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Abstract

There is an urgent need for new tools to combat the ongoing
tuberculosis (TB) pandemic. Gene expression profiles based on
blood signatures have proved useful in identifying genes that
enable classification of TB patients, but have thus far been
complex. Using real-time PCR analysis, we evaluated the expres-
sion profiles from a large panel of genes in TB patients and healthy
individuals in an Indian cohort. Classification models were built
and validated for their capacity to discriminate samples from TB
patients and controls within this cohort and on external indepen-
dent gene expression datasets. A combination of only four genes
distinguished TB patients from healthy individuals in both cross-
validations and on separate validation datasets with very high
accuracy. An external validation on two distinct cohorts using a
real-time PCR setting confirmed the predictive power of this
4-gene tool reaching sensitivity scores of 88% with a specificity of
around 75%. Moreover, this gene signature demonstrated good
classification power in HIV+ populations and also between TB and
several other pulmonary diseases. Here we present proof of
concept that our 4-gene signature and the top classifier genes
from our models provide excellent candidates for the development
of molecular point-of-care TB diagnosis in endemic areas.
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Introduction

With an estimated 9.6 million new cases annually, tuberculosis (TB)

remains one of the major threats to global health (World Health

Organization, 2015). A major obstacle to both controlling the spread

of the disease and improving treatment outcome is the lack of effi-

cient clinical tools for rapid and accurate diagnosis. New diagnostics

could reduce TB incidence rates by 13–42%, with nucleic acid ampli-

fication tests preventing 23% of TB-related deaths in the Southeast

Asian region (Abu-Raddad et al, 2009). Despite the broad extent of

clinical experience with TB disease, a substantial proportion of new

cases are mis- or undiagnosed, with diagnosis largely relying on

detection of the Mycobacterium tuberculosis (Mtb) pathogen in

sputum using smear microscopy, culture, or molecular techniques

(Pai & Schito, 2015). In cases where sputum smear results are nega-

tive or when sputum samples cannot be obtained, cases of active TB

remain recalcitrant to diagnosis (Norbis et al, 2013).

In order to explore the molecular mechanisms of TB infection and

to discover potential diagnostic biomarkers, global gene expression

profiles in peripheral blood have been investigated (Maertzdorf et al,

2015). Over the past decade, a substantial number of RNA transcrip-

tional profiling studies harnessing microarray-based technologies

have been published, identifying clusters of genes that are differen-

tially expressed between TB patients and healthy individuals (Weiner

et al, 2013). Most of these studies show highly consistent gene

expression patterns that can be used to classify TB patients from

healthy controls. For example, Berry et al (2010) described a whole-

blood 393-transcript signature for detection of active TB and a speci-

fic 86-transcript signature that can discriminate active TB from other

inflammatory and infectious diseases. More recently, Kaforou et al

(2013) detected a 44-transcript signature that can distinguish TB from

other diseases and a 27-transcript signature that distinguishes TB

from latent TB infection (LTBI). The latter study also included TB

patients from both HIV� and HIV+ populations. Bloom et al (2013)

described a 144-transcript signature that could distinguish TB from

other pulmonary diseases, including pneumonia and lung cancer.
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However, with signatures comprising dozens or hundreds of

genes, and the prohibitive cost and expertise required to use

microarray technology in the clinic, particularly in resource-poor

settings, no diagnostic tools for TB based on gene expression have

so far been developed. In contrast to microarray technologies,

modern real-time reverse transcriptase PCR (RT–PCR)-based tools

have several advantages for clinical use, being fast, cheap, easy to

use, and requiring minimal electric power. Although molecular

assays have their drawbacks for routine diagnosis as compared to

more basic laboratory tests, RT–PCR assays are widely approved for

detection of influenza viruses (http://www.cdc.gov/flu/professionals/

diagnosis/molecular-assays.htm) and have been extensively devel-

oped over recent years for diagnosis of several diseases caused by

bacteria (Maurin, 2012). Moreover, modern microfluidics technolo-

gies have enabled the design of “lab-on-a-chip” systems for RT–PCR

detection of viral infections (Lee et al, 2008; Song et al, 2012). Addi-

tionally, because of its simplicity and rapidity, another amplification

technique known as loop-mediated isothermal amplification (LAMP;

Notomi et al, 2000) is also applied to detection of, for example,

pathogenic microorganisms (Fu et al, 2011). We envisage that with

such technologies, a new tool for diagnostic triage of TB patients is

also in reach.

In order to develop such a tool, a small signature of genes that

can robustly discriminate TB patients from healthy individuals is

required. Here we describe the identification of such a small size

gene signature that can discriminate TB patients from healthy indi-

viduals with high sensitivity and specificity. In this study, we

designed a targeted RT–PCR array based on two microarray datasets

from a South African and a Gambian TB cohort previously gener-

ated by our group (Maertzdorf et al, 2011a,b) and then applied it to

a new Indian cohort to generate expression data for training and

testing validation of TB classifier models. We used two tree-based

methods to generate models for TB classification, namely random

forest (RF) and conditional inference (CI) trees. We applied a step-

wise approach to define a small top set of classifier genes that finally

resulted in a minimally sized signature of only four genes that could

successfully discriminate TB patients from healthy controls. For

validation, we carried out RT–PCR of this signature and measured

its classification performance on two separate African cohorts.

Furthermore, using independent publicly available blood transcrip-

tion microarray datasets (Berry et al, 2010; Maertzdorf et al, 2012;

Bloom et al, 2013; Kaforou et al, 2013; Dawany et al, 2014), we

demonstrate that our signature is capable of distinguishing between

TB and other pulmonary and inflammatory diseases, across plat-

forms and genetic backgrounds. Our use of RT–PCR readout in this

new dataset allowed us to show that specific primer pairs for these

genes have adequate dynamic range and so are appropriate for use

in a diagnostic setting. These genes provide proof of principle for

the development of a simple diagnostic point-of-care test in TB.

Results

RT–PCR array and cohort design

In this study, we aimed to identify a minimal set of genes that could

be implemented into a clinical tool for point-of-care testing for TB.

Since nucleic acid amplification techniques are readily applied in

standard diagnostic settings, we evaluated the discriminatory power

of a selected set of genes to distinguish between TB patients and

healthy individuals using a targeted RT–PCR validation strategy.

Based on previously published microarray datasets from South

Africa and The Gambia (Maertzdorf et al, 2011a,b), we selected a

set of 360 target genes that show strong differential expression

between TB patients and healthy controls. From a cohort in Banga-

lore, India, a total of 200 peripheral blood RNA samples were

collected from 120 TB patients and 80 healthy donors (60 LTBI and

20 uninfected). This new set of samples served as the primary

source of data to evaluate the selected genes and to validate small

gene sets for classification.

Gene expression levels for the selected target genes plus 12 refer-

ence genes were analyzed using a custom RT–PCR array. To main-

tain a balanced design with a 3:2 ratio of TB patients to healthy

controls, 60 patient and 40 control samples were randomly assigned

into a training set, with the remaining samples being retained as

validation set.

Principal component analysis (PCA) was applied to the normal-

ized gene expression levels to inspect the variation in the dataset.

The results indicate that the gene expression differences between TB

patients and healthy controls constitute the majority of the variance

within the dataset as indicated by their separation in the first two

principal components (Appendix Fig S1). For training and testing of

machine learning models for disease-state classification, we

randomly assigned 60 patient and 40 control samples to a training

set, maintaining the ratio of 3:2 of the whole dataset. The remaining

samples were retained as a test set.

The overall sample assignment and analysis steps applied in this

study were as follows: (i) training set used to generate models and

test them on the test set, (ii) determine optimal biosignature sizes

and model training approaches, (iii) merge test and training set to

maximize model performance, (iv) test full models using internal

cross-validation, (v) test full models on qPCR data from external

cohorts, and (vi) test full models on independent (microarray) data

(Fig 1).

Model training and validation on RT–PCR dataset

To initially investigate the number of genes that are required for

good discrimination of TB patients from healthy controls in our

dataset, RF models were built multiple times on the training set

(Fig 1) and each time the genes were ordered by their relative

importance as predictors (Gini importance index). Within each itera-

tion, models based on varying numbers of the top genes (from 1 to

100 genes) were tested for their performance in a 25-fold cross-vali-

dation on the training set only. The resulting classification perfor-

mance of models based on increasing numbers of genes was

discerned using the area under the curve (AUC) statistic. We found

that the number of genes within a model did not have a dramatic

effect upon the classification performance over a large range of

genes tested (Fig 2), suggesting that only a limited set of top-ranking

genes already suffices for a high classification performance while

additional genes do not significantly add more power to the perfor-

mance of the models.

To identify the top classifier genes within our dataset we used RF

models to rank genes according to their importance in partitioning

the samples into the defined groups (TB vs. healthy). Generating 25
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replicates of an RF model on the whole dataset we counted how

many times each gene was among the most important predictors.

Twelve genes ranked within the top 15 in all RF models (Fig 3A).

Variable importance (mean decrease in Gini coefficient) for each

gene was used as a measure for its predictive importance in parti-

tioning the samples into the defined groups (Fig 3B). In this context

it thus means that a gene with a higher variable importance plays a

greater role in predicting whether a sample is from a TB patient or a

healthy individual. Below the top 12 genes, the importance measure

shows a break-off point. The relative expression distributions of

these top classifier genes showed mostly higher expression levels in

TB patients (Fig 3C). Expression levels in LTBI and uninfected

controls were highly similar (Fig EV1).

Based on the above results (Fig 2), one can see that the 15-gene

signatures are well within range of the maximum predictive perfor-

mance in our training dataset. It is also interesting that a smaller

number of genes can also achieve a high level of predictive power.

However, in order to not lose sensitivity by including too few genes

at this stage of the performance testing, we chose to initially use a

15-gene RF model to run on the test set (Fig 1). The classification

performance of this model on the test set returned an AUC as high

as 0.98 (CI = 0.97–1.0), documenting the model’s high overall

performance. Testing two other models based on 10 and 5 genes

returned comparable high performance results, with AUCs 0.98

(CI = 0.96–1.0) and 0.97 (CI = 0.94–1.0), respectively (Fig 2).

Whereas random forests can output a list of genes ordered by

their importance as classifiers, CI trees output a set of top predictor

genes, a single simple decision tree and also have the advantage of

generating easily interpretable predictor values. Intriguingly,

running such a CI decision tree on samples in the training set

resulted in a very small set of only three genes. Calculation of the

classification power of these genes on the test set RT–PCR data gave

a performance of AUC = 0.95 (95% CI: 0.90–0.99).

Models based on full RT–PCR dataset

In the following step, we merged the training and tests sets from the

Indian cohort to generate models to be tested both using internal

cross-validation, and by applying them to external datasets.

Since large training sets usually provide better classification

power, we also evaluated a 15-gene signature built on the whole

189 sample dataset (both training and test sets; Appendix Table S1).

The new model arising from this whole-dataset RF classification

analysis contained largely the same genes as the one based on the

original 100-sample training set. Ranked genes within this 15-gene

classification signature are given in Appendix Table S2. The excel-

lent classification performance of this new model in an internal

cross-validation procedure (AUC = 0.98, accuracy (ACC) = 0.94)

was very similar to the predictive power of the original 100-sample

training set model (AUC = 0.98, ACC = 0.91). There was no dif-

ference in the classification power of this signature when separating

controls into LTBI and uninfected individuals (Fig EV2).

We also evaluated a CI decision tree using the whole dataset to

achieve maximum classification power within our RT–PCR dataset.

This approach resulted in a very small signature, comprising only

four genes. This 4-gene model reached very high classification

performance scores with AUC = 0.98 and ACC = 0.92. Classification

power was the same for predicting TB from LTBI or uninfected

healthy controls (AUC = 0.98 for both (Fig EV2)). A graphical

display of the CI decision tree (Fig 4) also illustrates the advantage

2. External microarray 
validation sets

Test set
(n = 89)

Sample collection 
TB patients (n = 120)

Healthy controls (n = 80)

Gene selection
360 top genes selected 

from microarray datasets 

RNA quality control

Random 
assignment

Training set
(60 TB / 40 healthy)

Build models
RF&

CI trees 

1. Independent blinded 
RT-PCR validation sets

RT-PCR
& data quality filtering

High quality RT-PCR data
TB patients (n = 113)

Healthy controls (n = 76)

Gene set
281 consistently 
expressed genes

Test models

Minimal size 
signature for 
TB diagnosis

15-gene & 
4-gene models

Validate models
independent cohorts

Figure 1. Sample and analysis flowchart.
All samples from TB patients and healthy controls were quality controlled and
randomly assigned into a training and test set. Built classification models were
tested in both the test set and the total dataset. External validation was
performed on two independent blinded RT–PCR datasets, as well as on external
microarray datasets.

Figure 2. Model size and performance.
Classification performance of varying numbers of top-ranking genes in RF
models built and cross-validated on the training set. Displayed are AUC values
from 25 reiterative RF models with boxplot overlay.
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of easily interpretable predictor values generated by this CI decision

tree. For example, samples showing a ΔCt value lower or equal to

�4.1 for GBP1 and higher than 5.9 for ID3 are most likely from

healthy individuals, whereas those showing > �4.1 for GBP1, > 6.7

for P2RY14 and > �3.5 for IFITM3 almost certainly originate from

TB patients. The excellent classification performance of this 4-gene

model indicates that very small gene signatures can have very high

predictive power. However, to determine if these gene models are of

broad application, we validated these gene models on independent

datasets as well.

Blind RT–PCR validation on external cohorts

To validate our signature in a RT–PCR-based experimental setting,

we tested the performance of our 4-gene model on whole-blood

RNA samples collected from two external cohorts. RT–PCR of the

4-gene signature was carried out on a total of 75 samples from The

Gambia and 62 samples from Uganda (see Appendix Table S1 for

number of TB, LTBI, and uninfected donors). Using the 4-gene

model, trained and tested on the Indian cohort, the TB probability

scores (ranging from 1 to 0) were used to predefine two cutoff

points (0.8 and 0.6), aimed at reaching higher specificity or higher

sensitivity, respectively. The 4-gene model was then applied in a

blinded manner to predict TB probability scores for each sample.

We found that the model performed well on the two external

cohorts, with the cutoff of 0.8 giving sensitivity and specificity

scores of 85% and 76%, respectively, in the Gambia cohort

(AUC = 0.89), but a somewhat lower sensitivity (73%) but equal

specificity (78%) in the Uganda cohort (AUC = 0.82). The cutoff of

0.6 on the other hand performed better for the Uganda cohort (87%

sensitivity, 75% specificity), while for the Gambian cohort sensitiv-

ity slightly increased (88%), although with lower specificity (68%).

From the receiver operator characteristic (ROC) curves for the

4-gene model performance in the Ugandan and Gambian cohort

(Fig EV3) one can see that the predictions are very similar for both

cohorts. Any point along these curves represents different combina-

tions of sensitivity and specificity scores for each cohort, based on

the cutoff for TB probability threshold scores set. No difference was

observed in the classification performance of TB vs. LTBI or unin-

fected controls (Appendix Fig S2). The performance in the TSTneg

group even seemed a bit weaker than in the TSTpos group in both

cohorts, but this is mostly due to the lower number of uninfected

compared to LTBI individuals in both datasets.

Validation on other independent datasets

A robust gene signature that can be efficiently used as a diagnostic

triage tool at point of care should be able to accurately discriminate

A

B

C

Figure 3. Top classifier genes.

A Cumulative number of times that genes were present among the top 15 ranking genes from 25 reiterative RF models.
B Variable Importance (Gini) for top 20 genes from RF model that was used to define the 15-gene signature.
C Box plots showing relative expression levels of top classifier genes in our RT–PCR dataset. Displayed are inverse deltaCt values (zero minus ΔCt), such that higher

values indicate higher expression levels for each sample in this study.
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TB patients from healthy individuals across a wide range of ethnic

backgrounds and also across different technology platforms. Ideally,

it should also not be confounded by other diseases or environmental

factors. To this end, we tested our gene models for their classifi-

cation power in several independent, publicly available microarray

expression datasets (Berry et al, 2010; Maertzdorf et al, 2012;

Bloom et al, 2013; Kaforou et al, 2013; Dawany et al, 2014). These

publicly available datasets include expression profiles from TB

patients and healthy controls, as well as from patients with other

diseases (ODs) than TB in both HIV– and HIV+ populations.

Table 1 summarizes the overall classification performance of the

4-gene and 15-gene models based on all RT–PCR and the indepen-

dent microarray datasets.

In each independent validation dataset we were able to robustly

classify individuals with TB from healthy controls in HIV– individu-

als using both models; in all cases an AUC of between 0.91 and 0.99

was observed (Fig 5). Again, no significant differences in classifi-

cation performance were observed between LTBI and uninfected

controls (Appendix Fig S3). Even predicting TB in HIV-co-infected

populations resulted in robust classification performance, e.g. AUC

of 0.84 for the 4-gene model and 0.89 for the 15-gene set in the

Kaforou dataset (Kaforou et al, 2013) (Fig 5).

When we included ODs as confounding factors in our predic-

tions, our models still performed well (Table 1), despite being

trained on data from TB patients and healthy controls only. Indeed,

in distinguishing TB from ODs, the 4-gene set performed well and

surprisingly even outperformed the 15-gene set on several other

pulmonary diseases (Fig EV4). This is probably due to the fact that

using a larger gene set results in the inclusion of more genes that

are related to general inflammation, creating a larger overlap with

expression profiles in non-TB inflammatory ODs. The Bloom dataset

(Bloom et al, 2013) contains individuals with other pulmonary

diseases (sarcoidosis (SARC), lung cancer and pneumonia) and the

Maertzdorf dataset (Maertzdorf et al, 2012) includes TB and SARC

patients. The 4-gene model performed very well in distinguishing

TB from pneumonia and lung cancer, but performed less well in

distinguishing TB from SARC in the Bloom dataset (AUC = 0.72)

(Fig EV4). In contrast, TB could not be distinguished from SARC in

the Maertzdorf dataset although this could be due in part to the

small number of samples. Alternatively, the Bloom dataset also

included non-active SARC patients, while the Maertzdorf dataset

only contained SARC patients with active disease status. The

Kaforou dataset included multiple ODs where TB was initially

considered in the differential diagnosis; here our 4-gene model

performed reasonably well, even in an HIV-co-infected population

(both AUC = 0.71). In distinguishing TB from non-pulmonary

diseases in the Berry dataset (Berry et al, 2010) the 4-gene model

was also seen to perform well (Fig EV4).

Discussion

The continuing TB pandemic results in 1.5 million deaths every

year, and is particularly devastating in resource-poor countries and

countries where HIV is also highly prevalent (World Health Orga-

nization, 2015). The ability to diagnose TB rapidly is imperative

for combating this deadly disease as prompt diagnosis improves

treatment outcomes and also prevents prolonged spread. An esti-

mated 13–42% reduction in TB incidence cases could be achieved

by implementing new diagnostic methods (Abu-Raddad et al,

2009).

We have identified a number of top classifier genes and a mini-

mally sized signature with high classification power, which provides

excellent gene candidates for inclusion in a diagnostic point-of-care

test in endemic regions. Our signatures are capable of distinguishing

TB patients from healthy individuals with very high accuracy on a

RT–PCR validation set. We consider this validation on RT–PCR a

key part of our results, since it proves that small triage gene sets

work in a simple RT–PCR setup. Such a platform could be integrated

in a clinical setting, for example using a small gene-chip device,

something that is not possible with complex microarray platforms.

For a true external validation, we tested the performance of our

signature by an RT–PCR-based platform in two separate populations

from The Gambia and Uganda. Depending on the chosen cutoff

point, these validations reached sensitivity scores up to 87% and

with a specificity around 75%. Due to technical differences between

sites and varying gene expression levels between ethnic popula-

tions, optimal cutoff settings could thus vary between different loca-

tions. Calibration of equipment in different settings would therefore

probably predefine different cutoff points for different cohorts or

geographical regions. Moreover, defining the desired cutoff is

mostly a clinical decision, whether the TB predictive power should

Figure 4. Conditional inference tree built on the whole dataset.
Decision tree for the 4-gene signature was built using ctree function from the
party package in R. Significant predictor genes are displayed in oval nodes.
Numbers between nodes indicate inverse ΔCt values for each split. Terminal
nodes display the relative proportion of samples from TB (dark gray) and healthy
controls (light gray).
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yield high sensitivity (with lower specificity) or whether higher

specificity would be preferred (at the cost of sensitivity).

Overall, the 4-gene model displayed the best performance, with

similar AUCs to the 15-gene model for discriminating between TB

patients and healthy individuals, but far better performance when

other diseases were considered. This small set of four genes

consisted of GBP1, IFITM3, P2RY14 and ID3. Both GBP1 and IFITM3

are interferon-induced genes, corresponding to the strongly upregu-

lated interferon signatures observed in TB patients (Berry et al,

2010). However, these genes are not in the same gene modules as

defined by Chaussabel & Baldwin (2014), indicating that transcrip-

tional profiles of GBP1 and IFITM3 are probably not highly corre-

lated. The other two genes are not known to be specifically involved

in infectious diseases, although P2RY14, a G-protein-coupled recep-

tor with diverse physiological roles, has been implicated in the

modulation of immune function (Scrivens and Dickenson, 2005).

ID3 is a T lymphocyte associated transcriptional regulator (Naito

et al, 2011). Note that three genes within this 4-gene signature, with

the exception of IFITM3, are among the top 12 classifier genes as

defined in Fig 2 and were also present in our 15-gene model

(IFITM3 ranked at position 47 of most important predictors in the

RF model on which our 15-gene signature was based). We presume

that this is due to the fact that several of the top-ranking genes have

correlated expression patterns. Therefore, the combination of genes

that results in a good classification model does not necessarily need

to correspond to the top-ranking predictor genes.

While this study was not set up with the aim to discriminate TB

from other diseases, we nevertheless discovered that our 4-gene

signature could distinguish such cases with very high AUCs for

some diseases (Table 1 and Fig EV4), better or equal to the

published transcriptome signatures. Within the Kaforou, Berry and

Bloom datasets (Berry et al, 2010; Bloom et al, 2013; Kaforou et al,

2013) our 4-gene signature was also able to distinguish TB from

other adult pulmonary diseases, as well as non-pulmonary bacterial

diseases, systemic inflammatory diseases and including pediatric

patients. Our 4-gene signature performed especially well in distin-

guishing TB from pneumonia and lung cancer. Our signatures failed,

however, to distinguish between TB and sarcoidosis in our own,

relatively small, dataset (Maertzdorf et al, 2012), but did show some

classification power within the Bloom dataset (Bloom et al, 2013).

This was not surprising, since these two pulmonary diseases are

clinically, pathologically and immunologically highly similar despite

their distinct etiologies. However, due to the relatively low preva-

lence of sarcoidosis in TB-endemic regions (Babu, 2013), this over-

lap will not markedly influence the use of our signatures in possible

future diagnosis of TB.

Table 1. Classification performances of signatures on RT–PCR datasets and external microarray datasets used in this study.

Platform Classification Cohort N

4 gene 15 gene

AUC (95% CI) AUC (95% CI)

RT–PCR TB vs. healthy India (test set) 89 0.95 (0.90–0.99) 0.98 (0.97–1.00)

India (full dataset) 189 0.98 (0.97–1.00) 0.98 (0.96–1.00)

The Gambia 75 0.89 (0.81–0.96) not done

Uganda 62 0.82 (0.71–0.93) not done

Microarray TB vs. healthy (HIV�) Bloom 148 0.99 (0.98–0.99) 0.98 (0.97–0.98)

Berry 228 0.91 (0.86–0.91) 0.92 (0.88–0.92)

Kaforou 180 0.91 (0.87–0.91) 0.96 (0.94–0.96)

Maertzdorf 26 0.99 (0.95–0.99) 0.99 (0.97–0.99)

TB vs. healthy (HIV+) Kaforou 182 0.84 (0.79–0.84) 0.89 (0.84–0.89)

Dawany 44 0.72 (0.56–0.72) 0.80 (0.66–0.80)

TB vs. ODs (pulmonary) Bloom (pneumonia) 49 0.94 (0.87–0.94) 0.68 (0.51–0.68)

Bloom (lung cancer) 51 0.95 (0.88–0.95) 0.78 (0.65–0.78)

Bloom (sarcoidosis) 96 0.72 (0.62–0.72) 0.71 (0.60–0.71)

Maertzdorf (sarcoidosis) 26 0.58 (0.34–0.58) 0.63 (0.40–0.62)

Kaforou (others) 180 0.71 (0.63–0.71) 0.63 (0.55–0.63)

TB vs. ODs (non-pulmonary) Berry (Still’s disease) 85 0.85 (0.77–0.85) 0.78 (0.68–0.78)

Berry (ASLE) 82 0.83 (0.75–0.83) 0.87 (0.80–0.87)

Berry (PSLE) 136 0.75 (0.66–0.75) 0.71 (0.61–0.71)

Berry (staphylococcus) 94 0.88 (0.81–0.88) 0.80 (0.71–0.80)

Berry (streptococcus) 66 0.93 (0.87–0.93) 0.87 (0.79–0.87)

TB vs. ODs (HIV+) Kaforou (others) 190 0.71 (0.63–0.71) 0.63 (0.55–0.63)

“Cohort” indicates name for each dataset. N is the number of subjects in each dataset. AUC, area under curve; CI, confidence interval; TB, tuberculosis; ODs, other
diseases. Major ethnicities of the validation cohorts are as follows: Bloom: Afro-Caribbean, SE Asian, Hispanic, Middle Eastern, Indian, Black, Caucasian; Berry:
Asian, Black, Caucasian; Kaforou: Black (South and East African); Maertzdorf: Caucasian; Dawany: Black (South African). Accession numbers for each dataset are
given in the Material & Methods section.

ª 2015 The Authors EMBO Molecular Medicine Vol 8 | No 2 | 2016

Jeroen Maertzdorf et al Molecular classification of TB patients EMBO Molecular Medicine

91



Indeed, the top-ranking genes in our classification signatures

appear to mainly reflect host pathology and are not necessarily

specific for TB. However, we find that our small signature does

discriminate some other pulmonary diseases with high accuracy,

despite not being based on data from such diseases. Indeed, the

4-gene signature performed remarkably better than the extended

15-gene set, likely due to the fact that the larger gene set

included more general inflammatory signatures, leading to a

higher overlap in gene expression profiles with other inflamma-

tory diseases.

We would like to re-emphasize that our study was initially set up

to classify TB patients from healthy individuals, and not for differen-

tial diagnosis of suspected disease. In our opinion, a simple “one

size fits all” signature that would be able to distinguish TB from

healthy and, at the same time, differentially diagnose TB from other

(pulmonary) diseases is unlikely to emerge. We rather envision an

easy two parallel signature setup that when (i) the signature classi-

fying healthy from probable TB tests positive, then (ii) a second dif-

ferential diagnosis signature (yet to be defined) would distinguish

TB from other diseases.

A similar effort to identify diagnostic gene expression signatures

for TB has recently been published (Satproedprai et al, 2015). A

smaller cohort of TB patients and healthy controls compared to the

one presented here (78 samples compared to 200 samples), and a

smaller set of genes (13 compared to 360 here) were evaluated by

RT–PCR. In this study, gene expression levels were used to calculate

a “TB sick score” to predict TB. The selected genes could distinguish

TB patients from healthy controls within their cohort, but the signa-

ture was not validated on an independent cohort. Moreover, while

the selected genes were among the differentially expressed genes

identified by Berry et al (2010), they were not within the 86 TB-

specific transcript set. Accordingly, discrimination of TB from other

diseases may not be possible with the signature of Satproedprai et al

(2015), although this remains to be tested.

Overall, we demonstrate in an exploratory setup, proof of

concept that small sets of genes like our 4-gene signature can offer

excellent classification performance in an easily implemented RT–

PCR setup. Therefore, these gene sets could be used for a potential

future point-of-care screening of active TB patients. We believe that

such a limited set of genes could soon be implemented in a tool for

large-scale diagnostic validation in endemic regions to test its poten-

tial to diagnose active TB. Although such a new test will not imme-

diately replace existing diagnostics like sputum smear culture and

GeneXpert (Boehme et al, 2011), proof of principle is provided here

that simple and rapid RT–PCR-based tests can help to classify TB

patients.

Materials and Methods

Study design

A prespecified total of 200 adult participants (120 TB patients and 80

healthy donors) were recruited at St. John’s hospital in Bangalore,

Figure 5. Classification performance on external datasets.
ROC curves visualizing the classification performance of our 4-gene and 15-gene set models on external microarray datasets in both HIV� and HIV-co-infected
individuals. Left panels, 4-gene signature; right panels, 15-gene signature. Upper row shows classification performance between TB and healthy in HIV� populations;
lower row in HIV-co-infected populations. Numbers in parentheses are AUC values. For detailed classification measurements refer to Table 1.

EMBO Molecular Medicine Vol 8 | No 2 | 2016 ª 2015 The Authors

EMBO Molecular Medicine Molecular classification of TB patients Jeroen Maertzdorf et al

92



India. Inclusion criteria for patients were cases of newly diag-

nosed active TB, confirmed by a positive GeneXpert sputum test

(Boehme et al, 2011) and treatment not yet initiated. Healthy

control individuals showed no symptoms or signs of active TB

and were age and gender matched to the recruited TB patients.

Exclusion criteria were subjects under 18 years of age or over 60,

HIV+ status, and individuals on treatment for TB at the time of

recruitment or having received such treatment within the last

12 months. Healthy control individuals were recruited among local

healthcare workers and tested for LTBI by skin test and IGRA test

(Quantiferon-TB). 29% of skin test-negative individuals were

tested IGRA+, while 15% of skin test-positives tested IGRA�. LTBI
individuals were defined based on positive skin test to match the

definition for latency in the other validation cohorts. Numbers of

patients, LTBI and uninfected individuals are given in

Appendix Table S1.

Peripheral blood (2.5 ml) was drawn into PAXgene tubes and

RNA was extracted using the PAXgene Blood miRNA extraction kit

(Qiagen) following the manufacturer’s instructions. Low quality

RNA samples were excluded from the study (seven samples with

A260/280 < 1.6). For this validation study, 360 target genes were

selected based on our previously published microarray datasets

from South Africa and The Gambia, using a ranking strategy based

on the original analysis and RF variable importance (Maertzdorf

et al, 2011a,b). Gene expression of these targets plus 12 reference

genes was determined using a custom 384 well RT2 Profiler RT–PCR

array (Qiagen). Samples were randomly assigned to a training set of

60 TB cases and 40 controls, maintaining the study design’s 3:2 ratio

of TB patients to controls. The remaining samples were assigned to

a separate test set. No predefined analysis protocol was used in this

study.

Data analysis

The entire raw dataset was evaluated for quality control. Genes

with Ct values > 32 in at least 40% samples in both TB and control

groups, and more than 50% of the samples in either group were

dismissed. These genes were considered to have an extremely low

expression level and therefore not useful for diagnostic-level classi-

fication and excluded from the analysis. This resulted in a final set

of 281 genes. The stability of the reference genes was evaluated

with the Bioconductor geNorm analysis R package NormqPCR

(Perkins et al, 2012). The geometric mean (GEOMEAN) of the Ct

values of the top four selected reference genes (RPLP0, EEF1A1,

UBE2D2 and B2M) was calculated for each sample as its normaliza-

tion factor.

Statistics

Differential expression of genes was calculated using a simple t-test

in R, with correction for multiple testing controlling the false discov-

ery rate (Benjamini & Hochberg, 1995).

RF models were generated using the randomForest package in

R (Liaw & Wiener, 2002) and CI trees using the ctree function from

the party package in R (Hothorn et al, 2006). We ran both these

methods on the training sets and then built models based on the

top genes to run on the test set. We also ran both these methods

on our entire dataset (training and validation sets combined) as

larger datasets can provide more accurate predictions. All models

were subsequently cross-validated on the full RT–PCR dataset and

independently validated on RT–PCR data from two external

cohorts (see Appendix Table S1 for number of patients and

controls) and on five independent, publicly available gene expres-

sion (microarray) datasets. The performance of our models was

visualized on ROC curves, evaluated through AUC statistics and

their associated 95% confidence intervals using the pROC R pack-

age (Robin et al, 2011). Variable importance was measured by the

mean decrease in Gini coefficient, calculated by the randomForest

function.

For the validation of our gene signatures on independent

microarray datasets, the datasets were first normalized as follows:

We selected the healthy controls from each of the RT–PCR and

microarray datasets. These controls were used to obtain medians

and interquartile ranges for each gene in the set, and all samples

from each dataset were standardized with these values. Next, RF

models were trained on the normalized RT–PCR data and applied to

the normalized microarray samples. Microarray datasets were

downloaded from the Gene Expression Omnibus (GEO) database

repository.

Datasets

The following datasets, available in the Gene Expression Omnibus

(GEO) database, were used in this study:

- RT–PCR data from the Indian cohort generated in this study:

GSE74092

- External microarray validations sets: GSE42834 (Bloom et al,

2013); GSE19491 (Berry et al, 2010); GSE37250 (Kaforou et al,

2013); GSE34608 (Maertzdorf et al, 2012); GSE50834 (Dawany

et al, 2014)

The paper explained

Problem
Tuberculosis (TB) continues to have a major impact on global health,
particularly in resource-poor countries. There is a great need for effi-
cient clinical tools for rapid diagnosis in order to better control the
ongoing disease burden. Multiple studies have shown that gene
expression signatures can be used to discriminate TB patients from
healthy individuals but, to date, these signatures have been large and
not applicable for simple diagnostic application.

Results
We show that a gene signature containing as few as four genes can
be used to rapidly diagnose probable TB cases. By using a standard
RT–PCR assay, this signature could be directly applicable as a simple
triage tool. Using cohorts from multiple geographical regions and
ethnicities, we show that our signature can predict TB cases with high
sensitivity and specificity, and even to some extent differentially diag-
nose them from several other pulmonary diseases.

Impact
The classification signatures we describe in this work could provide a
valuable simple and rapid new diagnostic tool to help clinicians
decide to exclude or include probable TB in suspected new cases.
Such new diagnostics could potentially have a great impact on reduc-
ing TB disease incidence in high endemic countries.
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