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Obstructive Sleep Apnea (OSA) is a common sleep-related respiratory disorder that is

associated with cognitive, cardiovascular, and metabolic morbidities. The major cause

of OSA is the sleep-related reduction of upper airway muscle tone that leads to airway

obstructions in individuals with anatomically narrow upper airway. This reduction is mainly

due to the suppressant effect of sleep on hypoglossal motoneurons that innervate upper

airway muscles. The hypoglossal motoneurons have state-dependent activity, which is

decreased during the transition from wakefulness to non-rapid eye movement sleep and

is further suppressed during rapid eye movement sleep. Multiple neurotransmitters and

their receptors have been implicated in the control of hypoglossal motoneuron activity

across the sleep-wake states. However, to date, the results of the rigorous testing

show that withdrawal of noradrenergic excitation and cholinergic inhibition essentially

contribute to the depression of hypoglossal motoneuron activity during sleep. The

present review will focus on origins of noradrenergic and cholinergic innervation of

hypoglossal motoneurons and the functional role of these neurons in the state-dependent

activity of hypoglossal motoneurons.
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NEUROTRANSMITTERS IMPLICATED IN THE CONTROL OF
HYPOGLOSSAL MOTONEURONS

Obstructive Sleep Apnea (OSA) is a sleep-related breathing disorder characterized by repetitive
nocturnal apnea/hypopnea episodes due to partial or complete closure of upper airway (1–5). The
resulting chronic intermittent hypoxia, hypercapnia, and frequent arousals that are accompanied by
sympathetic and cardiovascular activations lead to sleep fragmentation and cognitive impairments,
as well as cardiovascular and metabolic morbidities (3, 6–11).

In most OSA patients, the nocturnal apneic episodes result from anatomical abnormalities of
upper airway aperture that are combined with the sleep-related depression of upper airway muscle
tone (3, 5). Hypoglossal motoneurons innervate upper airway muscles including the genioglossus
muscle, the main tongue protruder muscle, which plays the critical role in maintaining upper
airway patency (12–17). The elevated activity of upper airway muscles, including the genioglossus
muscle, keeps the airway open during wakefulness in OSA patients (18). However, their activity is
reduced during non-rapid eye movement (NREM) sleep and further suppressed during rapid eye
movement (REM) sleep (2, 13, 16, 18–23). Multiple neurotransmitters have been implicated in the
control of state-dependent activity of hypoglossal motoneurons [reviewed by (24–27)].
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The glycinergic nature of the inhibition of hypoglossal
motoneuron activity during REM sleep was hypothesized based
on the findings that strychnine, a glycine receptor antagonist,
abolished large postsynaptic hyperpolarizing potentials that
appeared in REM sleep during intracellular recording of
hypoglossal motoneurons (28). However, the causal relationship
between these potentials and the membrane hyperpolarization
or the increase in rheobase, which are the main indicators
of decreased neuronal excitability, has not been demonstrated.
The involvement of glycinergic inhibition in REM sleep-related
depression of hypoglossal motoneuron was also suggested by
the increase of glycine release in the hypoglossal nucleus
that has been detected using the microdialysis technique
(29). In addition, an increase in concentration of another
widespread inhibitory neurotransmitter in the central nervous
system, gamma-Aminobutyric acid (GABA), was detected in
these experiments (29). However, contrary to the effect of
strychnine that abolished both membrane hyperpolarization and
the rheobase increase in spinal motoneurons during REM sleep-
induced atonia of postural muscles (30, 31), GABA or glycinergic
receptor antagonists applied on hypoglossal motoneurons did
not restore the activity of hypoglossal nerve during REM sleep-
like state induced by injections of carbachol, a dual cholinergic
agonist, into dorsolateral pontine tegmentum in decerebrated
cats (32) and anesthetized rats (33). In addition, these antagonists
were not effective within the hypoglossal nucleus during natural
REM sleep in freely behaving rats (34). These studies provided
the evidence that either GABA or glycinergic inhibition at the
level of hypoglossal motor nucleus have minimal or no effect on
depression of upper airway muscles during REM sleep [reviewed
by (26, 27, 35, 36)].

The disfacilitatory serotonergic mechanism has been
proposed to play a key role in REM sleep-related depression of
hypoglossal motoneuron activity (32, 37, 38). This hypothesis
was based on the findings that medullary serotonergic neurons
project to hypoglossal motoneurons (39), serotonin has the
excitatory effect on hypoglossal motoneurons (40), excitatory
serotonergic 5HT2A receptors are expressed in the hypoglossal
nucleus (41, 42); serotonergic neurons are silent during REM
sleep (43) and serotonin concentration is decreased during
REM sleep-like state in decerebrated cats (44) and natural REM
sleep in behaving cats (45). This hypothesis was also tested by
microinjections of a broad-spectrum serotonergic antagonist,
methysergide, into hypoglossal motor nucleus during REM
sleep-like state (46). However, despite many synergic findings
supporting this hypothesis, the follow-up functional studies
conducted in anesthetized and naturally sleeping rats showed
that serotonin contributes minimally to REM sleep-related
depression of hypoglossal motoneuron activity (47–49). In these
studies, combined microinjections of methysergide and prazosin,
an alpha-1 adrenergic receptor antagonist, into the hypoglossal
motor nucleus in anesthetized rats abolished REM sleep-related
depression of hypoglossal motoneurons (47). However separated
injections of these antagonists revealed that the inhibition of
noradrenergic transmission on hypoglossal motoneurons had a
major contribution to the hypoglossal depression as compared to
serotonergic mechanisms (47); this contribution was estimated

approximately at 90% of total effect of the antagonists (26).
Comparable results were obtained in naturally sleeping rats,
in which the application of terazosin, an alpha-1 adrenergic
receptor antagonist, into the hypoglossal motor nucleus using
the reverse microdialysis technique decreased REM sleep-related
suppression of respiratory activity of genioglossus muscle by
∼50% (50). However, the application of serotonergic antagonists
had no effect in the same preparation (48). In addition, the
inhibition of serotonergic medullary raphe cells in behaving rats
had minimal effects on GG activity during sleep and wakefulness
(49). Furthermore, most of the brainstem noradrenergic neurons
have state-dependent activity, i.e., they have highest activity
during wakefulness, their firing rate is reduced in NREM sleep
and it is minimal during REM sleep (51–53). Noradrenergic
neurons also innervate hypoglossal motoneurons (54–56).
Thus, noradrenergic system plays a critical role in suppression
of hypoglossal motoneurons during REM sleep [reviewed by
(24, 26, 27, 57)].

The withdrawal of glutamatergic drive has been hypothesized
to contribute to REM sleep-related suppression of hypoglossal
motoneurons (29, 58, 59). In support of this hypothesis,
glutamatergic neurons of intermediate reticular region
(IRt) of the medulla and Kolliker-Fuse nucleus send axonal
projections to the hypoglossal motoneurons (60, 61). In in
vitro studies, the transmission of glutamate to hypoglossal
motoneurons was found to be pre-synaptically inhibited by
muscarinic mechanisms, which may provide the state-dependent
modulation of glutamatergic release in behaving animals (62).
Also, the respiratory modulation of hypoglossal motoneurons
is mediated by glutamatergic neurotransmission (58, 63).
However, the functional role of glutamatergic transmission in
the state-dependent activity of genioglossus muscle did not
receive adequate support in behaving rats (59).

The effect of orexin was studied using decerebrated cats
and anesthetized rats (64, 65). In both studies orexin increased
genioglossus muscle activity; this increase was abolished by
combined antagonism of orexin-1 and orexin-2 receptors (65).
However, it is not clear whether orexinergic transmission within
the hypoglossal motor nucleus is involved in depression of
hypoglossal motoneurons during NREM or REM sleep.

The application of histamine into hypoglossal motor
nucleus elicits powerful activation of genioglossus muscle
through histamine-1 receptors in behaving rats (66). However,
antagonists of histamine-1 receptors applied into hypoglossal
motor nucleus did not significantly alter spontaneous
genioglossus muscle activity indicating that there is little
or no endogenous histaminergic excitation of hypoglossal
motoneurons (66).

Cholinergic mechanisms were found to essentially contribute
to the state-dependent activity of hypoglossal motoneurons
(67). The application of scopolamine, a muscarinic antagonist,
into the hypoglossal nucleus in behaving rats revealed that the
cholinergic inhibition plays a significant role in the regulation
of state-dependent activity of the genioglossus muscle during
natural sleep-wake states (67). The G-protein-coupled inwardly
rectifying potassium channels that are expressed in hypoglossal
motoneurons have been suggested to mediate this effect (67).
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Thus, as of today, one of the major advances in sleep
and respiratory neurobiology was the discovery of powerful
noradrenergic and cholinergic mechanisms that are responsible
for state-dependent control of upper airway muscles (47,
50, 67). The present review focuses on the sources of
these two neurochemically distinct mechanisms and their
functional role in sleep-related depression of upper airway
muscles. Figure 1 shows schematically the main anatomical
projections from catecholaminergic and cholinergic nuclei of
the brainstem to the hypoglossal nucleus that innervates the
genioglossus and other tongue muscles. The typical state-
dependent pattern of the spontaneous activity of the genioglossus
muscle is shown in the representative polygraph recording
obtained in behaving mice during sleep and wakefulness
(Figure 1B).

Noradrenergic Inputs to Hypoglossal
Motoneurons
The anatomical connections between the noradrenergic neurons
and hypoglossal motoneurons that innervate the genioglossus
muscle were first investigated by Aldes et al. (54). This study
used the retrograde tracer, peroxidase-conjugated wheat germ
agglutinin, which was micro-iontophoretically injected into the
hypoglossal motor nucleus of the rat. The main findings of this
study were that (1) noradrenergic projections to hypoglossal
motoneurons originate from pontine sub-coeruleus (SubC), A7
and A5 noradrenergic neurons; and (2) noradrenergic neurons
of locus coeruleus (LC) nucleus were not retrogradely labeled
from the hypoglossal nucleus. Our studies have confirmed these
findings but in addition to the SubC, A5, and A7 neurons, we also
found that many catecholaminergic A1/C1 neurons and scarce
LC neurons send axonal projections to the hypoglossal motor
nucleus (55, 56).

To identify if A1/C1 neurons innervate genioglossus
motoneurons, we injected a cre-dependent anterograde tracer
(EF1a-FLEX-hChR2(H134R)-eYFP-AAV10) into the A1/C1
region in tyrosine hydroxylase (TH)-cre mice. We found that
TH-positive anterogradely labeled axon terminals from the
A1/C1 region were mainly distributed in the ventral sub-
division of hypoglossal motor nucleus (56) where genioglossus
motoneurons are located (15, 68–70).

The activity of noradrenergic LC and SubC neurons changes
across sleep-wake states; their firing rate is highest during
wakefulness, reduced at the onset of NREM sleep and minimal
or abolished during REM sleep (51–53). Recently, we found a
significant correlation between cFos expression in noradrenergic
neurons of SubC, A5, A7, and A2/C2, but not A1/C1, and the
amount of time spent in pharmacologically induced REM sleep-
like state. This suggests that, similar to LC and SubC neurons,
the A5, A7, and A2/C2 neurons also have state-dependent
activity whereas the activity of the ventrolateral medullary A1/C1
neurons is not changed with the vigilant states (53). The state-
dependent pattern of activity of most brainstem noradrenergic
neurons projecting to hypoglossal motoneurons, prompted to
hypothesize that these neurons may contribute to the REM
sleep-related suppression of upper airway muscles by withdrawal

of excitatory noradrenergic drive to hypoglossal motoneurons
during REM sleep [reviewed by (38)].

In functional studies, the role of endogenous noradrenaline
and serotonin was tested by using antagonists of noradrenergic
and serotonergic receptors applied at the hypoglossal
motoneuronal pool in anesthetized and behaving rats
(47, 48, 50). In support of the disfacilitation hypothesis the
latter studies provided the evidence that the withdrawal of
mainly noradrenergic and, to a lesser extent, serotonergic
drives to upper airway motoneurons during REM sleep is the
major cause of REM sleep-related depression of hypoglossal
motoneurons in anesthetized rats (47). Comparable results
were obtained for noradrenergic mechanisms in behaving rats
(50). However, the serotonergic effects were not significant
in behaving rats [(48); reviewed by (24, 26, 27)]. Based on
additional analysis of the antagonist effects in anesthetized rats,
a neuronal network was proposed, in which the noradrenergic
and serotonergic drives to hypoglossal motoneurons are
mediated via additional excitatory and inhibitory interneurons,
respectively (26). The main basis for the proposed network was
the concept that the adrenergic and serotonergic antagonists
injected into the hypoglossal nucleus diffused outside the
nucleus and block corresponding receptors leading to the
abolition of the hypoglossal motoneuron depression during
REM sleep-like state (71). This diffusion hypothesis has received
an experimental support in our preliminary studies suggesting
that the noradrenergic drive to the hypoglossal nucleus is not
direct (72). In addition, our recent collaborative computational
study validated this network and revealed the dynamics of
interaction between the monoaminergic neurons and both
excitatory and inhibitory interneurons during NREM and REM
sleep (73).

The important question regarding which noradrenergic
neurons mostly affect hypoglossal nerve activity was studied
in urethane-anesthetized rats. We tested the effect of
pharmacological inhibition of noradrenergic A7, SubC, LC,
and A5 groups on the level of hypoglossal nerve activity and
found that the inhibition of A7 neurons significantly decreased
the hypoglossal nerve activity whereas the inhibition of A5,
LC, or SubC neurons did not have any effect (74–76). This
data suggested that the A7 neurons provide the major NA
excitatory drive to hypoglossal motoneurons among the tested
noradrenergic groups (75).

The involvement of A1/C1 catecholaminergic neurons in
the control of the activity of hypoglossal motoneurons was
recently studied using a chemogenetic technique. Since the
A1/C1 neurons have been suggested to have activity that
is not dependent on the vigilant states (53), they could
be involved in non-state-dependent control of hypoglossal
motoneurons. However theoretically, there is a possibility
that the release of noradrenaline from A1 terminals within
the hypoglossal nucleus is modulated through some sleep-
specific presynaptic inhibitory mechanisms, similar to the
discovered earlier, presynaptic cholinergic control of glutamate
release to hypoglossal motoneurons (62). To this end, we
recently tested the role of medullary A1/C1 neurons in
control of the activity of genioglossus muscle using the
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FIGURE 1 | Schematics of brainstem noradrenergic and cholinergic neurons projecting to hypoglossal motoneurons that innervate genioglossus (GG) muscle and are

involved in state-dependent activity of GG muscle. (A) the location of brainstem noradrenergic neurons and cholinergic neurons that project to the hypoglossal

nucleus shown on sagittal representation of a rodent brainstem. (B) An example of state-dependent activity of GG muscle during wakefulness, NREM sleep and REM

sleep in a naturally sleeping mouse. The GG muscle activity is markedly decreased during transition from wakefulness to NREM sleep and further reduced during REM

sleep. During later period of the REM sleep, the GG muscle generates intense twitches with gradually increasing intensity toward the end of the state. (C) A coronal

medullary section of a rat brain showing the Choline Acetyltransferase-stained motoneurons in the hypoglossal motor nucleus (XII), the dorsal motor nucleus of the

vagus (X) and the nucleus of ambiguus (Amb). Sagittal section of a mouse tongue stained with the Neutral Red shows the geniohyoid (GH) muscle that forms the

ventral floor for the genioglossus (GG) muscle, the major tongue protruder.

“designer receptor exclusively activated by a designer drug”
(DREADD) technique (77). A Cre-dependent viral vector
hSyn-Dio-hM4Di-mCherry-AAV10 was microinjected into the
A1/C1 region, which resulted in the expression of inhibitory
receptors in the A1/C1 neurons in behaving dopamine β-
hydroxylase (DBH)-cre mice, in which the Cre-recombinase
is expressed in all catecholaminergic neurons. Following the
expression of hM4Di in A1/C1 neurons, systemic injections
of the clozapine-N-Oxide (CNO) inhibited A1/C1 neurons
that resulted in decreased activity of genioglossus muscle.
This suggested that A1/C1 neurons provide a net excitatory
effect on the activity of upper airway muscles. However, the
relative effect of CNO on the genioglossus activity was similar
during both wakefulness and NREM sleep suggesting that
A1/C1 neurons do not contribute to depression of genioglossus
activity during transition from wakefulness to NREM sleep
(77).

CHOLINERGIC INPUTS TO HYPOGLOSSAL
MOTONEURONS

The anatomical connections between cholinergic neurons and
hypoglossal motoneurons were first investigated by Woolf and
Butcher (78) using fluorescent retrograde tracers that were
iontophoretically applied into the hypoglossal motor nucleus

in rats. This study reported that cholinergic innervation of
hypoglossal motoneurons originates from pontine laterodorsal
(LDT) and pedunculopontine (PPT) tegmental nuclei. The
contribution of PPT neurons to this innervation was larger than
those from LDT and the projections were mainly ipsilateral (78).

In our studies, we injected retrograde tracers, FluoroGold
and Cholera toxin B subunit, into the hypoglossal motor
nucleus by an air pressure-driven delivery system (79, 80).
In agreement with the earlier study of Woolf and Butcher
(78), ∼1% of PPT/LDT cholinergic neurons projected to the
hypoglossal motor nucleus. However, the PPT/LDT projections
to hypoglossal motoneurons were bilateral (79). In another study,
we found that ∼40% of cholinergic neurons of the caudal IRt
region in medulla projected to the hypoglossal nucleus (80).
These findings suggest that the largest cholinergic input to the
hypoglossal motoneurons originates from the caudal medullary
IRt region.We also found that cholinergic neurons that innervate
hypoglossal motoneurons express mRNA for both muscarinic
and nicotinic receptors, with the significantly high percentage
of M2 muscarinic receptors present in cholinergic neurons
retrogradely labeled from hypoglossal motor nucleus (80). This
data suggests that the cholinergic projections from the caudal IRt
region is the principal source of cholinergic drive to hypoglossal
motoneurons.

Since many PPT/LDT cholinergic neurons have state-
dependent activity across sleep-wake states, i.e., more active
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during REM sleep or wakefulness, or both, as compared to
NREM sleep (81–89), the cholinergic PPT/LDT neurons that
project to the hypoglossal nucleus may contribute to pre- or post-
synaptic inhibition of hypoglossal motoneurons during REM
sleep. The cholinergic neurons of IRt located in caudal medullary
region have also been suggested to have state-dependent activity
(90). This would implicate them in the sleep-related control of
hypoglossal motoneurons. However, the recording of the activity
of cholinergic IRt neurons during sleep-wake states is needed to
confirm their role in the mechanisms of hypoglossal motoneuron
suppression during NREM sleep and/or REM sleep.

Cholinergic effects on hypoglossal motoneurons are mediated
through nicotinic and muscarinic receptors (67, 91). The α3,
α4, α7, and β2 sub-units of nicotinic receptors (92–98) and
muscarinic M1, M2, M3, M4, and M5 receptors, with the
predominance of M2 receptors, are expressed in hypoglossal
motoneurons (80, 99–102).

In vitro studies showed that the application of nicotinic
receptor agonists excites hypoglossal motoneurons in neonatal
rat (96). Also, the muscarinic receptors mediate a presynaptic
cholinergic inhibition of excitatory glutamatergic transmission
to hypoglossal motoneurons in vitro (62). In adult anesthetized
rats, the activation of nicotinic and muscarinic receptors has
respectively excitatory and inhibitory effects on the activity of
genioglossus muscle (91).

The recent elegant study performed by Grace et al. (67)
showed that a broad-spectrum muscarinic receptor antagonist,
scopolamine, applied into the hypoglossal motor nucleus via
reverse microdialysis technique significantly increased activity of
genioglossus muscle during wake, NREM, and REM sleep. This
study provided a strong evidence that cholinergic transmission

mediated by the muscarinic receptors importantly contributes
to the suppression of genioglossus muscle activity during both
NREM sleep and REM sleep (67).

CONCLUSION

The significant advances have been made over last three
decades in our understanding of the neurochemical mechanisms
that mediate the depression of upper airway muscles during
NREM sleep and further suppression in REM sleep. The
powerful noradrenergic and cholinergic mechanisms with
minor contribution of serotonergic drive have been shown to
be responsible for state-dependent control of upper airway
muscles. However, the key neural groups contributing to
these mechanisms have not been yet identified. The studies
summarized in the present review provides the strong
anatomical and physiological foundation for future basic
and translational studies, which are instrumental to obtain a
comprehensive knowledge of neural circuitry underlying the
OSA pathophysiology and may help to define new therapeutic
targets for OSA treatment.
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