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MAMMOGRAPHY FOR BREAST CANCER 
SCREENING

Currently, breast cancer is the most commonly diagnosed 
cancer in women worldwide as well as the leading cause of 
their mortality [1]. The annual incidence of breast cancers 
was an estimated 1.68 million in 2012 and has continuously 
risen with a 30% increase estimated in 2025 [1]. Screening 
programs using mammography have been implemented in 
several countries for the early detection and treatment of 
breast cancer, with the aim to mitigate mortality and other 
serious consequences. Mammography screening seems to 
have an impact on mortality; randomized controlled trials 
have shown an approximately 20% reduction in breast 
cancer-related mortality after mammography was included 
in breast cancer screening [2]. Based on these results, 
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several countries formulated national recommendations or 
guidelines that included mammography in breast cancer 
screening. Although mammography screening has proven 
effective, the potential drawbacks of this technique have 
also been acknowledged: 1) false-positive recalls leading 
to additional imaging studies or biopsies, which in turn 
increase medical expenses and emotional stress for the 
patient; 2) false-negatives when breast cancers are either not 
detectable on mammography or if interpretation errors occur, 
ultimately delaying diagnosis; 3) radiation exposure; and 4) 
overdiagnosis of cancers that may not be life-threatening 
such as low risk ductal carcinoma in situ [3].

In the last decade, considerable improvements have been 
made to overcome these pitfalls of mammographic screening 
by adding readers, increasing screening frequencies, or 
adding supplementary imaging modalities to conventional 
mammography. For instance, the European guidelines for 
quality assurance in breast cancer screening and diagnosis 
recommend ‘double reading’, i.e., mammograms are read 
independently by two radiologists to enhance sensitivity 
and reduce unnecessary recalls [4]. Other imaging 
modalities such as digital breast tomosynthesis (DBT), 
ultrasonography (US), or magnetic resonance imaging (MRI) 
have been added to conventional four-view mammography 
to enhance breast cancer screening outcomes. Although 
intensifying screening practices and using supplementary 
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imaging modalities may improve breast cancer detection, 
ensuring sufficient resources may be problematic because 
the burden of mammography interpretation for radiologists 
will increase in a double reading setting, along with an 
inevitable increase in medical expenses as more sensitive 
and advanced equipment is used [3,5]. Among additional 
imaging modalities, DBT has been associated with issues 
such as increased radiation exposure, while there is 
insufficient evidence to show that it can actually reduce 
mortality [1,3]. Lastly, as population-based breast cancer 
screening programs have become commonplace, daily 
demands for breast cancer screening and the subsequent 
volume of related tests have continued to rise. However, 
medical resources remain limited. Therefore, it is critical 
that current screening workflows are optimized and 
streamlined [6].

INTRODUCTION OF AUTOMATED DECISION 
SUPPORT FOR MAMMOGRAPHY INTERPRETATION

Advances in technology and computer programming as 
well as an urgent need for improved efficiency and accuracy 
of imaging interpretation workflows have piqued interest 
in computer-automated analyses of medical images. The 

main objectives of using computer programs to assist image 
interpretation are: 1) the automated detection of lesions 
focusing on the localization of suspicious abnormalities 
in an image, which is known as computer-aided detection 
(CADe); and/or 2) characterization of abnormalities 
detected by either the radiologist or the computer, which is 
known as computer-aided diagnosis (CADx). Based on the 
CADe/CADx analysis, the interpreting radiologist determines 
the clinical significance of the detected abnormality and 
whether it warrants further investigation. Although the 
term ‘CAD’ refers to ‘diagnosis’ using computers, CAD can be 
used for purposes other than diagnosis depending on the 
need of the radiologist. Computer programs can also provide 
quantitative imaging parameters such as breast parenchymal 
density that traditionally have been subjectively assessed 
by the human eye. There are certain time points in the 
overall workflow of mammography interpretation at which 
computer assistance is considered most beneficial (Fig. 1); 
these areas have been discussed in depth in this review.

 

MAMMOGRAPHY INTERPRETATION USING 
CONVENTIONAL CAD 

Initial CAD programs, termed as ‘conventional CAD’ 

Fig. 1. Workflow of mammography interpretation with AI-CAD. Mammography interpretation relies on visual analysis by radiologists, 
commonly using the American College of Radiology Breast Imaging Reporting and Data System categories. Computer assistance may be beneficial 
for mammography interpretation in parenchymal density assessment, lesion detection and characterization, and risk prediction. AI = artificial 
intelligence, CAD = computer-aided detection/diagnosis
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throughout this review, were based on mathematical models 
that identified patterns associated with breast cancer and 
displayed areas with these specific patterns as ‘marks’ on 
mammograms [7]. Briefly, these marked areas indicated 
the spots that the radiologist needed to investigate after 
screening [8]. When used as a ‘spell check’ type of system, 
initial studies showed promising results with CAD for the 
accurate marking of abnormalities that were later proven 
to be cancerous [9]. After approval by the U.S. Food and 
Drug Administration in June 1998 [7,10], the Centers for 
Medicare and Medicaid Sevices increased reimbursement for 
CAD in mammography interpretation, which subsequently 
led to increased CAD usage starting from 5% in 2003, then 
rapidly increasing to 74% in 2008 and 83% in 2012 [11].

With the exponential increase in the usage of conventional 
CAD, several studies have evaluated the outcomes of 
implementing CAD in actual clinical practice; the screening 
settings used in these studies have been summarized in 
Table 1. Although there were variations among screening 
environments studied in previous studies, the majority of 
these were able to show that using conventional CAD either 
resulted in higher or similar cancer detection rates at the 
expense of consistently higher recall rates compared to 
interpretations without CAD. Conventional CAD programs are 
biased towards high sensitivity as they are constructed to 
detect potential malignancies. Sensitivity was reported to 
be 90.0% for overall cancers, 98.2% for microcalcifications, 
and 88.7% for suspicious masses [12,13], which may 
explain the high recall rates. In addition, higher sensitivity 
resulted in a trade-off with decreased specificity (87.2% 
from 90.2%) and increased biopsy rates (up by 19.7%) 
after implementation of conventional CAD [14]. None of 
the screening performance metrics were improved with CAD 
in digital mammography (DM), using the data from the 
Breast Cancer Surveillance Consortium [11] or the Digital 
Mammography Imaging Screening Trial (DMIST) [15]. 
Both the high sensitivity and low specificity seen with 
conventional CAD result in a loss of reliability because the 
investigation of excessive marks on images may be tiresome 
for the radiologist. This was apparent from a previous study, 
wherein radiologists dismissed approximately 97.4% of the 
marks drawn by conventional CAD (Fig. 2) [8]. 

ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGING 

The past decade can be marked as an era of ‘artificial 
intelligence (AI)’ owing to massive technological advances 

that have enabled easy access, processing, and storage of 
huge amounts of data. AI is a branch of computer science 
dedicated to developing algorithms that accomplish tasks 
that are traditionally associated with human intelligence 
[16], and AI is already being applied to simpler technical 
tasks such as speech and text recognition, language 
processing, object detection, and classification [17-19]. AI 
has brought about both excitement and concern because it 
is expected to increase the value and efficiency of medical 
imaging [20].

Computer-extracted features can serve as input to 
‘machine learning’ algorithms, a subset of AI that use 
complicated statistical techniques to enable machines to 
improve at certain tasks by learning data patterns [18]. 
Further, ‘deep learning’ (DL) is a sub-classification of 
machine learning, wherein multiple layered neural networks 
are used to assess complex patterns within the input data. 
After the introduction of the 2012 ImageNet Large Scale 
Visual Recognition Challenge [21], deep convolutional 
neural networks (dCNNs) are now the technique of choice 
for computer visualizations and are used in various 
fields of image classification including breast imaging. 
When provided with raw data, dCNNs discover features 
or combinations of features that are associated with or 
predictive of a specific outcome (in this case, ‘breast cancer 
detection’ or ‘breast cancer diagnosis’) instead of requiring 
them to be delicately crafted by humans, which is referred 
to asrepresentation learning; thereby the software trains 
itself to perform the task as long as sufficient quality and 
quantity of data are provided [18,22]. 

APPLICATION OF AI-CAD TO MAMMOGRAPHY 
INTERPRETATION 

Several AI-based algorithms have been developed for 
mammography, and the results clearly show that their use 
has considerably narrowed the gap between the diagnostic 
performances of computers and humans (Table 2). Majority 
of the in-house AI-algorithms show high performance in 
breast cancer detection; in some studies, the performance 
of AI-CAD is similar to or even superior to those of 
radiologists. Moreover, even the stand-alone performance 
of AI-CAD has been significantly higher than the average 
performance of radiologists [23-25]. In a study comparing 
the predictions of AI algorithms and readers using 
representative screening data from the United Kingdom 
(UK, double reading) and the United States (USA, single 
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reading), use of AI resulted in significant improvement 
with a sensitivity of 2.7% and 9.4%, and a specificity of 
1.2% and 5.7%, respectively [24]. Further, non-inferiority 
was seen for both sensitivity and specificity for the second 
reader when using AI to analyze the UK data, reducing the 
workload for the second reader by 88%.

In addition to the stand-alone results, two studies using 
commercially available deep-learning CAD algorithms for 
mammography interpretation showed that interpretation 
with AI-based CAD improved the diagnostic performance of 
radiologists compared to interpretation without AI-CAD; the 
area under the receiving operator characteristics curve (AUC) 
of radiologists alone improved after using AI-CAD from 0.810 
to 0.881 (p < 0.001) [23] and from 0.87 to 0.89 (p = 0.002) 
[26]. AI-CAD showed superior performance in detecting 
cancers that presented as masses, distortions, asymmetries, 
were early stage, node-negative invasive cancers, or cancers 
in mammographically dense breasts [23], indicating that 
AI-CAD could overcome major difficulties in breast cancer 

detection using mammography.
Such promising results have increased expectations 

regarding the role of AI-CAD in screening [27]. Most 
recent studies on AI algorithms are from cancer-enriched 
populations (Table 2), with the exception of one study 
(1.1%, conventional CAD vs. CNN) [28], wherein the cancer 
proportion ranges from 7.7–50%. The results of the DM 
Dialog on Reverse Assessment and Methods (DM DREAM) 
Challenge may give us an idea of how AI-CAD will perform 
in screening settings: 144231 screening mammograms 
including 952 (0.7%) cancers were used for algorithm 
training/validation and tested on a second independent 
validation cohort of 166578 examinations including 780 
(0.5%) cancers [29]. This study showed that while no 
single AI algorithm outperformed the radiologists, the 
combination of AI with radiologists resulted in a higher 
AUC of 0.942, significantly improving specificity and 
overall accuracy [29]. In another study that conducted an 
external evaluation of three commercially available AI-CAD 

Fig. 2. Representative case of a 46-year-old female who underwent mammography screening. 
A, B. Conventional CAD (A, SecondLook v7.2, iCAD) shows multiple areas marked in both breasts (arrows at CAD marks) that warrant the 
attention of the radiologist. In comparison, AI-CAD (B, Lunit INSIGHT for Mammography, Lunit Inc.) did not mark any areas on the same image, 
with low abnormality scores for both breasts. The mammography of this female was interpreted as negative, and this result was confirmed during 
a follow-up of approximately 46 months during which no suspicious features were detected. AI = artificial intelligence, CAD = computer-aided 
detection/diagnosis

A B
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algorithms as independent mammography readers, high AUC 
values ranging from 0.920–0.956 with high sensitivities 
of 67.0–81.9% (77.4% for the first reader radiologist and 
80.1% for the second reader radiologist) were achieved at 
the same specificity [30]. These findings support that AI-
CAD can indeed contribute to improving performance in a 
real-world screening environment. However, these results 
need to be validated in future prospective studies. 

DEEP LEARNING APPLIED TO DIGITAL BREAST 
TOMOSYNTHESIS 

DBT provides multiple low-dose projection images of the 
breast that can be used to reconstruct a three-dimensional 
dataset of mammography images [31]. This in turn reduces 
the negative effect of overlapping breast tissues. Studies 
have proven the efficacy of DBT over full-field DM when 
used for breast cancer screening, with several reports of 
increased cancer detection rates and decreased recall rates 
[32-34]. Although DBT may show superior performance, 
its acquisition time is longer and its interpretation time is 
reported to be almost twice the time needed for DM [35-
37], a factor that may critically impact the workload of 
radiologists. 

Even with the superior performance of DBT over DM, 
perception or interpretation errors still occur [38]. 
Compared to the single images used to interpret each plane 
in DM, for DBT interpretation, radiologists have to scroll 
through stacked images for each mammographic projection, 
where the number of images per stack is proportional 
to the breast thickness under compression. More images 
mean a heavier workload, and this is the main reason for 
longer interpretation time and radiologists’ fatigue with 
DBT. Automated detection of abnormalities among multiple 
projection images could help clinicians localize and 
assess the clinical significance of a detected abnormality. 
Commercial or in-house softwares have been developed to 
assist DBT interpretation, for which initial studies commonly 
report a reduction in reading time while maintaining reader 
performance (Table 3) [39-41]. The results were more 
promising when an AI-based algorithm was applied to DBT 
interpretation [35], with the reading time being reduced by 
52.7% (64.1 to 30.4 seconds) along with improvements in 
all diagnostic metrics such as increased sensitivity (77.0% 
to 85.0%), specificity (62.7% to 69.6%), AUC (0.795 to 
0.852), and decreased recall rates (38.0% to 30.9%).
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IMPROVING MAMMOGRAPHY INTERPRETATION 
WORKFLOW WITH AI-CAD

In addition to improving breast cancer detection, 
studies have evaluated AI-CAD for triaging mammography 
examinations, which is critical for screening because the 
majority of screening exams are negative. If AI-CAD can 
accurately identify cases that require less time and fewer 
resources without endangering the patient, we can reduce 
the workload of radiologists, and more time can be spent 
on images with suspicious features and on any subsequent 
diagnostic workup. Three recent studies have used AI-CAD 
to triage mammography examinations in this way [42-44]. 
In an initial study, the probability of malignancy score (scale 
of 0–10) generated by a commercially available AI-CAD was 
used to predesignate cancer-free examinations as ‘normal’ 
so that they were not listed as cases that needed further 
interpretation by radiologists. In this study, setting the 
threshold at an AI score of 5 resulted in approximately 50% 
workload reduction with 7% of cancers being interpreted 
as false-negatives, whereas setting the threshold at an 
AI score of 2 resulted in a 17% workload reduction with 
1% of cancers being interpreted as false-negatives [43]. 
Preselection of examinations according to the AI score did 
not change the average AUC of radiologists, except for when 
the AI score was 9. This finding indicated that triaging with 
AI-CAD maintains radiologist performance even as it reduces 
the workflow. In the other two studies, DL algorithms were 
constructed to triage mammography examinations as cancer-
free using either imaging features [44] or imaging features 
combined with non-imaging features and pathologic 
outcomes [42]. These recent results corroborate previous 
studies that reported a workload reduction of approximately 
20–34% to 91% (in a screening setting) albeit with non-
inferior levels of sensitivity, negative predictive values, and 
improved specificity. 

Triaging mammography examinations offers two 
advantages: First, triaging negative examinations can spare 
the radiologists’ time and effort, thereby reducing their 
overall workload, as previously mentioned. Second, by 
identifying cancers that have been missed by radiologists, 
AI can act as a final consultant (Fig. 3). A simulation 
study performed with this in mind reported that AI can 
reduce the radiologists’ workload by more than half [45]. 
Further, by using AI scores for women with negative double 
readings it also increases early detection of interval cancers 
by 12–50% and of next-round screen-detected cancers 

by 14–59%, depending on which AI score is used as the 
cutoff. In this study, AI scores showed higher accuracy for 
predicting future interval cancers and next-round screen-
detected cancers than mammographic density, and the 
researchers speculated that this difference was due to AI 
algorithms detecting subtle unidentified tumor features, 
whereas mammographic density was associated with tumor 
masking. These results suggest that AI may have another 
potential role in supplementary screening for women after 
negative findings on the mammograph. The role of AI in 
breast cancer risk prediction has been discussed in depth in 
the next section. 

ASSESSMENT OF MAMMOGRAPHIC PARENCHYMAL 
DENSITY USING DEEP LEARNING 

Breast parenchymal density is important in two aspects: 
1) an increased proportion of fibroglandular tissues has 
been associated with a four-to six-fold increased risk for 
breast cancer [46-48]; and 2) the detection sensitivity 
of mammography can be severely affected by increased 
parechymal density or ‘dense breast’ as breast masses 
can be potentially masked, leading to increased rates 
of interval cancers [47,49,50], which is why additional 
screening modalities such as US or MRI are used. 
Legislation on breast density notification was first passed 
in Connecticut, USA in 2009, and then in more than 30 
states of the USA. Radiologists are now required to notify 
women on their breast density after they are screened with 
mammography and they also need to discuss the possibility 
of missed cancers in dense breasts [51,52]. Based on this 
requirment, we need to report parenchymal density on 
mammography using quantitative and objective analysis, 
but the qualitative four-tiered density categories of the 
American College of Radiology Breast Imaging Reporting 
and Data System (ACR BI-RADS) [53] depend solely on the 
radiologist’s subjective interpretation and vary widely, with 
a κ = 0.40–0.87 reported in literature [54-56]. Currently, 
several commercially-available automated volumetric 
density measurement programs (Volpara, Volpara Solutions; 
Quantra, Hologic) enable the quantification of parenchymal 
data by calculating the ratio of fibroglandular tissue to the 
total breast volume in percentages [57]. 

Even with automation, inconsistencies between 
measurements made by radiologists and current softwares 
remains an issue. Studies have reported differences of 
14–22.3% and fair to moderate agreement (κ = 0.32–0.61) 
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Fig. 3. Diagram of various workflows using AI-CAD for mammography interpretation. 
Before applying AI-CAD to mammography interpretation, the following aspects should be considered: A. The impact of AI-CAD differs depending 
on whether the radiologists are exposed to the analytic results, i.e., sequential reading, wherein the AI-CAD result is provided after the 
radiologist has reached a conclusion vs. independent reading, wherein the AI-CAD result is provided with the mammography images before the 
radiologist has reached a conclusive interpretation. B. The impact of AI-CAD also differs according to the reading environment, i.e., single 
reading vs. double reading, wherein AI-CAD may not only assist radiologists, but even has the potential to replace a second reader or serve as 
a final consultant in cases where a consensus among multiple readers is required. C. If AI-CAD can be considered for stand-alone reading, its 
analytic results can be used for workload triage such that examinations with ‘negative’ results on AI-CAD will not be interpreted by radiologists. 
AI = artificial intelligence, CAD = computer-aided detection/diagnosis

A

B

C
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between radiologists and commercially-available softwares 
in density classification [57,58]. To narrow the gap between 
computers and radiologists in density assessment, DL 
algorithms have been constructed and applied in several 
recent studies. In experimental settings, several state-of-
the-art DL models showed strong similarity or agreement 
with the BI-RADS density assessments made by radiologists 
[59-63]. When implemented in routine clinical practice, a 
DL algorithm showed excellent agreement with radiologists 
with κ = 0.85. Further, 94% of the assessments made by 
the DL algorithm were accepted by the radiologists in 
binary categorization of non-dense or dense breasts [64]. 
Although DL models are in the early stages of development, 
they show potential for providing consistent and reliable 
data for breast density, which is both useful and important, 
especially against the backdrop of breast density legislation. 
Consistent and objective data are required to predict breast 
cancer risk and to discuss the need for supplementary 
studies and future management plans with the patient, 
which is why we expect DL algorithms to have a greater role 
in the assessment of parenchymal density in the future. 

ASSESSMENT OF BREAST CANCER RISK USING 
DEEP LEARNING 

Starting with the publication of the Gail model [65], 
various risk models have been developed during the past 
decade using multiple risk factors related to hormonal 
and genetic information to predict breast cancer risk [66-
68]. Until recently, image-related information was not 
incorporated into the risk prediction models, but now 
mammographic breast density is a well-acknowledged risk 
factor [47]. Previous studies have shown that the AUC for 
predicting breast cancer risk has significantly improved 
by adding subjective mammographic parenchymal density 
as a risk factor [68,69]. As mentioned in our discussion 
on mammographic breast density, DL models have been 
introduced to enable more objective and quantitative 
density assessment. Not only do DL algorithms provide 
consistent assessments of density, they are also thought to 
provide more accurate breast cancer risk predictions based on 
pixel-based information embedded in mammographic images 
that are not perceptible to the human eye. This hypothesis 
has been supported in several recent publications: DL 
CNN using mammography for a pixel-based prediction of 
breast cancer risk had greater predictive potential than 
using breast density assessments by radiologists (odds 

ratio 4.42 vs. 1.67) with an overall accuracy of 72% [70]. 
Similarly, risk scores generated by a DL network allowed 
more accurate predictions of future breast cancer risk with 
lower false-negative rates for more aggressive cancers when 
compared to density-based models [71].

As the amount of readily available data has increased 
with corresponding advances in processing abilities, 
attempts have been made to use computer-analyzed 
imaging data as input in the DL models and combine it 
with traditional risk factors obtained from medical records 
to predict breast cancer risk with promising results. By 
using computerized image analysis to extract features 
of parenchymal texture, radiomic phenotypes resulted in 
significantly higher discrimination performance when added 
to a breast cancer risk model that included breast density 
and body mass index as risk factors (AUC 0.84 vs. 0.80) [72]. 
Similarly, a hybrid DL model using both traditional risk 
factors and mammograms showed the highest diagnostic 
performance (AUC 0.70) compared to a clinical risk-factor-
based model (AUC 0.62–0.67) or image-only DL model 
(AUC 0.68) [73]. By using a DL model with a broader range 
of input data extracted from electronic health records 
linked to mammographic data, the algorithm showed the 
potential to assess breast cancers at levels comparable 
to radiologists (AUC 0.91, sensitivity 87%, specificity 
77.3%), and detected 48% of false-negative mammography 
interpretations [74]. These recent studies indicate that 
image-based DL models show promise for more accurate 
breast cancer risk prediction and that we can expect more 
from these models in the future including personalized 
management for women. This is thought to be especially 
relevant to clinical practice as the passing of the breast 
density notification legislation in the USA brought about 
increased medical costs and workload burdens for breast 
cancer screening [75,76]. The applications of DL algorithms 
for breast cancer risk prediction are still in the early stages 
of development, and we anticipate studies evaluating the 
effect of DL algorithms when selecting women for intense 
breast cancer screening in the near future.

CHALLENGES TO OVERCOME BEFORE CLINICAL 
APPLICATION 

Even with rapid progress, more investigation is required 
to prove the utility of AI in aiding radiologists with 
mammography in real-world settings. First, proper external 
validation is required [17]; while various machine learning 
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techniques have been used to develop CAD algorithms 
for breast imaging modalities during the last few years 
[77], very few have been commercially utilized for clinical 
use, mostly due to the lack of clinical validation. We 
need studies that demonstrate how AI will work in the 
real world while considering generalizability, efficiency, 
user variability, and ways to optimize algorithms for 
consistent outcomes [78]. A recent study by Salim et al. 
[30] performed an external evaluation of currently released, 
commercially-available AI-CAD algorithms as independent 
readers of mammography and also in combination with 
radiologists. They found that commercially available AI-
CAD algorithms can assess screening mammograms with 
sufficient diagnostic performance to be evaluated as an 
independent reader in future prospective studies, and more 
positive cases were detected when combining AI with 
radiologists than double reading with only radiologists. This 
study focused on the external validation of AI, and we hope 
to see more similar studies that will evaluate AI algorithms 
based on the features they are supposed to analyze. 

Second, feasibility testing should be conducted while 
considering certain clinical aspects such as the incorporation 
of AI-CAD in clinical practice with comparisons of screening 
vs. diagnostic settings, single reading vs. double reading, 
or for reading sequences etc (Fig. 3). In addition, the 
methodology for estimating the true performance of an AI 
algorithm needs to be refined. As its name implies, the role 
of conventional CAD is to ‘assist’ the radiologist who can 
either choose to follow the CAD prompts or to neglect them 
when reaching a final diagnosis. Typically, final diagnoses 
are made by radiologists with the CAD results also taken 
into consideration. When assessing the performance of 
CAD under these circumstances—circumstances reflecting 
real-world practice since radiologists are the ones legally 
responsible for their interpretation, not CAD— the gain 
achieved by using a good AI-CAD may be underestimated 
[79]. In addition, although it is difficult to estimate related 
data, we need to consider how to measure the time and 
resources invested into interpretation to evaluate whether 
integrating the AI algorithm improves the efficiency of 
interpretation workflows. 

Third, there are more technical issues to consider when 
developing AI algorithms for DBT than DM. Since most 
of the current DL algorithms have been built using two-
dimensional mammography, transfer learning has been 
adapted through the application of a pre-trained CNN to 
build algorithms for DBT interpretation [80]. Furthermore, 

poor spatial resolution per image limits the detection 
accuracy of tomosynthesis, and consequently we would 
expect lower performance for DL algorithms with DBT 
compared to DM. In addition, DBTs acquired from different 
vendors have different angular ranges, acquisition 
techniques, pixel binning, and reconstruction techniques 
that affect mammography images [81]. 

Finally, there are ethical or legal issues to consider before 
incorporating AI into our interpretation workflow. Should AI 
be considered as an independent reader? Should the analytic 
data provided by AI algorithms be reported in medical 
records? As of now, the interpreting radiologist is legally 
responsible for his or her image interpretation regardless 
of whether they choose to use the AI marks, but the legal 
ramifications of using AI data and the degree of its use 
should be discussed in depth. If AI-CAD truly becomes 
part of everyday practice, an ethical or legal framework 
for the application of AI algorithms will be required, and 
this framework must reflect a consensus of all participants 
in a real-world mammography setting, from patients to 
radiologists. In addition, we need to be prepared for the 
unintended consequences of incorporating AI algorithms 
such as the detection of many in situ cancers rather than 
invasive cancers and the regression of interpretive skills due 
to radiologists’ overdependence on AI [5,19]. 

CONCLUSION

Recent advances in technology have enabled the 
application of AI to mammography, with stand-alone 
diagnostic performances comparable to those of radiologists, 
improvements in sensitivity or specificity in breast cancer 
diagnosis, and the potential reduction in the workflow 
or interpretation time. Although the current results for 
several AI algorithms in mammography seem quite positive, 
clinical validation is required to guarantee generalizability, 
efficiency, and consistency. Social consensus is also required 
for the role AI algorithms will play in mammography 
interpretation, along with ethical and legal considerations. 
Although AI is still in the preliminary stages of validation, 
there is increasing demand for its application in the medical 
field, and more effort is being put into implementing AI 
technology in actual clinical settings. Moreover, with the 
initiative towards prospective clinical validation studies, we 
need to be prepared to accept AI in clinical practice and to 
be aware of the impact it may have on the future of breast 
imaging. 
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