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Introduction

Poly(ADP-ribose) polymerase (PARP) is a nuclear protein 
that regulates gene transactivation as a transcription coacti
vator and protein function via poly(ADP-ribosyl)ation [1]. 
PARP activation is important for DNA repair, but its excessive 
activation is important in necrotic cell death [2]. The necrotic 
cell death is caused by NAD+-dependent poly(ADP-ribosyl)
ation that leads to ATP depletion and metabolic collapse [2, 

Original Article
http://dx.doi.org/10.5115/acb.2016.49.2.79
pISSN 2093-3665   eISSN 2093-3673

Corresponding author: 
Jinu Kim
Department of Anatomy, Jeju National University School of Medicine, 
102 Jejudaehang-ro, Jeju 54987, Korea
Tel: +82-64-754-8181, Fax: +82-64-702-2687, E-mail: jinu.kim@jejunu.ac.kr

Poly(ADP-ribose) polymerase regulates 
glycolytic activity in kidney proximal tubule 
epithelial cells
Hana Song1, Sang Pil Yoon2, Jinu Kim1,2

1Department of Biomedicine and Drug Development, Jeju National University, Jeju, 2Department of Anatomy, Jeju National University School of Medicine, 
Jeju, Korea

Abstract: After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The 
molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of 
proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney 
proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analysis. Poly(ADP-ribosyl)ation by PARP activation 
was increased approximately 2-fold by incubation of the cells in 10 mM glucose for 30 minutes, but treatment with the PARP 
inhibitor 3-aminobenzamide (3-AB) does-dependently prevented the glucose-induced PARP activation (approximately 14.4% 
decrease in 0.1 mM 3-AB–treated group and 36.7% decrease in 1 mM 3-AB–treated group). Treatment with 1 mM 3-AB 
significantly enhanced the glucose-mediated increase in the extracellular acidification rate (61.1±4.3 mpH/min vs. 126.8± 
6.2 mpH/min or approximately 2-fold) compared with treatment with vehicle, indicating that PARP inhibition increases 
only glycolytic activity during glycolytic flux including basal glycolysis, glycolytic activity, and glycolytic capacity in kidney 
proximal tubule epithelial cells. Glucose increased the activities of glycolytic enzymes including hexokinase, phosphoglucose 
isomerase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and pyruvate kinase in LLC-PK1 
cells. Furthermore, PARP inhibition selectively augmented the activities of hexokinase (approximately 1.4-fold over vehicle 
group), phosphofructokinase-1 (approximately 1.6-fold over vehicle group), and glyceraldehyde-3-phosphate dehydrogenase 
(approximately 2.2-fold over vehicle group). In conclusion, these data suggest that PARP activation may regulate glycolytic 
activity via poly(ADP-ribosyl)ation of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in 
kidney proximal tubule epithelial cells.
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3]. Prior observations by ourselves and others demonstrated 
that pharmacological or genetic inhibition of PARP is reno
protective against ischemia reperfusion injury [4, 5], cisplatin 
nephrotoxicity [6, 7], and obstructive nephropathy [8]. The 
kidney proximal tubule among renal tubules is most sensitive 
to lethal injury as a result of a difference in their capacity 
to generate energy by glycolysis [9]. The proximal tubule 
has a low capacity for glycolysis, as demonstrated by the 
failure to produce lactate under control conditions or during 
loss of oxidative phosphorylation using antimycin A [10]. 
Furthermore, the activity of hexokinase as a glycolytic enzyme 
is less in the proximal tubule than in the other tubules [11].

Glycolysis is the sequence of reactions that metabolizes 
one molecule of glucose to two molecules of pyruvate. During 
glycolytic flux, two molecules of ATP and two molecule 
of NADH are produced under an anaerobic condition. 
Phosphofructokinase 1 (PFK1) is one of the most important 
regulatory enzymes in the mammalian glycolytic pathway 
[12]. Phosphorylation of fructose 6-phosphate to fructose 
1,6-biphosphate by PFK1 is the first point of commitment 
of glucose to the glycolytic pathway [13]. Glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH) is also one of the most 
important regulatory enzymes in glycolysis and gluconeo
genesis [14]. GAPDH reversibly catalyzes the oxidation 
and phosphorylation of glyceraldehyde-3-phosphate to 1,3- 
diphosphoglycerate [14]. Poly(ADP-ribosyl)ation induced by 
PARP activation inhibits PFK1 and GAPDH activity in brain-
derived and endothelial cells, respectively [15, 16]. However, 
the glycolytic enzymes mediated by PARP during glycolytic 
flux in kidney proximal tubule epithelial cells have not been 
identified. Here, we investigated the effect of treatment with 
a PARP inhibitor during glycolytic flux in kidney proximal 
tubule epithelial cells.

Materials and Methods

Cell culture
LLC-PK1 porcine kidney proximal tubule epithelial cell 

line was obtained from the American Type Culture Collec
tion (Rockville, MD, USA). The cells were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM)/high-glucose 
medium containing 10% fetal bovine serum (FBS) at 37oC 
in an atmosphere of 5% CO2. The cells were grown until 
70% confluence and then shifted to glucose- and serum-
free DMEM medium. After treatment with 0.01, 0.1, or 1 
mM 3-aminobenzamide (3-AB; R&D Systems, Minneapolis, 

MN, USA) in the glucose- and serum-free DMEM medium 
(vehicle) for 30 minutes, the cells were incubated with 10 mM 
glucose in XF base medium (Seahorse Bioscience, Billerica, 
MA, USA) with 4 mM glutamine for 30 minutes.

Enzyme activity
PARP activity in LLC-PK1 cells was measured using a 

universal PARP assay kit according to the manufacturer’s 
instructions (Trevigen, Gaithersburg, MD, USA) [7]. Activities 
of hexokinase, phosphoglucose isomerase (PGI), GAPDH, 
enolase, and pyruvate kinase in the cells were measured 
using respective colorimetric assay kits purchased from 
BioVision Inc. (Mountain View, CA, USA) according to the 
manufacturer’s instructions. PFK1 activity was measured as 
previously described [17]. Briefly, the cells were homogenized 
in cold sucrose buffer (0.32 M sucrose and 10 mM Tris-HCl, 
pH 7.4). Homogenates were centrifuged at 13,000 rpm for 20 
minutes. The supernatants were incubated in 50 mM Tris-
HCl buffer (pH 8.0) including 2.6 mM dithiothreitol, 2 mM 
MgCl2, 5 mM (NH4)2SO4, 1 mM EDTA, 40 units aldose, 250 
units triosephosphate isomerase, 40 units α-glycerophosphate
dehydrogenase, 100 mM fructose-6-phosphate, 100 mM ATP, 
and 16 mM NADH. The decrease in optical density at 340 
nm due to the oxidation of NADH was the measured for 60 
seconds.

Western blot
We performed electrophoresis of protein extracts using tris-

glycine buffer systems and subsequent blotting as previously 
described [18]. Membranes were incubated with antibodies 
against PARP (catalog No. 13371-1-AP), hexokinase (catalog 
No. 19662-1-AP), PFK1 (catalog No. 55028-1-AP), and 
GAPDH (catalog No. 10494-1-AP) purchased from Protein
tech (Chicago, IL, USA). Peroxidase-conjugated secondary 
antibodies (Vector Laboratories, Burlingame, CA, USA) were 
applied, and a chemiluminescence reagent (PerkinElmer, 
Boston, MA, USA) was used to detect proteins. Anti-b-actin 
antibody (Sigma, St. Louis, MO, USA) was used for loading 
controls on stripped membranes. The bands were quantified 
using NIH ImageJ program.

Extracellular acidification rate
Extracellular acidification rate (ECAR) in LLC-PK1 cells was 

measured using an XFp extracellular flux analyzer (Seahorse 
Bioscience). The cells were seeded in XFp cell culture miniplates 
(Seahorse Bioscience) at a density of 105 cells per well in 
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DMEM/high-glucose medium containing 10% FBS and 
incubated overnight. The following day, the cells were treated 
with 1 mM 3-AB in glucose- and serum-free DMEM medium 
(vehicle) for 30 minutes, and then incubated at 37oC with 
XF base medium containing 4 mM glutamine in a CO2-free 
incubator for 60 minutes. Glycolytic flux (basal glycolysis, 
glycolytic activity, and glycolytic capacity) as assessed by ECAR 
was analyzed by the sequential injection of 10 mM glucose, 
1 mM oligomycin, and 50 mM 2-deoxyglucose. ECAR was 
measured at 37oC with a 3-minute mix, 0-minute wait, and 
3-minute measurement protocol. The levels of ECAR were 
determined three times in respective phases, and expressed as 
units of milli-pH (mpH) per minute.

Oxygen consumption rate
LLC-PK1 cells seeded in XFp cell culture miniplates 

(Seahorse Bioscience) at a density of 105 cells per well in 
DMEM/high-glucose medium containing 10% FBS were 
incubated overnight. Cells were treated with 1 mM 3-AB 
in glucose- and serum-free DMEM medium (vehicle) for 
30 minutes; changed to XF base medium containing 4 
mM glutamine, 1 mM pyruvate, and 25 mM glucose; and 
incubated at 37oC in a CO2-free incubator for 60 minutes. 
Mitochondrial function (basal respiration, mitochondrial 
ATP production, and maximal respiration) as assessed 
by oxygen consumption rate (OCR) was analyzed by the 
sequential injection of 1 mM oligomycin, 2 mM carbonyl 
cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and 
0.5 mM rotenone plus antimycin A in the XFp extracellular 
flux analyzer (Seahorse Bioscience). OCR was measured 
at 37oC with a 3-minute mix, 0-minute wait, and 3-minute 

measurement protocol. OCR was determined three times in 
respective phases, and expressed as units of picomoles (pmol) 
per minute.

Mitochondrial membrane potential
LLC-PK1 cells were seeded at a density of 105 cells per well 

on a 24-well plate, and the next day treated with or without 
glucose plus/minus 3-AB as indicated. Tetramethylrhoda
mine, ethyl ester (TMRE; 20 nM, Abcam, Cambridge, MA, 
USA) was added to the cells and incubated for 30 minutes. 
After washing three times with 500 ml of phosphate buffered 
saline/0.2% FBS three-times, the cells were read using a 
FilterMax F3 multimode microplate reader (Molecular De
vices, Sunnyvale, CA, USA) at excitation and emission 
wavelengths of 549 and 575 nm, respectively.

Statistical analysis
Analysis of variance was used to compare data among 

groups using Systat SigmaPlot (Systat Software Inc., San Jose, 
CA, USA). Differences between two groups were assessed by 
two-tailed unpaired Student’s t tests. P-values <0.05 were con
sidered statistically significant.

Results

Glucose increases PARP activation in kidney proximal 
tubule epithelial cells

PARP activity after incubation with glucose was measured 
in LLC-PK1 cells. Cells incubated with glucose for 30 minutes 
displayed a significant increase in PARP activity, compared 
to that in glucose-starved control cells (Fig. 1A), but not 
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Fig. 1. Treatment with 3-aminobenzamide (3-AB) attenuates poly(ADP-ribose) polymerase (PARP) activation increased by glucose in LLC-PK1 
kidney proximal tubule epithelial cells. (A) PARP activity in the cells measured using the universal PARP assay kit was expressed as units (U) per 
mg protein. (B) PARP expression was examined by Western blot analysis using anti-PARP1 antibody. Anti–b-actin antibody was used as a loading 
control. Error bars represent SD (n=4 experiments). a)P<0.05 vs. control. b)P<0.05 vs. vehicle.
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a significant alteration in PARP expression (Fig. 1B). We 
also tested whether treatment with 3-AB, a PARP inhibitor, 
reduced PARP activity increased by glucose. Treatment with 
3-AB 30 minutes prior to incubation with glucose dose-
dependently diminished the increment in the PARP activity 
after 30 minutes of incubation with glucose (Fig. 1A). 
However, treatment with 3-AB in glucose-starved control cells 
did not significantly alter the activity of PARP protein (Fig. 
1A). In addition, since that 3-AB inhibits PARP activation 
by competitively interfering with the binding of NAD to its 
active site, no alteration of PARP expression by treatment 

with 3-AB was confirmed. These data indicate that PARP 
inhibition is efficacious against PARP activation induced by 
glucose in kidney proximal tubule epithelial cells.

PARP inhibition increases glycolytic activity in kidney 
proximal tubule epithelial cells

To analyze the effect of glucose-induced PARP activation 
on glycolysis in kidney proximal tubule epithelial cells, we 
conducted a real-time analysis of glycolytic flux using XFp 
extracellular flux analysis in LLC-PK1 cells treated with 
vehicle and 3-AB. No significant difference in basal glycolysis 
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Fig. 2. Poly(ADP-ribose) polymerase inhibition augments glycolytic activity in LLC-PK1 kidney proximal tubule epithelial cells using XFp 
extracellular flux analysis. (A) Extracellular acidification rate (ECAR) analysis in 3-aminobenzamide (3-AB)–treated cells. (B) Profile of ECAR 
analysis. (C) Basal glycolysis indicates a basal ECAR rate reached by the cells during glucose starvation. It was calculated by the average of three 
ECAR baselines before glucose injection minus the average of three non-glycolytic ECAR levels after 2-deoxyglucose (2-DG) injection. (D) 
Glycolytic activity indicates an ECAR rate reached by the cells after the injection of saturating amounts of glucose. It was calculated by the average 
of three ECAR levels after glucose injection minus the average of three ECAR baselines. (E) Glycolytic capacity indicates a maximum ECAR rate 
reached by the cells. It was calculated by the average of three ECAR levels after oligomycin injection minus the average of three non-glycolytic 
ECAR levels after 2-DG injection. Error bars represent SD (n=4 experiments). a)P<0.05 vs. vehicle. BG, basal glycolysis; G, glucose; GA, glycolytic 
activity; GC, glycolytic capacity; O, oligomycin.
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as a basal ECAR rate reached by the cells during glucose 
starvation was found in cells treated with vehicle and 3-AB 
(Fig. 2A, C). To measure glycolytic activity, glucose was 
injected into culture wells. ECAR was increased by glucose in 
cells treated with vehicle, and the level was increased further 
in cells treated with 3-AB (Fig. 2A). The results indicated 
that glycolytic activity in cells treated with 3-AB is greater 
than that in cells treated with vehicle (Fig. 2D). To measure 
glycolytic capacity as a maximum ECAR rate reached by 
the cells, then oligomycin was injected into culture wells. 

Oligomycin increased ECAR levels in cells treated with vehi
cle and 3-AB, resulting in no significant difference of gly
colytic capacity (Fig. 2A, E). These data indicate that PARP 
inhibition increases glycolytic activity in kidney proximal 
tubule epithelial cells. 

Mitochondrial function is independent of PARP activation 
in kidney proximal tubule epithelial cells

To determine whether PARP activation causes mito
chondrial dysfunction in kidney proximal tubule epithelial 
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Fig. 3. Poly(ADP-ribose) polymerase is not involved in respiration and ATP production in mitochondria during treatment with glucose 
in LLC-PK1 kidney proximal tubule epithelial cells using XFp extracellular flux analysis. (A) Oxygen consumption rate (OCR) analysis in 
3-aminobenzamide (3-AB)–treated LLC-PK1 cells. (B) Profile of OCR analysis. (C) Basal respiration indicates an energetic demand of the cells 
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cells, OCR was monitored by XFp extracellular flux analysis in 
LLC-PK1 cells. No significant difference in basal respiration as 
an energetic demand of the cells under the baseline condition, 
mitochondrial ATP production as a FCCP-sensitive OCR 
rate, and maximal respiration as a maximum OCR rate of 
respiration was found in cells treated with vehicle and 3-AB 
(Fig. 3A–E). Since the opening of mitochondrial permeability 
transition pore can precipitate the cessation of ATP synthesis 
in mitochondria, we assessed mitochondrial membrane 
potential in the cells using TMRE assay. Consistent with 
mitochondrial ATP production, mitochondrial membrane 
potential was not significantly altered by treatment with 
3-AB in the cells treated with or without glucose (Fig. 4). 
These data suggest that PARP activation did not contribute to 
mitochondrial function in kidney proximal tubule epithelial 
cells.

PARP inhibition augments glycolytic enzyme activity 
induced by glucose in kidney proximal tubule epithelial 
cells

To clarify the effect of PARP inhibition on glycolysis in 
kidney proximal tubule epithelial cells, activities of glycolytic 
enzymes were measured in LLC-PK1 cells. Glucose increased 

the activities of glycolytic enzymes including hexokinase, 
PGI, PFK1, GAPDH, enolase, and pyruvate kinase, compared 
to the activities in glucose-starved control cells (Fig. 5A–F). 
Treatment with 3-AB in cells incubated with glucose markedly 
increased further the levels of activities in hexokinase, PFK1, 
and GAPDH (Fig. 5A, C, D). However, the enzyme activities 
were not significantly changed in glucose-starved control 
cells after 30 minutes of treatment with 3-AB (Fig. 5A–F). In 
addition, we measured expressions of those enzymes in the 
cells using Western blot analysis. Those enzyme expressions 
were not significantly altered by treatment with 3-AB in 
the cells treated with or without glucose (Fig. 6), indicating 
that the transactivation of those enzymes is independent 
of glucose-related metabolism and PARP inhibition. Thus, 
PARP activation evidently regulates hexokinase, PFK1, and 
GAPDH activities increased by glucose in kidney proximal 
tubule epithelial cells.

Discussion

The present data demonstrate that PARP activation in
duced by glucose does not affect mitochondrial function in 
kidney proximal tubule epithelial cells. Instead, PARP activa
tion leads to inhibition of glycolytic activity as determined by 
the significant increment induced by the injection of glucose 
during glycolytic flux. The inhibition of glycolytic activity is 
caused by the significant decrement of activity in glycolytic 
enzymes including hexokinase, PFK1, and GAPDH.

The activation of PARP involves poly(ADP-ribose) poly
merization because PARP forms homopolymers of ADP-
ribose on various nuclear proteins as well as PARP itself 
[1]. The poly(ADP-ribosylated) proteins lose their affinity 
for DNA following genotoxic injury and then the proteins 
are inactivated [19]. In the metabolic pathway of glycolysis, 
hexokinase, PFK1, and GAPDH contain a poly(ADP-
ribose)-binding domain including a poly(ADP-ribose)-
binding motif, poly(ADP-ribose)-binding zinc finger 
domain, macro domain, and a domain with conservative 
multiple sequence alignment of two tryptophan residues and 
a glutamate residues [15, 20]. Hexokinase is the first regula
tory enzyme to initiate glycolysis by converting glucose to 
glucose-6-phosphate [21], and its activity is inhibited by 
PARP activation in primary mouse cortical neurons [22]. 
In support of this notion, hexokinase contains a poly(ADP-
ribose)-binding motif and coimmunoprecipitates with 
poly(ADP-ribose) after PARP activation, indicating that 
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it is a poly(ADP-ribose)-binding protein [22]. PFK1, one 
of the most important regulatory enzymes of glycolysis, 
contains a poly(ADP-ribose)-binding domain [12]. PFK1 
activity increases when the ratio of ATP to AMP is lowered 
[12]. The activity is inhibited by poly(ADP-ribosyl)ation 
induced by PARP activation in brain-derived cells [15]. 
The phosphorylation of fructose 6-phosphate to fructose 1, 
6-bisphosphate by PFK1 is the first point of commitment 
of glucose to the glycolytic pathway [23]; and because this 
reaction involves the hydrolysis of ATP, it is essentially 
irreversible. Importantly, PFK1 activity is rate-limiting and 
therefore may be critical in determining the glycolytic activity. 
GAPDH is also a key enzyme in the glycolytic pathway and 
has a susceptibility to oxidative modifications of thiols that 
inhibits its activity [24]. GAPDH activity is also inhibited by 
poly(ADP-ribosyl)ation in kidney proximal tubule epithelial 

cells after ischemia reperfusion injury [25]. Poly(ADP-ribose) 
is detected in GAPDH, and then its activity is subsequently 
decreased [15]. The previous findings are consistent with our 
present results, suggesting that PARP activation induced by 
injecting glucose into kidney proximal tubule epithelial cells 
generates poly(ADP-ribose) on its binding site in hexokinase, 
PFK1, and GAPDH, reducing their activities. The poly(ADP-
ribose)-binding domain in other glycolytic enzymes including 
PGI, aldoase, triose phosphate isomerase, phosphoglycerate 
kinase, phosphoglyceromutase, enolase, and pyruvate kinase 
has not been reported. Presently, the activities of PGI, enolase, 
and pyruvate kinase were not consistently altered by PARP 
inhibition, indicating that these enzymes may not contain the 
poly(ADP-ribose)-binding domain. Because of the PARP-
independent enzymes including PGI, enolase, and pyruvate 
kinase; oligomycin-induced glycolytic capacity revealing the 
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Anat Cell Biol 2016;49:79-87 Hana Song, et al86

www.acbjournal.orghttp://dx.doi.org/10.5115/acb.2016.49.2.79

maximum of glycolysis in the cells might not be different 
between vehicle- and 3-AB–treated cells.

In glucose metabolism, glycolysis is the metabolic pathway 
that converts glucose into pyruvate in the cytoplasm, which 
produces ATP [26]. Exogenous glucose, the most important 
energy-producing molecule of organisms, strictly induces 
activities of glycolytic enzymes in the entire 10-step glycolysis 
pathway, with each chemical reaction catalyzed by a specific 
enzyme [27]. PARP inhibits glycolysis in kidneys after 
ischemia reperfusion injury, as demonstrated by lactate 
production increased by PARP deficiency in injured tissues 
[25]. The present data using XFp extracellular flux analysis 
shows that glucose increases glycolytic activity during 
glycolytic flux in kidney proximal tubule epithelial cells. 
Furthermore, treatment with the PARP inhibitor 3-AB in 
those cells markedly elevates glycolytic activity induced by 
glucose. Intriguingly, the mitochondrial basal respiration, 
mitochondrial ATP production, and maximal respiration 
were not significantly different in cells treated with 3-AB and 
vehicle. Our result contrasts with the previous demonstration 
of increased mitochondrial function through SIRT1 in PARP-
deficient mice [28]. The previous report focused on the role 
for PARP in oxidative metabolism through SIRT1 modulation 
under diet-induced obesity. Similarly, high dose of glucose 

(30 mM) induces oxidative stress and DNA damage through 
SIRT1 modulation in hepatocytes, resulting in glucose toxi
city [29]. In our study, the incubation with low dose of glu
cose (10 mM) may cause no effect on mitochondrial function. 
Furthermore, because myoblast and hepatocyte are more 
susceptible to glucose-related toxicity and metabolism com
pared to other epithelial cells including kidney tubular cells 
[30-33], the alteration of mitochondrial function by PARP 
activation may be dependent on cell type or tissue specific.

Taken together, the present results demonstrate that exo
genous glucose increases PARP activation in kidney pro
ximal tubule epithelial cells, and that PARP activation re
gulates glycolytic activity through poly(ADP-ribosyl)ation 
of hexokinase, PFK1, and GAPDH. PARP may be a pivotal 
molecule involved in regulation of glucose metabolism.
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