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Background: Emerging evidence has proven that ferroptosis plays an important role in
the development of acute myeloid leukemia (AML), whereas the exact role of ferroptosis-
associated genes in AML patients’ prognosis remained unclear.

Materials andMethods:Gene expression profiles and corresponding clinical information
of AML cases were obtained from the TCGA (TCGA-LAML), GEO (GSE71014), and
TARGET databases (TARGET-AML). Patients in the TCGA cohort were well-grouped into
two clusters based on ferroptosis-related genes, and differentially expressed genes were
screened between the two clusters. Univariate Cox and LASSO regression analyses were
applied to select prognosis-related genes for the construction of a prognostic risk-scoring
model. Survival analysis was analyzed by Kaplan–Meier and receiver operator
characteristic curves. Furthermore, we explored the correlation of the prognostic risk-
scoring model with immune infiltration and chemotherapy response. Risk gene expression
level was detected by quantitative reverse transcription polymerase chain reaction.

Results: Eighteen signature genes, including ZSCAN4, ASTN1, CCL23, DLL3, EFNB3,
FAM155B, FOXL1, HMX2, HRASLS, LGALS1, LHX6, MXRA5, PCDHB12, PRINS,
TMEM56, TWIST1, ZFPM2, and ZNF560, were developed to construct a prognostic
risk-scoring model. AML patients could be grouped into high- and low-risk groups, and
low-risk patients showed better survival than high-risk patients. Area under the curve
values of 1, 3, and 5 years were 0.81, 0.827, and 0.786 in the training set, respectively,
indicating a good predictive efficacy. In addition, age and risk score were the independent
prognostic factors after univariate and multivariate Cox regression analyses. A nomogram
containing clinical factors and prognostic risk-scoring model was constructed to better
estimate individual survival. Further analyses demonstrated that risk score was associated
with the immune infiltration and response to chemotherapy. Our experiment data revealed
that LGALS1 and TMEM56 showed notably decreased expression in AML samples than
that of the normal samples.
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Conclusion: Our study shows that the prognostic risk-scoring model and key risk gene
may provide potential prognostic biomarkers and therapeutic option for AML patients.

Keywords: ferroptosis, acute myeloid leukemia, prognosis, nomogram, immune infiltration, response to
chemotherapy

INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive malignant
neoplasm arising within bone marrow, characterized by
aberrant accumulation of myeloid precursors (Lim et al.,
2017). As a deadliest form of acute leukemia, patients with
AML have a dismal 5-year survival rate of 28.3%, and most
cases still relapse frequently after remission, leading to a poor
prognosis (Lewis et al., 2021; Newell and Cook, 2021). Recently, it
is demonstrated that the molecular genetic abnormalities are
significantly associated with prognosis in AML, which can serve
as a comprehensive risk-stratification system and an effective
therapy option (Bernard et al., 2020; Dohner et al., 2020). Despite
the advances in exploring the prognostic markers for AML
patients, patients belonging to the same group may also show
different prognosis due to their clinical process variability
(Docking et al., 2021). Therefore, a novel prognostic risk-
scoring model is urgently required to improve the current risk
stratification and provide more therapeutic options, which
eventually improve AML patients’ outcomes.

Ferroptosis is a crucial, iron-dependent regulated cell death
driven by excessive accumulation of lipid hydroperoxides (Zou
et al., 2020). During the process of ferroptosis, lipid metabolism is
altered with the concomitant elevation andmassive accumulation
of lipid-based reactive oxygen species (ROS) levels in cells,
leading to cell damage or even death (Cui et al., 2014).
Previous studies indicate that ferroptosis is widely implicated
in cancer development and therapy resistance, including
particularly the increased sensitivity of AML cells to
chemotherapeutic drugs (Yu et al., 2015; Chen et al., 2021;
Mao et al., 2021). Several of the ferroptosis-related genes have
also been proven to play a vital role in AML (Grignano et al.,
2020; Birsen et al., 2021). In addition, the effect of immune
infiltration on the ferroptosis and the prognosis of AML becomes
more and more significant as well. For instance, CD8+ T cells
could effectively restore T cell function and improve their
antitumor activity by inhibiting ferroptosis (Ma et al., 2021).
Moreover, there is emerging evidence that a high proportion of
natural killer (NK) cells is associated with death before remission
(Park et al., 2018). However, the degree to which ferroptosis
influences survival and treatment strategy of AML remains
unknown.

Considering the significant value of ferroptosis in AML, we
identify differentially expressed genes that are affected by
ferroptosis status and then construct a prognostic risk-scoring
model and effective nomogram. Furthermore, we explore the
relationship of the risk model with immune infiltration and
response to chemotherapy, which extends its clinical value for
AML patients’ prognosis. We also evaluate the expression of
several risk genes in primary AML samples.

MATERIALS AND METHODS

Data Collection
RNA sequencing (RNA-seq) data and corresponding clinical data
of 151 AML patients were obtained from the TCGA database
(https://portal.gdc.cancer.gov), and these were selected as the
training set. The GSE71014 data set included 104 AML
samples that were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/gds/), which were used as the
validation set. Another validation set included 155 samples
obtained from the TARGET database (https://ocg.cancer.gov/
programs/target). “Limma” R package was used to normalized
the gene expression profiles. In addition, 261 ferroptosis-related
genes (FRGs) were collected from ferroptosis-associated gene sets
from FerrDb (http://www.zhounan.org/ferrdb) and the previous
literature (Liang et al., 2020; Zhuo et al., 2020).

Consensus Clustering Analysis Based on
Ferroptosis-Related Genes
AML patients from the TCGA database were grouped into
different groups based on 261 FRGs by using the
“ConsensusClusterPlus” R package, and then Kaplan–Meier
(KM) overall survival curves between different clusters were
performed by the “survival” R package. Principal component
analysis (PCA) was applied to assess sample clustering. “DESeq2”
R package was used to screen differentially expressed genes
(DEGs) between different clusters (|logFC| > 1.5, FDR < 0.05).
Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis were
performed to select and visualize significant enriched
ferroptosis-associated GO terms and KEGG pathways in DEGs.

Construction and Validation of the
Prognostic Risk-Scoring Model Based on
Ferroptosis-Related Clusters
To select prognosis-related genes (p < 0.05), we performed a
univariate Cox regression analysis in these DEGs. Gene
expression and the KM curve of the six most significant genes
among them was presented as well. LASSO regression was then
applied to remove redundant prognostic genes for developing the
prognostic model. Eighteen genes were ultimately retained, and a
risk score was calculated according to the following formula:

Risk score � ∑
n

i�1
(Coefi × xi),

where Coefi is coefficient and xi is the z-score-transformed
relative expression value of each selected gene.
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After risk model construction, the AML samples from the
TCGA cohort were categorized into high- and low-risk groups.
The survival difference of both groups was compared using the
“survival” and “survminer” R packages, and 1-, 3-, and 5-year
receiver operator characteristic (ROC) curve analyses were
performed by “time-ROC” R packages. Other AML cohorts
from the GEO (GSE71014) and TARGET databases
(TARGET-AML) were applied for validation, and the risk
score calculation, risk subgroups, survival analysis, and ROC
curves were conducted in the same way.

Prognostic Analysis of Prognostic
Risk-Scoring Model
To further explore the relationship between clinicopathologic
characteristics and AML patients’ prognosis, we extracted the
clinical data from the TCGA cohort, and these variables included
AML risk category, age, gender, race, class, and risk score.
Univariate and multivariate Cox regression analyses were
performed to identify the independent prognostic factors.

Establishment of the Predictive Nomogram
A nomogram was constructed to visualize the relationship
between variables and the prognostic model by the “rms” R
package. 3-years and 5-years calibration curves were applied to
discriminate and predict the values of a nomogram. To better
illustrate the role of our risk score in AML development, we
analyzed the relationship between our risk score and different
clinical features (AML risk category, age, class, and status).

Immune Infiltrates Correlation of
Prognostic Model
Immune infiltration analysis by the CIBERSORT algorithm
was used to evaluate different types of immune cell expression
between high- and low-risk gene expression groups. The
linear correlation of risk score and immune cell
components (T cells CD4 naïve, monocytes, macrophage
M2, mast cells resting) was analyzed by the R package
“ggstatsplot.” The multigene correlation map was displayed
by the R package “pheatmap.”

Mutation Distribution of Prognostic Model
Mutation data of AML was obtained from the TCGA database
and somatic mutations between the high- and low-risk groups
were visualized using R package “maftools.”

Chemotherapeutic Response Prediction of
the Prognostic Model
Due to missing drug data in the TCGA-LAML data set, we used
an immunotherapeutic data set of bladder cancer (IMvigor210
cohort) to predict the chemotherapeutic response of our
prognostic model. Risk score distribution of patients with
different drug response groups were used to validate the
efficiency of a prognostic model.

Primary AML Sample Collection and
Quantitative Reverse Transcription
Polymerase Chain Reaction Analysis
Bone marrow or peripheral blood samples were donated by
patients with primary AML in Guangdong Provincial People’s
Hospital, and their medical information was collected with
informed patient consent and in accordance with the
Declaration of Helsinki. This study was approved by the
Ethics Committee of the Guangdong Provincial People’s
Hospital. Diagnosis of patients was based on morphology
using the French-American-British (FAB) classification,
immunophenotyping, cytogenetics, and molecular genetics.
The complete response (CR) was defined as BM blasts <5%;
absence of circulating blasts and blasts with Auer rods; absence of
extramedullary leukemia; absolute neutrophil count >1.0 × 109/L;
platelet count >100 × 109/L. Total RNA was extracted by an E. Z.
N. A. Total RNA Isolation Kit (Omega, GA, United States). The
generation of cDNAs from reverse transcription was performed
by PrimeScript™ RT-PCR kit (TaKaRa, Otsu, Japan). According
to the manufacturer instructions of Biorad CFX Connect (Bio-
Rad Laboratories, CA, United States), we conducted the qRT-
PCR by using SYBR Premix Ex Taq (TaKaRa, Otsu, Japan). The
specific operation steps of qRT-PCR were performed as described
previously (Tu et al., 2020). ABL was used as an internal control
gene. The primers of LGALS1, ZFPM2, and TMEM56 are as
follows: LGALS1 forward (5′-GCACTTCAACCCTCGCTTCA-
3′), reverse (5′-TCCTTGCTGTTGCACACGAT-3′); ZFPM2
forward (5′-GCCGGCACGAAACATACAT-3′), reverse (5′-
GGCAGGCACTTTGTTGGAA-3′); TMEM56 forward (5′-
GCTGGCATACATTGGGAATTTT-3′), reverse (5′-CTTCAA
AGAACCACCGCTGATT-3′).

Statistical Analysis
R software was used to analyze all statistics, and p ≤ 0.05 was
considered statistically significant. Unless otherwise indicated,
Student’s t-test was used to test for statistical comparisons.

RESULTS

Classification of AML Based on the
Ferroptosis-Related Gene Sets
Figure 1 shows the flow chart of our study design. We
extracted AML patients’ RNA-seq data and corresponding
clinical information from the TCGA database (n � 151).
Based on 261 FRGs, we conducted a consensus clustering
analysis with all AML samples. When consensus matrix K �
2, AML samples can be well grouped into classes 1 and 2
(Figure 2A). KM survival curves of two clusters indicate that
class 2 AML patients had better survival compared with those
in class 1 (log-rank, p � 0.024, Figure 2B). Figure 2C presented
a heat map of significantly different ferroptosis-related gene
expressions in two clusters. PCA analysis of sample
distributions based on ferroptosis-affected genes show a
good clustering quality (Figure 2D).
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Functional Enrichment Analysis of DEGs
Between Subgroups
A total of 1894 DEGs were identified between the two clusters
[p < 0.05 and absolute (log2 fold change) > 1.5]. We performed
GO enrichment and KEGG pathway analysis for these DEGs, and
enriched pathways containing FRGs were selected to draw the
Sankey diagrams. In the molecular function subontology, GO
terms related to tetrapyrrole binding (GO:0046906), pattern
recognition receptor activity (GO:0038187), receptor ligand
activity (GO:0048018), heme binding (GO:0020037), and
amyloid-beta binding (GO:0001540) were significantly
enriched (Supplementary Figure S1A). Under the biological
process, ROS metabolic process (GO:0072593), cellular
response to external stimulus (GO:0071496), response to drug
(GO:0042493), response to extracellular stimulus (GO:0009991),
and response to nutrient levels (GO:0031667) were significantly
enriched (Supplementary Figure S1B). The cellular component
enrichment revealed that DEGs containing FRGs mainly involve
endocytic vesicle (GO:0030139), vesicle lumen (GO:0031983),
external side of plasma membrane (GO:0009897), neuronal cell
body (GO:0043025), and early endosome (GO:0005769)

(Supplementary Figure S1C). The KEGG pathway analysis
indicates that these DEGs are mainly enriched in legionellosis,
neutrophil extracellular trap formation, viral protein interaction
with cytokine, and others (Supplementary Figure S1D). The
detailed information is provided in Supplementary Tables
S1–S4.

Identification and Validation of Prognostic
Model Based on Ferroptosis-Related
Clusters
By performing univariate Cox regression analysis, 287 DEGs were
significantly associated with patient survival (p < 0.05). Integrin
subunit alpha X (ITGAX), galectin 1 (LGALS1), and microRNA
551a (MIR551A) were the top 3 prognosis-related DEGs with the
smallest p-values. The expression of ITGAX and LGALS1 were
highly expressed in class 1 compared with class 2, whereas the
high expression of ITGAX and LGALS1 had worse survival
(Supplementary Figures S2A,B). In opposition, MIR551A was
more highly expressed in class 2 than class 1, and high expression
of MIR551A had better survival (Supplementary Figure S2C).

FIGURE 1 | Flow chart of our study design.
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Figure 3A presents the forest plot of the top 20 prognosis-related
DEGs with the smallest p-values (the full information is shown in
Supplementary Table S5). To further construct an effective
prognostic risk-scoring model, we used Lasso regression to
narrow down the range of candidate genes (Figure 3B).
Eighteen genes [zinc finger protein 560 (ZNF560), zinc finger
and SCAN domain containing 4 (ZSCAN4), LIM homeobox 6
(LHX6), twist family bHLH transcription factor 1 (TWIST1),
Lower forkhead box L1 (FOXL1), zinc finger protein, FOG family
member 2 (ZFPM2), H6 family homeobox 2 (HMX2),
Astrotactin-1 (ASTN1), delta-like protein 3 (DLL3),
protocadherin beta 12 (PCDHB12), psoriasis-associated
nonprotein coding RNA induced by stress (PRINS), TLC
domain containing 4 (TMEM56), HRAS like suppressor
(HRASLS), family with sequence similarity 155 member B
(FAM155B), C-C motif chemokine ligand 23 (CCL23),
galectin 1 (LGALS1), ephrin B3 (EFNB3), and matrix
remodeling associated 5 (MXRA5)] were finally selected to
establish a prognostic model, and their corresponding risk

coefficients are shown in Figure 3C. According to the
expression levels and regression coefficients, we calculated a
risk score as follows:

Risk score � expr(LGALS1) × (1.54e−1) + expr(DLL3) × (−4.82e−2)
+ expr(ZFPM2) × (6.83e−2) + expr(LHX6) × (2.79e−2)
+ expr(MXRA5) × (−1.11e−2) + expr(TMEM56) × (−1.18e−2)
+ expr(CCL23) × (1.13e−2) + expr(FAM155B) × (3.08e−2)
+ expr(ZSCAN4) × (1.19e−2) + expr(PCDHB12) × (−1.82e−2)
+ expr(PRINS) × (−6.59e−2) + expr(FOXL1) × (−1.39e−3)
+ expr(ASTN1) × (−6.39e−3) + expr(HMX2) × (6.38e−2)
+ expr(HRASLS) × (4.28e−2)

Based on the risk score, AML patients in the TCGA cohort can
be grouped equally into low- and high-risk groups (Figure 3D).
Patients in the low-risk group had less cell death and more
survival time compared with those in the high-risk group
(Figure 3E). The KM survival curves showed worse survival
probability in the high-risk group than in the low-risk groups in
both the training (Figure 4A) and validation sets (Figures 4C,E).

FIGURE 2 | Classification of AML based on ferroptosis-related genes. (A) The optimal AML classification according to consensus matrix (k � 2). (B) KM survival
analysis for the two subtypes. (C) Heat maps of these significantly differential ferroptosis-related genes between two subtypes. (D) PCA analysis of sample distributions
based on ferroptosis-affected genes.
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In the training set, the area under the ROC curve (AUC) of the
prognostic model for 1-, 3-, and 5-year survival time was 0.81,
0.827, and 0.786, respectively (Figure 4B). At the same time, the
AUC of the prognostic model for the 3-year survival time was
0.621 in the GEO cohort (Figure 4D). Another validation from
the TARGET database also performed good reproducibility, and
the AUC values of 3- and 7-year survival times was 0.657 and
0.741, respectively (Figure 4F), indicating a good effect for
predicting patients’ prognosis in both validation cohorts.

Independent Prognostic Analysis of Risk
Score and Pathological Features
To further explore the clinical value of the prognostic risk-scoring
model, univariate and multivariate Cox regression analyses were
performed on the TCGA cohort. In the univariate Cox analysis,
AML risk category, age, class, and risk score were significantly
associated with AML patient prognosis (p � 0.00069, p � 2 × 10–5,
p � 0.028, p � 2.1 × 10–16, respectively, Figure 5A). Furthermore,
the results of the multivariate Cox regression demonstrate that
age and risk score are independent risk factors in AML patient
prognosis (p � 0.011, p < 0.0001, respectively, Figure 5B). In

addition, Figure 5C presents a heat map for the correlations
between an 18-gene risk signature and clinicopathological
features. Next, we performed an ROC analysis on these
factors, and the results of the AUC value indicate that risk
score has high accuracy to predict overall survival (OS) and
AML risk category (AUC values � 0.824, AUC values � 0.768,
respectively) compared with other factors (all AUC values < 0.7,
Figures 5D,E). Moreover, we determined correlations between
risk score and pathological features. We found that risk score was
significantly associated with AML risk category, age, class, and
status (all p < 0.05, Figures 6A–D).

Establishment of Predictive Nomogram for
AML Patients
According to the above regression analysis, we developed a
nomogram containing our prognostic risk-scoring model and
multiple clinical factors. In the TCGA cohort, AML risk category,
age, gender, race, class, and risk score were eventually selected to
establish an accurate predictive nomogram (Figure 7A). The
calculated C index was to be 0.789, and the calibration plots of 3-
and 5-year OS showed no deviations from the Platt calibration

FIGURE 3 | Construction of a prognostic risk model. (A) A forest plot of the top 20 prognosis-related DEGs. (B) LASSO variable screening process. (C) 18
prognostic genes were eventually selected after LASSO regression to establish a prognostic model. (D) Distribution of the risk score for the AML patients. (E) Patients’
status based on the risk score.
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curves, indicating high predictive accuracy of nomogram
(Figures 7B,C).

Correlations Between the 18-Gene
Signature and Immune Microenvironment
To better investigate the interactions between the 18-gene
signature and the immune microenvironment, we performed

the CIBERSORT algorithm to evaluate the correlation of the
prognostic risk-scoring model with tumor-infiltrating
immune-cell fractions in AML patients. Figure 8A
presents a heat map of the relationship between 18 risk
genes and 22 immune infiltrating cells. Notably, LGALS1
shows the most significant association with immune activity.
The LGALS1 level in the naïve B cells, eosinophils, resting
mast cells, resting NK cells, naïve T cells CD4, and T cells

FIGURE 4 | Evaluation of predictive efficacy of prognostic models. (A) KM survival curves of two risk score groups in the training set (TCGA-LAML data sets). (B)
ROC curves in the training set (TCGA-LAML data sets), and the 3-year overall survival rates were 0.827. (C) KM survival curves of two risk score groups in the validation
set (GSE71014). (D) ROC curves in the validation set (GSE71014) and the 3-year overall survival rates were 0.621. (E) KM survival curves of two risk score groups in the
validation set in another validation set (TARGET-AML). (F) ROC curves in another validation set (TARGET-AML) and the 7-year overall survival rates were 0.741.
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gamma delta were more highly expressed in the low-risk
groups compared with the high-risk groups, whereas LGALS1
level in B cell memory, macrophages M2, and monocytes
were opposite (all p < 0.05, Figure 8B). Furthermore, we
observed that a negative correlation of risk score with naïve
B cells, resting mast cells, and naive T cells CD4 (R � −0.26,
p � 0.0155; R � −0.47, p � 2 × 10−7; R � −0.38, p � 6.63 × 10−5,
respectively, Figures 8C,E,F). With increasing risk score, the

proportion of monocytes increase in a linear fashion (R �
0.59, p � 2.09 × 10−12, Figure 8D).

Mutation Analysis of Prognostic
Risk-Scoring Model
We compared the mutation pattern between two risk groups, and
a difference was found. The mutation frequency of the high-risk

FIGURE 5 | Correlations among clinicopathological characteristics, risk score, and prognostic value in TCGA cohort. (A) Univariate analysis of clinicopathological
factors and risk score. (B) Multivariate analysis of clinicopathological factors and risk score. (C) Heat map for the correlations between the 18-gene risk signature and
clinicopathological features. (D)ROC curve showing the prediction effect of risk score, age, and class 1/2 on survival rate. (E)ROC curve showing the predictive effects of
risk score, age, and class1/2 on AML risk grouping.
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group was higher compared with the low-risk group at KRAS
(25% vs. 12.5%), TP53 (25% vs. 12.5%). In addition, we found that
mutation type was a missense variant in both risk groups
(Figures 9A,B).

Chemotherapeutic Drug Response of
Prognostic Risk-Scoring Model
Due to the lack of drug information of AML patients, we selected
a bladder cancer immunotherapy cohort (IMvigor210) to predict
the efficacy of response to chemotherapy in the two risk groups. A
higher chemotherapy response rate was observed in the low-risk
group compared with the high-risk group (24.72% vs. 20%,
Figure 10A). We also observed that there was a significant
difference in the risk score distribution between the four
groups of the patients with different responses to
chemotherapy (Kruskal–Wallis, p � 0.0011, Figure 10B).

Validation of Risk Genes
We evaluated the expression of several risk genes in primary AML
blasts by qPCR using 24 fresh or frozen de novo AML specimens,
including the bone marrow and peripheral blood, and compared
with that of 10 normal cases. The clinical characteristics and risk
genes expression of these patients were presented in
Supplementary Table S6. As shown in Figures 11A–C,
ZFPM2 expression did not differ between the two groups (p �
0.3646), whereas LGALS1 and TMEM56 expression levels were

significantly decreased in AML samples than that of the normal
samples (all p < 0.05).

DISCUSSION

AML is the most common acute leukemia in adults with high
mortality and unfavorable outcome. Among the traditional
treatments, chemotherapy remains the major option for most
AML cases even though a small number of patients may suffer
from drug resistance and worse outcomes (Seo et al., 2010).
Recently, mounting evidence demonstrates that ferroptosis can
successfully eliminate resistant AML cells (Yu et al., 2015), which
is proposed as a novel approach to killing malignant cells
(Toyokuni et al., 2017). However, the extent to which
ferroptosis influences patients’ chemoresistance and prognosis
in AML requires further investigation. In this study, we identify
genes that are affected by ferroptosis and develop a prognostic
risk-scoring model to predict patients’ survival at the genetic
level. The prognostic signature was employed to discriminate
high- and low-risk patients, and high-risk patients had a worse
outcome and worse responses to chemotherapeutic drugs.

Current studies identify a ferroptosis- or autophagy-related
long noncoding RNA signature for predicting prognosis in the
patients with AML (Li R. et al., 2021; Zhao et al., 2021; Zheng
et al., 2021). Immune- or immune checkpoint–related gene
signatures were also developed and validated in AML patients

FIGURE 6 | Association between risk score and clinical features. (A–D) Correlation of the risk score with AML risk category, age, class, and status.
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(Li R. et al., 2021; Jiang et al., 2021). However, the results of these
studies were biased because they mainly focus on a small number of
genes that were related to special functions instead of the whole gene
population. Our study grouped AML patients into two clusters based
on 261 ferroptosis-related genes, and candidate genes were screened
between two clusters. These genes were not only associated with
ferroptosis, but also presented a comprehensive analysis of the whole
gene population of AML patients. In addition, these studies do not
establish the prognostic nomogram and lacked further investigations
for the risk signature. Our study not only developed an effective
nomogram incorporating both prognostic signature and clinical
elements, but also analyzed the correlations between risk signature
and immune activity and response to chemotherapy.

Our prognostic model involves 18 genes affected by
ferroptosis. According to the risk value of each gene, ZFPM2,
ZNF560, ZSCAN4, HMX2, HRASLS, LGALS1, LHX6, CCL23,
and FAM155B were regarded as risk genes related to poor
prognosis in patients with AML, whereas MXRA5, PCDHB12,
PRINS, TMEM56, TWIST1, ASTN1, DLL3, EFNB3, and FOXL1
were associated with favorable prognosis. Among all these genes,

higher expression of TWIST1 (Wang et al., 2015) and DLL3
(Takam Kamga et al., 2019) is revealed to be correlated with
favorable prognosis in the patients with AML, whereas higher
expression of LGALS1 (Ruvolo et al., 2020) has a poor outcome,
which is consistent with our prediction. As a critical transcription
factor involved in epithelial-mesenchymal transition, TWIST1
overexpression can enhance the susceptibility to chemotherapy
drugs by promoting cell cycle entry and, thus, improve AML
patients’ outcomes (Chen et al., 2015; Wang et al., 2015). DLL3
was an atypical Notch ligand that has been investigated in many
tumors as a therapeutic target (Matsuo et al., 2021). In AML,
improved survival was observed in high expression of DLL3, and
it may function by cell proliferation regulation (Yan et al., 2010;
Takam Kamga et al., 2019). LGALS1 mainly participated in
inducing tolerogenic programs and contributed to tumor cell
immune evasion (Cagnoni et al., 2021). Generally, LGALS1
exerted a tumor-promoting effect by blocking tumor
suppressors such as p53 and promoting drug resistance in
AML (Ruvolo et al., 2020; Li X. et al., 2021). However, the
expression and clinical outcome of 18 genes in the patients

FIGURE 7 | Nomogram of the TCGA-LAML. (A) Nomogram predicting 3- and 5-year OS for the AML patients. (B,C) Calibration curve for the nomogram.
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FIGURE 8 | Immune infiltration level of prognostic signature. (A)Correlation between risk genes and different immune infiltration cell types. (B) The correlation of risk
gene LGALS1 expression with immune infiltration level in the high- and low-risk groups. (C–F) The correlation of risk score with naïve B cells, monocytes, resting mast
cells, and naïve T cells CD4.
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with AML are still ambiguous. Herein, we selected LGALS1 and
other two risk genes (ZFPM2, TMEM56) that have not been
reported previously in AML to validate their expression level in
the clinical samples. Our PCR experiments show that LGALS1
and TMEM56 expression had significant differences between the

normal and AML samples. However, LGALS1 was
underexpressed in AML and the expression of LGALS1 was
quite different from the previous research (Ruvolo et al.,
2020). Various factors, such as patient-to-patient variation,
could have contributed to the discrepancy. Therefore, we

FIGURE 9 | Mutation status of the prognostic model. (A) Low- and (B) High-risk groups mutation status.

FIGURE 10 | Chemotherapeutic drug response of the prognostic model. (A) The proportion of patients with different drug responses in the high- and low-risk
groups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (B) Distribution of patients with different drug response groups
based on the risk score.

FIGURE 11 | In vitro validation of three risk genes. (A) LGALS1, (B) ZFPM2, (C) TMEM56 mRNA expression level in the normal and AML samples.
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ideally need more data to evaluate this issue. Additionally, RNA
sequencing data of these AML patients is also required to collect
for verifying the risk-scoring model, which is better to integrate
the gene expression from the TCGA, GEO, etc., data sets with the
measurements.

As expected, the 18-gene signature can well predict AML patients’
prognosis compared with the traditional AML risk category. AML
patients can be divided into high- and low-risk groups according to
risk score, and we found that the survival was significantly different
between the two risk groups. In ROC analysis, the AUC values of 1-
and 3-year survival were greater than 0.8 in the patients with AML
from the TCGA cohort, indicating a superior predictive power in
comparison with Zhao et al. (2021) (3-year AUC � 0.706) and Jiang
et al. (2021) (3-year AUC � 0.711). Notably, risk score was identified
as the independent prognostic factor after univariate andmultivariate
analyses. Among all the clinical factors, the risk score most
significantly affected the AML risk category and survival of AML
patients, which can effectively guide prognostic prediction.
Importantly, we successfully constructed a prognostic nomogram
that combined the risk signature with clinical parameters and extend
the clinical applicability of our prognostic model.

At present, evading antitumor immune responses is
considered to be an important cause of progression or relapse
of AML (Taghiloo and Asgarian-Omran, 2021), and thus,
immunotherapy has been widely investigated in the clinical
treatment of AML. In the immune evasion mechanisms,
multiple immune cells are involved. For example, AML blasts
may block the effector functions of T and NK cells, increase
immunosuppressive cells such as macrophages M2 and
monocytes and decrease immunoreactive cells such as naive
B cells and resting mast cells (Tettamanti et al., 2021). In our
study, we found that LGALS1 was most closely related to immune
infiltration cells among these 18 genes. As key regulators of tumor
immune evasion, high LGALS1 expression in AML patients was
associated with higher macrophages M2, monocytes infiltration,
and lower naive T cells CD4, naive B cells, and resting mast cells
infiltration, which remained consistent with a previous study
(Tribulatti et al., 2012). Interestingly, our study also indicates that
there is a certain correlation between risk score and immune cell
infiltration. The risk score was negatively correlated with naïve
B cells, naive CD4+ T cells, and resting mast cells, whereas it is
positively related to monocytes. Naïve B cells can differentiate
into antibody-secreting plasma cells when they encounter a new
antigen (Siegrist and Aspinall, 2009). Naive CD4+ T cells can also
differentiate into various subsets to attain specialized effector
functions, which play a vital role in tumor immunity (Huang
et al., 2012). Resting mast cells are immunoreactive cells that are
related to better survival (de Alencar et al., 2020). In opposition,
monocytes play an important role in tumor growth and
progression (Shao et al., 2018). Therefore, a negative
correlation of risk score with naïve B cells, naive CD4+ T cells,
and resting mast cells and the positive correlation withmonocytes
suggests that the 18-gene signature is tightly associated with
immune-active status in the tumor microenvironment.
However, more in-depth research combining clinical samples
is needed to clarify this relationship between risk score and the
immune microenvironment of AML.

Gene mutation is another important cause of tumorigenesis and
drug resistance. In our study, we found that the high-risk patients
had higher KRAS mutations compared with the low-risk patients.
Previous studies demonstrate that clonal mutations in KRAS are
related to therapy resistance (Jerchel et al., 2018). Therefore, poor
survival of high-risk patients may also be associated with KRAS
mutation, which can cause chemoresistance.

Finally, we explored the effectiveness of risk score in predicting
chemotherapy response, and the results demonstrate that the
chemotherapy response rate of high-risk patients was lower than
that of low-risk patients. These results suggest that our model
could predict chemotherapy response to a certain extent.

There are also some limitations in this study. First, although we
provide a nomogram for predicting survival in AML, more
prospective studies are needed to confirm the reliability of this
nomogram. Second, the data preprocessing and the background of
patients of three cohorts (TCGA-LAML, GSE71014, TARGET-AML)
were different, resulting in the different cutoff values and biased
prediction efficacy. Third, there was also a paucity of drug data on
chemotherapy in the patientswithAML, andmore validation data sets
are required to confirm the applicability of our prognostic model.
Finally, we still need more experimental evidence to prove our
conclusion and elucidate the exact mechanism of these 18 genes in
AML progression, immune therapy, and drug resistance.

CONCLUSION

In our study, we construct a novel prognostic signature for efficiently
predicting AML patients’ prognosis based on ferroptosis-related
cluster. We further found that high-risk patients of AML had
worse survival and reduced response to chemotherapy, which
may provide therapeutic options for AML patients.
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Supplementary Figure 2 | Top 3 prognostic DEGs with the most significant
p-value. (A–C) Gene expression (ITGAX, LGALS1, MIR551A) between the two
subtypes and KM survival curves based on the high and low expression of them.
****represents p < 0.0001.

Supplementary Table 1 | Analysis results of GO BP.

Supplementary Table 2 | Analysis results of GO MF.

Supplementary Table 3 | Analysis results of GO CC.

Supplementary Table 4 | Analysis results of KEGG.

Supplementary Table 5 | Analysis results of univariate Cox regression.
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