin- 
positive (SOM+) GABAergic neurons are reciprocally silent dur-
ing wakefulness. Predictably, optogenetic activation of PV+ 
GABA neurons powerfully induces wakefulness whereas activa-
tion of SOM+ GABAergic neurons promotes NREM sleep46–49. 
Modern genetic tools will continue to allow more detailed 
examinations of the impact of neuronal heterogeneity within  
regions in the context of Hcrt-mediated arousal.

The BF receives projections from midbrain DA neurons which 
may underlie the coupling of motivation to arousal states. 

Indeed, Hcrt axons project to midbrain DA neurons, and DA cell  
bodies express Hcrt receptors13,50,51. In vitro electrophysiological 
recordings show that Hcrt1 and Hcrt2 treatment increases VTA 
DA neural firing52. Hcrt1 injections into the VTA increase time 
awake and levels of DA at axonal terminals in the prefrontal 
cortex53,54. Although Hcrt neurons project to systems for all the  
monoamines and drugs that increase DA transmission increase 
wakefulness, DA was thought not to be involved in normal sleep/
wake regulation until recently55–60. Work from our laboratory has 
shown a role for VTA DA neurons in promoting arousal and the 
initiation of sleep-preparatory behaviors61. Optogenetic activation 
of VTA DA neurons induces emergence from anesthesia, and 
chemogenetic activation of the VTA induces and consolidates 
wakefulness62,63. Further manipulations have demonstrated that 
VTA effects on wakefulness are through a D

2
 receptor-mediated  

mechanism62,63. Future work using projection-specific manipu-
lations of Hcrt fibers within the VTA should better characterize  
their role in VTA-mediated arousal.

Noradrenergic neurons of the LC are strong promoters of 
arousal64,65. Direct administration of Hcrt1 into the LC increases 
firing rates while optogenetic silencing of these neurons with con-
current excitation of Hcrt cells prevents Hcrt-evoked sleep-to-wake 
transitions66–68. Additional studies have shown that noradrenergic 
activity is required to promote wakefulness and Hcrt-induced 
arousal in zebrafish. Using DA b-hydroxylase (dbh) (the rate-
limiting enzyme in NE synthesis) mutant zebrafish, researchers 
found that these animals had dramatically increased sleep yet 
lower arousal thresholds69. Additionally, wakefulness induced 
by genetic overexpression of Hcrt and optogenetic activation 
of Hcrt neurons is blocked by the inhibition or knocking out 
of NE in zebrafish larvae69. However, further investigations  
have shown that overexpression of Hcrt or activation of Hcrt 
neurons has no significant effect in dbh mutant zebrafish35. 
Thus, future work should continue to parse out the roles in 
which NE functions in sleep/wake regulation and how it may  
serve specifically within the Hcrt circuit to help regulate  
wakefulness in particular.

Motor tone
Despite evidence demonstrating innervation of motor control 
systems by the Hcrt neurons, the coupling of arousal states 
with motor control is poorly understood70. Indeed, measures of 
muscle tone along with cortical activity are the most common  
endpoints for characterizing various arousal states. A hallmark 
of waking is low-amplitude, high-frequency EEG activity with 
high muscle activity. REM sleep, also known as paradoxical 
sleep, is characterized by a near complete loss of skeletal mus-
cle activity and an EEG resembling wakefulness. Hcrt-deficient  
narcoleptics show cataplexy (a loss of muscle tone during  
wakefulness that can result in postural collapse and can be trig-
gered by strong emotions such as happiness and fear)22,71–74.  
Similarly, individuals with REM sleep behavior disorder (RBD) 
show muscle tone problems. Under normal conditions, REM 
sleep is devoid of skeletal muscle tone; however, in RBD, an 
individual acts out their dreams by moving their limbs or talking,  
which can be dangerous for the individual enacting their dreams 
as well as anyone in their surroundings75. Noradrenergic activity 
is necessary for motor behavior76. Indeed, NE depletion has 
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Figure 1. Hypocretin arousal network. Research of the past three years has found evidence of hypocretin-associated arousal in the illustrated 
circuits. Solid lines denote excitatory projections, and dashed lines denote inhibitory projections. 5-HT, serotonin; ACh, acetylcholine; AMY, 
amygdala; BF, basal forebrain; DA, dopamine; DRN, dorsal raphe nucleus; GABA, gamma aminobutyric acid; HA, histamine; Hcrt, hypocretin; 
LC, locus coeruleus; LH, lateral hypothalamus; NA, noradrenergic system; NAc, nucleus accumbens; NE, norepinephrine; NREM, non-rapid 
eye movement; PV, parvalbumin; REM, rapid eye movement; SOM, somatostatin; TMN, tuberomammillary nucleus; VTA, ventral tegmental 
area.
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been shown to have a stronger motor-impairing effect than 
dopaminergic lesions with MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) infusions of NE-induced hyperactivity, and 
loss of NE neurons is associated with motor learning deficits in  
aged rats77–80. Likewise, increasing noradrenergic tone has been 
shown to reduce cataplectic episodes81. As discussed above, 
noradrenergic neurons of the LC are powerfully regulated by 
Hcrt; Hcrt dysfunction predictably alters both arousal and 
motor control. Moreover, Hcrt neurons project to dorsal raphe 
nucleus (DRN) serotonergic neurons where they may further  
influence motor behavior. Indeed, restoration of OX

2
R into sero-

tonergic DRN neurons of dual Hcrt receptor knockout mice  
suppresses cataplexy-like episodes yet has no effect on sleep/wake 
fragmentation. Likewise, optogenetic stimulation of serotonergic 
DRN terminals in the amygdala (AMY) suppresses cataplexy-like 
arrests in Hcrt-deficient mice, and optogenetic inhibition blocks 
the cataplexy-reducing effect of Hcrt receptor restoration in  
serotonergic DRN neurons82. Additional chemogenetic manipula-
tions of this amygdalar circuit show that GABAergic populations 
of the central AMY are responsible for the production  
of cataplexy in mice but may not be the only circuit that can 
drive emotionally driven cataplexy83. Together, these findings 
demonstrate a key role for amygdalar circuits in the production 
of cataplexy; however, they do not rule out other nuclei or  
circuits that may influence emotionally driven cataplexy. Indeed, 
the neural infrastructure exists for Hcrt activity to modulate 
AMY activity via its connections from the LC and DRN, and  
future studies should characterize the influence of Hcrt in  
emotion-driven cataplexy. 

Part II: affect and motivation
As a regulator of arousal, the Hcrt system plays additional 
important roles in adaptive behaviors such as the regulation of 
stress responses and the avoidance of punishments and seeking 

of rewards. Additionally, sleep supports the consolidation of 
memory; predictably, proper regulation of sleep and arousal is 
key to proper memory function. Below we discuss recent findings 
in the growing field of Hcrt in the regulation of emotion and  
motivation and place a particular focus on stress and anxiety,  
addiction, and memory processes. Many of the data discussed 
here were gathered via global manipulations of Hcrt receptor 
signaling and thus should be interpreted in the context of known 
receptor distributions, drug treatments and selectivity (as many 
of these drugs are known to vary in selectivity on the basis  
of dose84), and drug administration schedules (Figure 2 and  
Table 1).

Stress and anxiety
Hcrt plays a role in the coordination of stress responses. Plas-
ticity in the Hcrt system is thought to contribute to long-term  
dysregulation of arousal seen in certain psychiatric disorders85,86. 
This may be an adaptive response to repeated stress, where 
heightened arousal and vigilance are needed under conditions 
of instability or high threat87. Recent literature has supported the  
idea that activation of OX

1
R promotes anxiety-like behav-

ior. For example, in rodent models of panic, an extreme form 
of anxiety, animals with panic vulnerability treated with the 
OX

1
R antagonist compound 56 reduced panic-like behaviors in 

a sodium lactate model of panic induction88. Similarly, treatment 
with the OX

1
R antagonist JNJ-54717793 attenuates panic-like 

behavior and cardiovascular responses in both the sodium lac-
tate model of panic and a carbon dioxide (CO

2
) model of panic 

provocation89. Additional studies within the CO
2
 model that  

screened selective Hcrt receptor antagonists (SORAs) and dual 
Hcrt receptor antagonists (DORAs) found that both a SORA1 
(compound 56) and a DORA-12 attenuate anxiety-like behaviors 
but that a SORA2 did not90. Importantly, these data provide a 
promising treatment route, as animals treated with SORA1 and 

Figure 2. Hypocretin receptor distribution in the rodent brain. BNST, bed nucleus of the stria terminalis; CeA, central amygdala; DG, 
dentate gyrus; DRN, dorsal raphe nucleus; LC, locus coeruleus; LH, lateral hypothalamus; NAc, nucleus accumbens; PVN, paraventricular 
nucleus; PVT, paraventricular nucleus of the thalamus; TMN, tuberomammillary nucleus; VTA, ventral tegmental area.
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Table 1. Summary of recent findings for hypocretin in relation to affect and motivation. Colors match receptor representation in 
Figure 2: pink, OX1R manipulation; purple, OX2R manipulation; blue, OX1R/OX2R manipulation. AMY, amygdala; CO2, carbon dioxide; CPP, 
conditioned place preference; DA, dopamine; DG, dentate gyrus; EtOH, ethanol; Hcrt, hypocretin; LH, lateral hypothalamus; PeF OX, 
perifornical area orexin; PVT, paraventricular nucleus of the thalamus; VTA, ventral tegmental area.

Manipulation Findings Reference

S
tr

es
s 

an
d

 A
n

xi
et

y

Compound 56
Subcutaneous treatment attenuated panic behaviors in 2 models of panic 
vulnerability (PeF OX disinhibition and sodium lactate treatment). No effect on 
sleep duration

Bonaventure et al., 2015

JNJ-54717793 Attenuation of panic behavior and cardiovascular response in sodium lactate 
and CO2 panic models Bonaventure et al., 2017

Compound 56 
SB-334867

Attenuation of CO2 induced anxiety and cardiovascular responses. No 
apparent sedative effects Johnson et al., 2015

SB-334867 Reduction in orofacial pain associated anxiety
Bahaaddini, Khatamsaz, 

Esmaeili-Mahani, Abbasnejad, & 
Raoof, 2016

SB-334867 Effect on one measure of arousal (mobility in open field) in adolescent males. 
No effect on anxiety related behavior

Blume, Nam, Luz, Bangasser, & 
Bhatnagar, 2018

OX1R Knockout Increased anxiety, reduced social interaction, increased startle Abbas et al., 2015
SORA2 JNJ-

10397049
No effect on anxiety or cardiovascular responses to CO2 model of panic 
induction Johnson et al., 2015

DORA-12 Attenuation of CO2 induced anxiety responses. Johnson et al., 2015
OX Knockout Increased anxiety in open field, predator scent, and light/dark box Khalil & Fendt, 2017

M
o

ti
va

ti
o

n
 a

n
d

 A
d

d
ic

ti
o

n

C
oc

ai
ne

SB-334867 Blocks cue induced reinstatement with strongest effect in animals with highest 
cocaine-cue dependent behavior Bentzley & Aston-Jones, 2015

SB-334867 Decreased cocaine self administration and reduced cellular response to drug Prince, Rau, Yorgason, & 
España, 2015

RTIOX-276 Reduced responding for cocaine under high effort conditions, reduced DA 
response to cocaine paired cues Levy et al., 2017

VTA OX1R 
Knockdown

Delays acquisition of self-administration, reduces response to drug under 
progressive ratio, alters DA transmission in striatum

Bernstein, Badve, Barson, Bass 
& España, 2017

4PT No effect on cocaine self administration or DA respone to drug Prince, Rau, Yorgason, & 
España, 2015

Almorexant Reduced self administration under progressive ratio. Differential effects on DA 
response to drug over time

Prince, Rau, Yorgason, & 
España, 2015

Suvorexant
Reduces self-administration under progressive ratio, cocaine induced 
ultrasonic vocalizations, and conditioned place preference. Reduces DA 
response to cocaine

Gentile et al., 2018

Hcrt Knockdown Attenuates self administration in proggressive ratio Schmeichel et al., 2017
Hcrt Knockout Blunted intake at highest dose and reduced response to drug after abstinence Steiner et al., 2018

Et
O

H

SB-334867 Reduced EtOH intake and cue induced reinstatement in EtOH preferring rats Moorman, James, Kilroy, & 
Aston-Jones, 2017

GSK1059865 Reduced EtOH vapor induced EtOH drinking in dependent mice Lopez, Moorman, Aston-Jones, 
Becker, 2016

TCS-OX2-29 Anterior PVT injections of OX2R antagonist reduces EtOH intake. EtOH 
consumption increases OX2R mRNA in PVT Barson, Tin Ho, Leibowitz, 2015

In a white population, OX2R polymorphism was associated with rate of alcohol 
dependence independent of age or gender Klepp et al., 2017

Context induced reinstatement associated with various levels of Hcrt neuron 
activity across the LH

Moorman, James, Kilroy, & 
Aston-Jones, 2016

Voluntary EtOH drinking in zebrafish increases Hcrt expression in 
hypothalamus

Sterling, Karatayev, Chang, 
Algava, & Lebowitz, 2015

O
pi

oi
ds

SB-334867 Differentially modulates hedonic and motivational effects of remifentanyl in 
high and low takers

Porter-Stransky, Bentzley, & 
Aston-Jones, 2017

SB-334867 Intra-VTA inections attenuate morphine CPP Farahimanesh, Zarrabian, & 
Haghparast, 2017

SB-334867 Intra-DG injection attenuates drug induced reinstatement of morphine CPP Ebrahimian et al., 2016

TCS-OX2-29 Intra-VTA injections attenuates morphine CPP Farahimanesh, Zarrabian, & 
Haghparast, 2017

TCS-OX2-29 Intra-DG injection attenuates drug induced reinstatement of morphine CPP Ebrahimian et al., 2016

NBI-80713 Reduced heroin self administration in long access paradigm and increase in 
OX2R mRNA in the AMY Schmeichel et al., 2015

Morphine CPP increases Hcrt1 release in DG Guo et al., 2016
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DORA-12 showed no significant changes in sleep90. Currently, 
the levels of benzodiazepines needed to achieve anxiolytic 
effects are also sedating; as discussed here, OX

1
R antagonists  

can have anxiolytic effects without impacting sleep90.

Although the mechanism of action of the wake-promoting 
drug modafinil is mainly through activation of DA circuitry, it 
also activates Hcrt neurons and is used for the treatment of nar-
colepsy. Treatment with modafinil after a traumatic experience 
reduces the incidence of post-traumatic stress disorder (PTSD), 
a disorder characterized by anxiety and hyperarousal. The anxi-
olytic effect of this treatment may be due to its interference with  
normal sleep-dependent memory processes91. However, the 
benefits of modafinil treatment may go beyond this, as it has 
been shown to stimulate adaptive stress responses in an animal 
model of PTSD92,93. In a model of orofacial pain-induced 
anxiety, rats given injections of capsaicin into the upper lip 
showed increased anxiety-like responses on the elevated plus  
maze. Administration of Hcrt exacerbates this response while 
treatment with OX

1
R antagonists inhibits orofacial pain- 

associated anxiety94. In another study, differential effects 
of OX

1
R antagonism were observed. The OX

1
R antagonist  

SB-334867 influenced arousal (mobility/immobility in an open 
field) but not anxiety-like behavior (center exploration) in  
conditions of mild stress in male rats95. Yet Hcrt knockout mice 
show increased anxiety in the open-field test, light-dark box test, 
and predator scent avoidance test despite intact fear learning96. 
Likewise, OX

1
R receptor knockout mice show increased anxiety  

and reduced social interaction, increased startle responses, 
and altered depressive-like behavior97. Although genetic  
knockout results do not completely contradict findings from 
pharmacological studies, they do showcase the necessity to use 
the newest genetic techniques to parse out the role of Hcrt in 
anxiety. Two points must be made with regard to these findings:  
first, knockout models may result in compensatory mechanisms 
that may explain how Hcrt-null or OX

1
R-deficient mice  

display lower anxiety. Second, models of stress discussed here 
vary greatly, and the conclusions drawn from these works may 
reflect the differences in the circuits underlying different types of 
anxiety. Thus, findings must be interpreted within the context of  
pharmacological, genetic, and behavioral manipulations used in 
these studies.

Recent work is also characterizing how individual differences 
in baseline Hcrt activity may pose resilience or susceptibil-
ity to stress. Rats that show low expression of preprohypocretin 
mRNA are resilient to social stress, and further manipulations 
show that chemogenetic inhibition of Hcrt reduces depressive-
like behavior in otherwise stress-susceptible rats98. Together, these 
data suggest that the activity of Hcrt on stress may be context or 
stressor specific but additionally that individual differences at  
baseline may influence stress resilience.

Motivation and addiction
The mesolimbic DA system, which originates in the VTA and 
projects to the striatum, is a key region for the processing of 
reward and reinforcement99,100. These processes necessitate 
and evoke arousal states to monitor reinforcers and facilitate 
learning101. Reciprocally, motivational states impact arousal 

so as to facilitate the seeking of rewards and the avoidance  
of punishments102,103. As discussed above, LH-Hcrt neurons send 
excitatory projections to the VTA13,50,51. Thus, the VTA may be 
an optimal region by which Hcrt can influence motivated arousal 
states. The majority of recent advances made in this field have 
investigated the effects of Hcrt manipulations on motivation 
for cocaine and ethanol (EtOH). To date, these studies suggest 
that Hcrt1 plays a role in motivation for drug reward, especially 
when drug presentation is dependent on effortful responses on the 
part of the animal. Here, we discuss the role of Hcrt in addiction  
and motivation, focusing on cocaine, alcohol, and opioids.

Hcrt knockdown attenuates cocaine self-administration under pro-
gressive ratio schedule (that is, Hcrt knockdown lowers cocaine 
breakpoint) but not under a fixed ratio schedule104. Similarly, 
Hcrt-deficient mice show reduced cue-induced cocaine-seeking  
behavior following a period of abstinence, suggesting a role 
for Hcrt in relapse behavior105. Additionally, these animals 
show blunted cocaine intake at the highest dose and reduced 
behavioral responses to cocaine after abstinence105. Additional 
work from Navarro and colleagues further supports the role 
of Hcrt in relapse behavior106. In particular, their work shows 
that cocaine acts at and alters activity of corticotropin-releas-
ing factor receptor (CRF

1
R)/OX

1
R heterodimers within the VTA. 

Action of cocaine at these sites disrupts Hcrt/CRF crosstalk 
even 24 hours after a single systemic injection and may be a  
mechanism underlying stress-induced cocaine relapse106.

Indeed, Hcrt may play a unique role in cue-reward associa-
tions, as OX

1
R antagonism via SB-334867 only decreases 

cocaine demand in the presence of cues. SB-334867 treatment 
also blocks cue-induced reinstatement of drug seeking—an 
effect most pronounced in high-demand animals (animals with 
the greatest cue-dependent behavior). This suggests that OX

1
R 

increases the reinforcing efficacy of cocaine-associated cues but 
not of cocaine alone. This supports the notion that Hcrt plays 
a role in the ability of conditioned cues to elicit motivational  
responses107. Recent in vivo measurements of DA activity are 
beginning to inform the mechanisms that may underlie these 
observed effects on cocaine reinforcement. For example, Hcrt 
knockdown within the VTA delays acquisition of cocaine 
self-administration and reduces motivation for cocaine under  
a progressive ratio schedule while reducing DA release in the 
ventral striatum, DA uptake, and cocaine-induced DA reuptake 
inhibition at striatal terminals108. Similarly, OX

1
R blockade with 

RTIOX-276 attenuates motivation for cocaine and reduces the 
number of DA transients, DA release evoked by cocaine cues, 
and cocaine-induced DA reuptake inhibition as measured by 
fast scan cyclic voltammetry (FSCV)109. Suvorexant, a DORA, 
attenuates the motivational properties of cocaine as measured 
by progressive ratio and place conditioning. Additionally,  
treatment with Suvorexant also reduces the hedonic properties  
of cocaine as measured by ultrasonic vocalizations. Additionally, 
DORA treatment reduced cocaine-induced elevations in ventral 
striatal DA110. Work by Prince and colleagues suggests that 
effects of the DORA may be mediated by OX

1
R, as blockade 

of OX
2
R receptors alone has no effect on DA signaling or self-

administration of cocaine111. However, blocking of OX
1
R or 

both OX
1
R and OX

2
R decreases motivation for cocaine as  
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measured by self-administration under a progressive ratio 
schedule and reduces the effects of cocaine on DA signaling as  
measured by FSCV111.

In the case of EtOH, Hcrt antagonism generally reduces EtOH 
consumption. In a voluntary EtOH intake model in zebrafish, 
it was seen that intake of EtOH increases Hcrt expression in the 
hypothalamus112. OX

1
R antagonism with SB-334867 reduces 

EtOH self-administration in alcohol-preferring rats113. Similarly, 
the OX

1
R antagonist GSK1059865 reduces EtOH drinking 

in EtOH-dependent mice114. In a model of EtOH seeking and 
preference, activation of the LH is correlated with degree of  
seeking in context-induced reinstatement and degree of  
preference in home cage EtOH preference testing. Interestingly, 
cue-evoked reinstatement shows no correlation with Hcrt acti-
vation in any region. This suggests that there is a relationship 
between Hcrt activity in the LH and EtOH seeking and prefer-
ence behavior but that cue-induced reinstatement for alcohol may 
be mediated by a different mechanism115. Interestingly, EtOH  
consumption increases OX

2
R mRNA within the anterior  

paraventricular nucleus of the thalamus and local antagonism  
of OX

2
R reduces total EtOH intake116.

The interactions of Hcrt with opioid rewards are particularly inter-
esting, as the endogenous opioid dynorphin (Dyn) is expressed 
in 94% of Hcrt neurons and Hcrt and Dyn are thought to be  
co-released at Hcrt terminals within the VTA117. The interactions 
of these neurotransmitters are beyond the scope of this 
review; however, of major relevance is the point that these  
neurotransmitters have opposing yet complementary actions 
on VTA cellular excitability117–121. OX

1
R antagonism with  

SB-332867 modulates demand for the opioid drug remifentanil 
in low takers but not in high takers122. Additionally, intra-VTA 
injections of the OX

1
R antagonist SB-334867 attenuate  

morphine conditioned place preference (CPP) acquisition and 
expression. Interestingly, in the case of opioid reward, OX

2
R 

antagonism via TCS-OX2-29 also significantly attenuates  
morphine CPP acquisition and expression, suggesting that 
both receptors within the VTA are important for expression of  
morphine reward123. Similarly, systemic treatment with the OX

2
R 

antagonist NBI-80713 dose-dependently reduces heroin self-
administration in a long-access paradigm. Long-access heroin  
self-administration paradigms are thought to mimic compul-
sive drug taking; thus, OX

2
R antagonism may be particularly 

effective at influencing drug-associated compulsivity. Similar 
effects have been observed in the hippocampal dentate gyrus 
(DG), which receives Hcrt projections from the LH and interacts 
with the VTA to play an important role in the linking of drug 
reward with contextual cues124. In a stress- and drug-induced 
model of morphine reinstatement, intra-DG administration of 
OX

1
R and OX

2
R antagonists attenuates drug priming-induced  

reinstatement dose-dependently with no effect on stress-induced 
reinstatement125. Similarly, morphine CPP increases Hcrt1 release 
in the DG and OX

1
R antagonism via SB-334867 ameliorates 

morphine CPP. These findings suggest that Hcrt actions at the  
DG may influence the learning of drug-context associations126.

Finally, additional work has begun to delineate the effect of Hcrt 
on motivation at VTA terminal sites such as the nucleus accumbens 

(NAc)127. Blomeley and colleagues used optogenetics and elec-
trophysiology to characterize a direct Hcrt→DA D

2
 excitatory 

circuit that is necessary for the expression of risk avoidance 
behavior in mice127. Indeed, increased DA D

2
 neuron activation 

caused animals to avoid risks such as crossing a predator-scented 
chamber to attain a food reward and chemogenetic silencing 
of accumbal DA D

2
 cells inhibited Hcrt-mediated avoidance.  

Importantly, these data showcase how Hcrt can influence  
adaptive behavioral inhibition even in the presence of rewards. 
These data open up new opportunities of research, such as  
characterizing the effects of Hcrt on different subregions of 
the NAc, which is a heterogeneous structure with distinct  
electrophysiological properties128,129. Additional lines of research 
should investigate how Hcrt-mediated motivation in the NAc is  
impacted by diurnal rhythms as well as sleep disturbance 
and how the Dyn system interacts in this region to modulate  
motivation120,130.

Cognitive function and memory
Studies suggest that Hcrt deficiency is associated with memory 
deficits. Hcrt deficiencies negatively impact working memory as 
tested in a non-matching-to-place T-maze task131. Hcrt/ataxin-3 
transgenic mice (a progressive model of narcolepsy), which 
become Hcrt deficient at 12 weeks old, show impaired avoid-
ance memory in a two-way active avoidance paradigm in which 
an animal has to perform a specific motor response to avoid 
an aversive stimulus. Hcrt1 administration reverses memory  
deficits, suggesting that Hcrt plays a role in hippocampal- 
dependent consolidation of two-way active avoidance memory132. 
Chemogenetic activation of Hcrt neurons improves short-term 
memory for novel locations, a function that putatively supports  
foraging and exploration133.

Pain negatively influences memory processing in ways that may 
be influenced by Hcrt. In the Morris water maze (MWM) (a 
test of spatial learning and memory), orofacial pain-induced 
memory impairments are exacerbated by the OX

1
R antagonist  

SB-334867 whereas administration of Hcrt1 prevented these 
spatial memory deficits134. Importantly, injections were directed 
at the trigeminal nucleus caudalis, which is a central relay  
for orofacial pain. Thus, the observed effect on memory may 
be via alterations in the experience of pain itself rather than the 
formation of a pain-associated memory134. In a similar study 
by Raoof and colleagues, orofacial pain memory was mediated 
by Hcrt at the level of the hippocampus (HPC). Intra-hippocampal 
injections of Hcrt1 inhibit pain-induced memory impair-
ments as measured by the MWM. However, treatment with 
the OX

1
R antagonist SB-334867 had no effect on learning and 

memory135. Indeed, the HPC is a critical region for memory 
function and Hcrt action at this site may influence memory  
processes via its influence on the induction of long-term poten-
tiation (LTP). In vitro studies show that OX

1
R antagonists  

significantly decrease the firing rates of hippocampal CA1 
neurons, showing that the effect of Hcrt on these neurons is  
excitatory136. Additional in vitro electrophysiology studies  
demonstrate that Hcrt1 may bidirectionally modulate HPC CA1 
function. Specifically, moderate doses of Hcrt1 inhibit LTP 
while subnanomolar concentrations result in re-potentiation 
via OX

1
R and OX

2
R137. It is important to note that the Hcrt  
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manipulations discussed here may have influenced sleep and 
therefore resulting memory problems may be sleep dependent  
and thus only indirectly dependent on Hcrt.

Part III: quantitative modeling of hypocretin circuits
Computational modeling of the Hcrt network remains a rela-
tively unexplored frontier. Development of analytical models 
of Hcrt function will inform our interpretation of data  
gathered through empirical study and drive the development 
of testable hypotheses. In particular, computational modeling 
of Hcrt networks will prove essential for our understanding of 
the following three questions: (1) how do internal or external  
physiological states influence arousal? (2) How does the  
heterogeneity of the system (that is, genetic, afferent, and  
efferent diversity) contribute to network dynamics? (3) How does 
Hcrt function as a volume transmitter to produce both general-
ized and specific effects? Ultimately, integration of these models 
with experimental approaches will allow for understanding of  
the network as a whole as well as monosynaptic interactions.

Models of hypocretin network in arousal
Current models have described Hcrt as functioning within a  
“flip/flop” model where it stabilizes wakefulness, preventing 
aberrant switches between mutually exclusive states138. This 
model, however, cannot account for overlapping states of arousal 
such as those observed in narcolepsy or RBD in which REM 
sleep can co-occur with conscious awareness139,140. Additionally, 
this model does not factor in the many systems that interact 
to influence arousal. These observations make it necessary to 
revise the binary nature of the flip/flop model. Studies have  
expanded the model by characterizing a circuit with hier-
archical gating of additional neural circuits, feedback, and  
redundancy141. This hierarchical model provides a frame-
work on which to add motivational influences on arousal 
states. Indeed, animals can adapt their sleep on the basis of 
internal and external variables such as migration or predator  
avoidance or to increase the likelihood of mating142–144. Recently, 
an alternative has been proposed in which sleep-to-wake  
transitions are predicted on the basis of inputs with different 
“weights” onto an integrator neuron145. An integrator neuron 
would continuously compute probabilities of wakefulness on the  
basis of functional connectivity of the system as well as physi-
ological factors such as stress or circadian phase. Diver-
sity of neuronal responses to stimuli can be integrated within 
this model to account for the heterogeneity of the system. In 
this vein, Schöne and Burdakov acknowledge the necessity 
of an adaptive behavioral control system that can respond to  
unpredictable changes in the environment146. Thus, they propose 
a model of brain arousal control modules organized in a  
feedback loop by which Hcrt can gate relevant information on 
the basis of environmental and homeostatic needs146. We look 
forward to the future advancement of this area of Hcrt research  
that will undoubtedly expand our understanding as an adaptable 
regulator of arousal.

Volume transmission
Volume transmission (VT) is a mechanism of neural signaling 
by which neurotransmitters can exert actions on cells in close 
proximity as well as distant targets. In VT, neurotransmitters 

signal via diffusion within extracellular fluid147,148. This type of 
release is thought to allow for modulation of neural activity via 
long time courses and greater distances147–149. VT may happen 
via cellular pores, diffusion through the plasma membrane, exo-
cytosis, or reversal of transporter proteins149. To date, actions  
of Hcrt at the dorsal lateral geniculate nucleus (DLG) and the 
DRN (aside from already-known synaptic actions) have been 
theorized to be exerted via VT150,151. Observations of Hcrt1 immu-
noreactivity in many non-synaptic varicosities located far from 
synapses with axons forming asymmetric synapses suggest that 
DRN excitation via Hcrt1 may be via this mechanism150. Indeed, 
the DRN plays an important role in the regulation of arousal 
and both synaptic and VT mechanisms may support long-term  
cortical arousal25,36. In a separate set of findings, Hcrt was found 
to powerfully modulate neurons of the DLG despite only sparse 
expression of Hcrt nerve terminals in the region, suggesting 
that these actions are via VT151. Additionally, a recent study of 
melanin-concentrating hormone (MCH), a hypothalamic pep-
tide important for the regulation of feeding, shows that MCH 
neurons project to ventricular regions where they increase 
MCH levels in the cerebrospinal fluid (CSF) and stimulate  
feeding152. MCH neurons are intermingled with Hcrt neurons in 
the LH, and the authors measure that 40% of Hcrt neurons also 
project to the CSF where they are poised to signal via VT to 
influence distal targets152. Further investigations should deter-
mine whether Hcrt acts via VT and, if so, how its activity is  
influenced by (1) temporal and spatial release dynamics, (2) dif-
fusion and dilution parameters, and (3) transporter kinetics in  
order to characterize its effective radius.

Future directions and conclusions
As reviewed here, the ever-growing database on Hcrt continues 
to broaden our conceptualization of these peptides as more than 
just regulators of sleep-to-wake transitions. Technical advances 
have allowed ever more precise measurement and manipulation 
of these circuits which will continue to inform our under-
standing of this circuit. To date, therapeutic advances have  
allowed the effective targeting of Hcrt circuitry for the treat-
ment of narcolepsy and insomnia, and research discussed here  
provides evidence for the potential of this system for the treat-
ment of anxiety, addiction, and memory deficits. Integration 
of these findings with analytical models will provide a novel 
means for explaining and interpreting biological observations so  
as to gain a holistic understanding of their role in physiology  
and behavior.
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