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Unobtrusive Estimation of Cardiorespiratory Fitness with Daily 
Activity in Healthy Young Men

Despite the importance of cardiorespiratory fitness, no practical method exists to estimate 
maximal oxygen consumption (VO2max) without a specific exercise protocol. We developed 
an estimation model of VO2max, using maximal activity energy expenditure (aEEmax) as a 
new feature to represent the level of physical activity. Electrocardiogram (ECG) and 
acceleration data were recorded for 4 days in 24 healthy young men, and reference 
VO2max levels were measured using the maximal exercise test. aEE was calculated using 
the measured acceleration data and body weight, while heart rate (HR) was extracted from 
the ECG signal. aEEmax was obtained using linear regression, with aEE and HR as input 
parameters. The VO2max was estimated from the aEEmax using multiple linear regression 
modeling in the training group (n = 16) and was verified in the test group (n = 8). High 
correlations between the estimated VO2max and the measured VO2max were identified in 
both groups, with a 15-hour recording being sufficient to produce a highly accurate 
VO2max estimate. Additional recording time did not significantly improve the accuracy of 
the estimation. Our VO2max estimation method provides a robust alternative to traditional 
approaches while only requiring minimal data acquisition time in daily life.
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INTRODUCTION

Typical physical activity monitoring systems use a multiple axis 
accelerometer, converting acceleration data to an activity count 
or calorie expenditure (1,2), with the reliability and feasibility of 
these accelerometer-based physical activity monitoring systems 
having been established (3). However, these conventional phys-
ical activity monitors only measure the quantity of movement 
and do not provide information on physical fitness, which is 
specifically related to the ability or capacity for physical activity. 
Therefore, the purpose of exercise should be to increase both 
physical activity and fitness (4) and, hence, monitoring physical 
fitness is as important as physical activity monitoring.
 Cardiorespiratory fitness (CRF), which is one component of 
physical fitness, is the ability to take in oxygen and to provide 
this oxygen to the exercising muscles. The importance of CRF 
in health has been emphasized in previous studies. Blair et al. 
(5) and Lee et al. (6) have reported that CRF is related to mortal-
ity due to all causes, including death due to a cardiovascular 
event. Moreover, in previously published research, we reported 
lower CRF to be associated with higher prevalence of renal hy-
perfiltration, an early marker of chronic kidney disease (7). CRF 
is influenced not only by non-modifiable factors, such as gene-

tic factors, age, and gender, but also by modifiable factors, in-
cluding regular aerobic exercise (8,9). Blair et al. (5) indicated 
that CRF can be enhanced through exercise, lowering the over-
all risk of mortality from all causes. However, CRF has not re-
ceived its deserved attention in health care and research (6). 
The absence of practical and reliable methods to measure CRF 
is likely to be a contributing factor to this.
 The maximal oxygen consumption (VO2max) is a representa-
tive index of CRF, with several methods available to measure or 
estimate VO2max. Metabolic gas analysis during maximal exer-
cise is the gold standard for measuring VO2max (10). However, 
maximal exercise testing is not safe for high-risk groups due to 
the high intensity exercise required (6), as well as because of 
the high level of motivation required to complete the test (11). 
In addition, these tests require expensive equipment and ex-
pertise in aerobic exercise testing. Moreover, repeated maximal 
exercise test for monitoring of VO2max after modification of life 
styles is not practical.
 To overcome the limitations of maximal exercise testing, sub-
maximal tests (11,12) have been developed. These are based on 
the linear relationship between oxygen consumption, exercise 
intensity, and physical responses, such as heart rate (HR). How-
ever, like maximal exercise testing, submaximal exercise tests 
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are not suitable for repeated testing and require specific equip-
ment and expertise. Moreover, outcomes of these tests can eas-
ily be affected by the familiarity of the exercise (11). Recently, 
estimation methods of VO2max without the use of a specific ex-
ercise protocol in daily life have been developed, using acceler-
ometers with (13,14) or without (15,16) continuous HR moni-
toring. The non-protocol VO2max estimation methods are based 
on the relationship between physical activity, HR (response of 
body to physical activity), and VO2max. Individuals with a high-
er level of VO2max are assumed to be more active (15,16) and to 
have greater potential for being active, with a lower HR, com-
pared to individuals with a lower VO2max (13,14). Although the 
developed methods are simple and safe for high-risk groups, 
prolonged measurement with an attached sensor for up to 7 days 
makes these methods impractical in daily life (14).
 In this study, we developed an unobtrusive VO2max estima-
tion model, using maximal activity energy expenditure (aEEmax) 
as a new feature, to indicate personal physical activity. aEEmax 
was calculated based on activity energy expenditure (aEE) and 
HR measured in daily life. Our model decreased the estimation 
time to reduce discomfort to individuals.

MATERIALS AND METHODS

Participants
Twenty-four healthy young Asian male volunteers participated 
in this study. All participants had sedentary occupations. All 
participants signed written informed consent. Participants also 
completed health evaluations, including medical history relat-
ed to cardiovascular disease.

Measurement of VO2max
VO2max was measured using a respiration gas analyzer (Vmax 
Encore System; CareFusion, San Diego, CA, USA) and an aero-
bic exercise test system (CASE v6.61; GE Healthcare, Little Chal-
font, UK). The modified Bruce protocol was used to determine 
the VO2max reference value. Twelve-lead electrocardiogram 
(ECG), blood oxygen saturation (SpO2), and blood pressure were 
also measured.
 First, baseline physiologic measures for all devices used were 
measured in a standing position after a 5-minute rest period. The 
modified Bruce protocol was subsequently performed, with the 
treadmill’s velocity and slope increased at 3-minute intervals. 
The following criteria were used to define VO2max attainment: a 
respiratory exchange ratio reaching > 1.08; cessation of increase 
in VO2 with increasing work load; or self-reported volitional fa-
tigue (17). The value of VO2max was expressed in mL/kg/min.

Experimental methods
Participants wore a Shimmer ECG sensor (18), for measurement 
of 2-lead ECG and tri-axial acceleration (Shimmer platform 

with ECG sensor module; Shimmer, Dublin, Ireland), for four 
consecutive days. The sensor was attached to the chest with an 
elastic chest belt. Participants removed the sensor during sleep 
or during showering, after which they re-attached the sensor 
after completing those activities using new ECG electrodes.
 An ECG was obtained on the left side of the chest near the 
left nipple, using a hydrogel Ag/AgCl electrode (2223; 3M, Ma-
plewood, MN, USA) with a 10-cm-sized, square-shaped place-
ment. No adverse skin reactions, such as a rash, were identified. 
An electrode was not placed at conventional ECG lead positions 
as the sensor needed to be comfortably placed to avoid disrupt-
ing activities of daily living. The acceleration signal was also cap-
tured on the chest, with the sensitivity of the accelerometer set 
to 1.5 g. Ideally, accelerometers should be placed close to the 
center of body mass, but we placed the sensor on the chest to 
improve comfort during measurement (19). The X, Y, and Z axes 
corresponded to the longitudinal axis, the mediolateral axis and 
the posterior-anterior axis, respectively.
 Data obtained from all signals were stored on a micro-SD 
card at a sampling frequency of 51.2-Hz, which is appropriate 
for the measurement of physical activity (1), but relatively lower 
than the standard ECG frequency (20). The sampling frequency 
was selected to reduce battery consumption without losing sig-
nal quality necessary to obtain the R-R intervals (18). The stored 
data were extracted two times, at 48-hour and 96-hour after ini-
tiating measurement.

Signal processing
Whole data sets were reviewed and, if the ECG was inaccurate 
due to electrode contact problem or sensor detachment, the 
ECG and the matching accelerometer data were also removed. 
The tri-axial acceleration was band-pass filtered (0.25 to 7 Hz, 
2nd order Butterworth). Filtered acceleration was rectified and 
integrated over 1-minute sequences to obtain the acceleration 
count per minute (ACM). A non-linear model for aEE estima-
tion (2) was defined using body mass, gender, and ACM within 
the following Equations 1 to 7:

 , where sex = 1 in males and 2 in females
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The ECG data were band-pass filtered (5 to 20Hz, 4th order Butterworth). The R-R interval was 

automatically detected from the ECG signal using the R-peak detection algorithm described by Pan 

and Tomkins (21). The R-R intervals were averaged for 1 minute and converted to an HR (beat per 

minute). Since previous research showed that the recovery HR after physical activity was 

heterogeneous (22) and not well correlated to VO2max (23), we used only increasing HR periods in 

our analysis. 

Fig. 1A shows the aEE (upper graph) and HR (lower graph) for a representative participant over 

time. The gray area under the HR curve indicates periods of increasing HR. As aEE increased, the 

associated HR increased. The scatter plot of HR and aEE, averaged over 1-minute intervals during 

periods of increasing HR are shown in Fig. 1B. A simple linear regression equation was developed to 

estimate aEEmax, using HR and aEE as inputs, with the maximal HR calculated as 220 − age. 

Following aEEmax calculation, participants were divided into two subgroups according to 

aEEmax. The aEEmax values were sorted in ascending order and every third participant was selected 

to form the test group (n = 8), with other participants forming the training group (n = 16). The 

aEEmax and anthropometric values were used to develop a multiple linear regression model to 

estimate the VO2max in the training group. 
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 The ECG data were band-pass filtered (5 to 20 Hz, 4th order 
Butterworth). The R-R interval was automatically detected from 
the ECG signal using the R-peak detection algorithm described 
by Pan and Tomkins (21). The R-R intervals were averaged for 1 
minute and converted to an HR (beat per minute). Since previ-
ous research showed that the recovery HR after physical activity 
was heterogeneous (22) and not well correlated to VO2max (23), 
we used only increasing HR periods in our analysis.
 Fig. 1A shows the aEE (upper graph) and HR (lower graph) 
for a representative participant over time. The gray area under 
the HR curve indicates periods of increasing HR. As aEE incre-
ased, the associated HR increased. The scatter plot of HR and 
aEE, averaged over 1-minute intervals during periods of incre-
asing HR are shown in Fig. 1B. A simple linear regression equa-
tion was developed to estimate aEEmax, using HR and aEE as 
inputs, with the maximal HR calculated as 220−age.
 Following aEEmax calculation, participants were divided into 
two subgroups according to aEEmax. The aEEmax values were 
sorted in ascending order and every third participant was select-
ed to form the test group (n = 8), with other participants form-
ing the training group (n = 16). The aEEmax and anthropomet-

ric values were used to develop a multiple linear regression mo-
del to estimate the VO2max in the training group.

Statistical analysis
Pearson’s correlation coefficient was calculated to evaluate the 
agreement between the aEEmax and the measured VO2max, as 
well as between the estimated VO2max and the measured VO-

2max in both groups. A two-sided P < 0.05 was regarded as sig-
nificant. Regression equations were evaluated by coefficients of 
determination (adjusted R2), absolute standard error of the es-
timate (SEE), and relative SEE (%SEE). A Bland-Altman plot 
was plotted to determine the differences between measured 
and estimated VO2max. All signal processing, cross validation, 
and statistical analyses were performed using MATLAB (MAT-
LAB2014a; Mathworks, Natick, MA, USA).

Ethics statement
The present study protocol was reviewed and approved by the 
Institutional Review Board of the National Medical Center (IRB. 
No. M-12111001-001). Informed consent was submitted by all 
subjects when they were enrolled. Participants also completed 
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health evaluations, including medical history related to cardio-
vascular disease.

RESULTS

Characteristics of the training and test groups are summarized 
in Table 1. No between-group differences were evaluated using 
the Mann-Whitney U test.
 The change in the correlation coefficient between aEEmax 
and measured VO2max with respect to time is shown in Fig. 2. 
A significant correlation between aEEmax and the measured 
VO2max (R = 0.81, P < 0.001) with only 15-hour of recording 
during daily life. As the correlation coefficient showed little in-
crease with longer duration of measurement, we only used 15-
hour of ECG and acceleration data to estimate VO2max.
 The aEEmax and body mass index (BMI) were used to devel-
op a multiple linear regression model to estimate the VO2max 
using the training data, with the regression formula, expressed as: 

Table 1. Characteristics of participants

Parameters Training (n = 16) Test (n = 8) P

Age, yr 27.5 ± 6.6 25.1 ± 3.7 0.413
Height, cm 172.6 ± 6.8 174.8 ± 6.2 0.724
Weight, kg 70.1 ± 11.2 75.0 ± 9.6 0.269
The duration of Bruce protocol  

exercise, sec
842 ± 89 796 ± 107 0.272

Measured VO2max, mL/kg/min 48.5 ± 5.3 46.8 ± 4.5 0.284
The duration of the measurement  

using sensor, min
2,935 ± 767 3,319 ± 426 0.178

All values are mean ± standard deviation. P values were calculated using the Mann-
Whitney U test.
VO2max = maximal oxygen consumption.

Table 2. Performance of multiple linear regression in both groups

Statistics Training group (n = 16) Test group (n = 8)

R 0.81 (P < 0.001) 0.87 (P < 0.01)
Adjusted R2 0.63   0.74
SEE, mL/kg/min 4.40   5.74
%SEE 9.53 11.85

R = correlation coefficient, Adjusted R2 = coefficient of determination, SEE = standard 
error of the estimate, %SEE = percentage of SEE relative to measured VO2max value, 
VO2max = maximal oxygen consumption.

Fig. 2. Change of correlation coefficient between aEEmax and measured VO2max. The 
correlation coefficient was 0.81 at 900 minutes of HR and aEE data analysis to cal-
culate aEEmax. The correlation coefficient fluctuated but did not drastically increase 
when longer periods were used.
aEEmax = maximal activity energy expenditure, VO2max = maximal oxygen consump-
tion, aEE = activity energy expenditure, HR = heart rate.
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 VO2max (mL/kg/min) =  0.192 × aEEmax (J/min) − 0.708 ×  
BMI (kg·m−2) + 46.157

 The estimated VO2max strongly correlated with the measured 
VO2max in both groups (Table 2).
 The correlation between the estimated and measured VO2max, 
calculated for all participants, is shown in Fig. 3A, with the Bland-
Altman plot shown in Fig. 3B, with the x-axis showing the aver-
age of estimated and measured VO2max, with the difference 
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between estimated and measured VO2max (measured VO2max 
subtracted from estimated VO2max) plotted along the y-axis. 
The solid line shows the mean value and the dashed line the 
1.96 standard deviation (SD) (95% limits of agreement). Values 
for participants were randomly dispersed within the 1.96 SD 
range, except for one participant. The mean difference (95% 
limits of agreement) between the measured and estimated VO2-

max was 1.26 mL/kg/min (−9.74, 7.22).

DISCUSSION

In this study, we describe a VO2max estimation model based on 
the relationship between physical activity (aEE) and correspond-
ing physiological response (HR), using combined ECG and tri-
axial accelerometer data in healthy young men. As a strong cor-
relation between the level of physical activity and CRF has been 
previously found (14,16), and we have added aEEmax as a new 
feature to quantify personal physical activity. As the VO2max 
measurement during maximal or submaximal exercise is based 
on an increase HR in response to physical exercise (24), and 
knowing that the heterogeneous recovery of HR from physical 
activity (22) does not strongly correlate with VO2max (23), we 
used the data corresponding to increased HR in our simple lin-
ear regression model to estimate aEEmax.
 The estimated VO2max strongly correlated with the measured 
VO2max in both the training and test groups. The outlier identi-
fied on the Bland-Altman plot had the lowest measured VO2max 
(24.1 mL/kg/min) among all participants. The measured VO2-

max for this participant was extremely low compared to the av-
erage VO2max range (very poor, < 33.0 mL/kg/min) of healthy 
young male, indicative of a possible error during VO2max mea-
surement or a lower accuracy of the model for participants in 
the lower range of CRF.
 Other CRF estimation methods, using indices of physical ac-
tivity and physical response, have been reported (13,14,25,26). 
However, Weyand et al. (25) and Tönis et al. (26) used an exer-
cise protocol to estimate VO2max. Plasqui and Westerterp (13) 
reported a VO2max estimation method without an exercise pro-
tocol using anthropometric values, HR and acceleration data 
collected over 7 days. The average HR divided by ACM nega-
tively correlated with VO2max, and a multiple linear regression 
model was developed. After that study, a cross-validation study 
was conducted to establish a robust regression model (R = 0.86–
0.90, R2 = 0.71–0.74, SEE = 341–437 mL/min) (14). Despite the 
efficacy of this model, the necessity to measure parameters for 
7 days would make this method impractical. The separate at-
tachment of an HR sensor and accelerometer could also make 
the individuals uncomfortable, thus causing behavioral chang-
es. The unified sensor system used in our study appears to be 
less obtrusive than that of previous studies. Sartor et al. (24) in-
dicated that future non-protocol VO2max estimation should use 

unobtrusive devices, with the assessment performed using a 
single day of activity, or even on a single physical activity.
 We have improved upon previously available non-protocol 
based VO2max estimation methods in two ways. First, our meth-
od requires only 15-hour of signal measurement, which is the 
shortest time for VO2max estimation reported to date (14) and 
allows the possibility of estimating the VO2max using data gath-
ered from activity in one and half days. Many patch-type devic-
es have been developed to measure HR and acceleration, but 
these devices have not been successful in regular use due to in-
convenience in operation. Therefore, by reducing the time tak-
en for VO2max estimation, the proposed method improves upon 
the current standard. Second, the performance of the estima-
tion regression model using aEEmax as a new feature was com-
parable to the results of previous studies, despite the reduced 
signal measurement time.
 The limitations of our study need to be acknowledged. First, 
our participant group was relatively homogenous (healthy young 
men) and the sample size was not large enough to determine a 
representative pattern. Therefore, an additional study with a 
larger, more varied sample group is needed with a revised re-
gression model including additional parameters, such as age 
and gender. Since age and gender are considered as parameters 
for calculating aEEmax from maximum HR and energy expen-
diture, aEEmax is expected to be an effective parameter for VO-

2max estimation even in a broad age range and gender. Second, 
changes in participants’ VO2max over the long-term should be 
monitored in a longitudinal study to verify the accuracy of our 
estimation algorithm. Third, chest-attached sensors, such as 
the one used in the present study, may not be sufficiently com-
fortable for use in daily life. Considering the widespread avail-
ability of fitness watches and trackers, which are more comfort-
able to use in daily life, and because these devices provide infor-
mation regarding both HR and aEE, a follow-up study should 
be conducted using these devices to verify the accuracy of the 
proposed algorithm.
 In summary, we have used a new feature, aEEmax, to estimate 
VO2max during daily activities. The new feature captures the re-
lationship between physical activity and anthropometric values, 
without requiring a large data set, and successfully estimated 
VO2max in a small sample of healthy young men. The length of 
data required for VO2max estimation was only one and half days 
and the data were measured from a single device. The compari-
son of measured and estimated VO2max values revealed robust 
agreement and the correlation coefficient for the VO2max esti-
mation algorithm was shown to be comparable to the values in 
previous studies.

ACKNOWLEDGMENT

The authors would like to thank all participants.



Ahn JW, et al. • Unobtrusive Estimation of Cardiorespiratory Fitness

1952  http://jkms.org https://doi.org/10.3346/jkms.2017.32.12.1947

DISCLOSURE

The authors have no potential conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Conceptualization: Hwang SH, Yoon HJ. Data curation: Ahn 
JW, Yoon C. Formal analysis: Ahn JW, Yoon C, Hwang SH, Yoon 
HJ. Investigation: Ahn JW, Hwang SH, Yoon C, Lee J, Yoon HJ. 
Writing - review & editing: Ahn JW, Hwang SH, Yoon C, Lee J, 
Kim HC, Yoon HJ.

ORCID

Joong Woo Ahn https://orcid.org/0000-0003-0375-8530
Se Hee Hwang https://orcid.org/0000-0002-0418-7314
Chiyul Yoon https://orcid.org/0000-0003-0754-058X
Joonnyong Lee https://orcid.org/0000-0002-3642-9891
Hee Chan Kim https://orcid.org/0000-0002-2112-426X
Hyung-Jin Yoon https://orcid.org/0000-0003-4432-4894

REFERENCES

1. Chen KY, Bassett DR Jr. The technology of accelerometry-based activity 

monitors: current and future. Med Sci Sports Exerc 2005; 37: S490-500.

2. Chen KY, Sun M. Improving energy expenditure estimation by using a tri-

axial accelerometer. J Appl Physiol (1985) 1997; 83: 2112-22.

3. Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment 

with accelerometers: new insights and validation studies. Obes Rev 2013; 

14: 451-62.

4. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and 

physical fitness: definitions and distinctions for health-related research. 

Public Health Rep 1985; 100: 126-31.

5. Blair SN, Kampert JB, Kohl HW 3rd, Barlow CE, Macera CA, Paffenbarger 

RS Jr, Gibbons LW. Influences of cardiorespiratory fitness and other pre-

cursors on cardiovascular disease and all-cause mortality in men and 

women. JAMA 1996; 276: 205-10.

6. Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general popu-

lation: the importance of cardiorespiratory fitness. J Psychopharmacol 

2010; 24: 27-35.

7. Park M, Ko Y, Song SH, Kim S, Yoon HJ. Association of low aerobic fitness 

with hyperfiltration and albuminuria in men. Med Sci Sports Exerc 2013; 

45: 217-23.

8. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee 

IM, Nieman DC, Swain DP; American College of Sports Medicine. Amer-

ican College of Sports Medicine position stand. Quantity and quality of 

exercise for developing and maintaining cardiorespiratory, musculoskel-

etal, and neuromotor fitness in apparently healthy adults: guidance for 

prescribing exercise. Med Sci Sports Exerc 2011; 43: 1334-59.

9. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, 

Helgesen C, Hjorth N, Bach R, et al. Aerobic high-intensity intervals im-

prove VO2max more than moderate training. Med Sci Sports Exerc 2007; 

39: 665-71.

10. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic 

assessment of functional aerobic impairment in cardiovascular disease. 

Am Heart J 1973; 85: 546-62.

11. Noonan V, Dean E. Submaximal exercise testing: clinical application and 

interpretation. Phys Ther 2000; 80: 782-807.

12. Kline GM, Porcari JP, Hintermeister R, Freedson PS, Ward A, McCarron 

RF, Ross J, Rippe JM. Estimation of VO2max from a one-mile track walk, 

gender, age, and body weight. Med Sci Sports Exerc 1987; 19: 253-9.

13. Plasqui G, Westerterp KR. Accelerometry and heart rate as a measure of 

physical fitness: proof of concept. Med Sci Sports Exerc 2005; 37: 872-6.

14. Plasqui G, Westerterp KR. Accelerometry and heart rate as a measure of 

physical fitness: cross-validation. Med Sci Sports Exerc 2006; 38: 1510-4.

15. Cao ZB, Miyatake N, Higuchi M, Ishikawa-Takata K, Miyachi M, Tabata I. 

Prediction of VO2max with daily step counts for Japanese adult women. 

Eur J Appl Physiol 2009; 105: 289-96.

16. Cao ZB, Miyatake N, Higuchi M, Miyachi M, Ishikawa-Takata K, Tabata I. 

Predicting VO2max with an objectively measured physical activity in Jap-

anese women. Med Sci Sports Exerc 2010; 42: 179-86.

17. Kaminsky LA; American College of Sports Medicine. ACSM’s Health-Re-

lated Physical Fitness Assessment Manual. 3rd ed. Philadelphia, PA, Wolt-

ers Kluwer/Lippincott Williams & Wilkins Health, 2010.

18. Burns A, Greene BR, McGrath MJ, O’Shea TJ, Kuris B, Ayer SM, Stroiescu 

F, Cionca V. SHIMMERTM - a wireless sensor platform for noninvasive bio-

medical research. IEEE Sens J 2010; 10: 1527-34.

19. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity 

assessments in field-based research. Med Sci Sports Exerc 2005; 37: S531-43.

20. Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, van Her-

pen G, Kors JA, Macfarlane P, Mirvis DM, et al. Recommendations for the 

standardization and interpretation of the electrocardiogram: part I: the 

electrocardiogram and its technology: a scientific statement from the Amer-

ican Heart Association Electrocardiography and Arrhythmias Commit-

tee, Council on Clinical Cardiology; the American College of Cardiology 

Foundation; and the Heart Rhythm Society: endorsed by the Internation-

al Society for Computerized Electrocardiology. Circulation 2007; 115: 

1306-24.

21. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans 

Biomed Eng 1985; 32: 230-6.

22. Bosquet L, Gamelin FX, Berthoin S. Reliability of postexercise heart rate 

recovery. Int J Sports Med 2008; 29: 238-43.

23. Campos EZ, Bastos FN, Papoti M, Freitas Junior IF, Gobatto CA, Balikian 

Junior P. The effects of physical fitness and body composition on oxygen 

consumption and heart rate recovery after high-intensity exercise. Int J 

Sports Med 2012; 33: 621-6.

24. Sartor F, Vernillo G, de Morree HM, Bonomi AG, La Torre A, Kubis HP, 

Veicsteinas A. Estimation of maximal oxygen uptake via submaximal ex-

ercise testing in sports, clinical, and home settings. Sports Med 2013; 43: 

865-73.

25. Weyand PG, Kelly M, Blackadar T, Darley JC, Oliver SR, Ohlenbusch NE, 

Joffe SW, Hoyt RW. Ambulatory estimates of maximal aerobic power from 

foot -ground contact times and heart rates in running humans. J Appl 

Physiol (1985) 2001; 91: 451-8.

26. Tönis TM, Gorter K, Vollenbroek-Hutten MM, Hermens H. Comparing 

VO2max determined by using the relation between heart rate and accel-

erometry with submaximal estimated VO2max. J Sports Med Phys Fit-

ness 2012; 52: 337-43.


