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Ischemia and metabolic crisis are frequent post-traumatic secondary brain insults that neg-
atively influence outcome. Clinicians commonly mix up these two types of insults, mainly
because high lactate/pyruvate ratio (LPR) is the common marker for both ischemia and
metabolic crisis. However, LPR elevations during ischemia and metabolic crisis reflect two
different energetic imbalances: ischemia (Type 1 LPR elevations with low oxygenation)
is characterized by a drastic deprivation of energetic substrates, whereas metabolic cri-
sis (Type 2 LPR elevations with normal or high oxygenation) is associated with profound
mitochondrial dysfunction but normal supply of energetic substrates. The discrimination
between ischemia and metabolic crisis is crucial because conventional recommendations
against ischemia may be detrimental for patients with metabolic crisis. Multimodal monitor-
ing, including microdialysis and brain tissue oxygen monitoring, allows such discrimination,
but these techniques are not easily accessible to all head-injured patients. Thus, a new
“gold standard” and adapted medical education are required to optimize the management
of patients with metabolic crisis.

Keywords: metabolic crisis, ischemia, head injury, multimodal monitoring, intracerebral microdialysis

Managing traumatic brain injury is like navigating the ocean.
Dangers (secondary insults) are everywhere, but, usually, easy to
prevent. In this ocean, just imagine cerebral energetic disturbances
as an iceberg, where ischemia is the tip (Figure 1). All clini-
cians are aware of what ischemia is and how to prevent/manage
ischemic events. However the real danger is the submerged part
of the iceberg, the one we cannot even imagine. Metabolic crisis
may represent that sneaky part of energetic post-traumatic distur-
bances: they are still not well understood, difficult to detect and
to care.

CONFUSING DEFINITION OF METABOLIC CRISIS IN THE
LITERATURE
In Intensive Care Unit (ICU), cerebral post-traumatic metabolic
disturbances have commonly been characterized by an increase of
the lactate/pyruvate ratio (LPR) above 40, as measured by clinical
intracerebral microdialysis. High LPR has originally been attrib-
uted to compromised cerebral perfusion and impaired oxygen
delivery. However, high LPR may actually reflect several patho-
logical events or compensatory mechanisms (1). After traumatic
brain injury, three different types of metabolic disturbances, all
characterized by a LPR > 40, have been reported: hyperglycolysis,
ischemia, and a pattern described by Vespa and colleagues ini-
tially called “metabolic crisis without brain ischemia” (2). Vespa’s
initial study showed a 25% incidence of high LPR, but only
a 2.4% incidence of ischemia (measured with positron emis-
sion tomography), in 19 brain injury patients. In this study,
most of the episodes of high LPR were correlated with non-
ischemic reduction in cerebral oxygen metabolism. This metabolic

crisis may be the most frequent form of post-traumatic meta-
bolic disturbance (2, 3). Indeed, 74% of head-injured patients
may suffer from metabolic crisis in the first days after the ini-
tial trauma, despite successful resuscitation and tight control of
their intracranial pressure (4). Prolonged state of metabolic cri-
sis is associated with poor outcome at 6 months post-trauma
as well as regional chronic brain atrophy (4–6). These meta-
bolic crises have also been observed in patients with terminal
herniation (7).

In the literature, confusion persists with articles dealing with
metabolic crisis and that potentially refer to any type of meta-
bolic disturbances (hyperglycolysis, ischemia, metabolic crisis . . .).
The discrimination between different types of metabolic distur-
bances is, however, crucial because each type requires an adapted
management to avoid deterioration of the patients. In addi-
tion, there is currently no consensual terminology for the spe-
cific pattern of metabolic disturbance characterized by elevated
extracellular LPR and normal oxygenation. Indeed, the original
work of Vespa and colleagues referred to this kind of disturbance
as “metabolic crisis without brain ischemia” (2), whereas oth-
ers called it “non-ischemic oxidative metabolic dysfunction” (6),
“non-ischemic impairment of oxidative metabolism” (3), or “non-
ischemic energy metabolic crisis” (8). Because different terminol-
ogy could be misleading, we propose the unifying terminology:
“metabolic crisis.”

METABOLIC DISTURBANCES AFTER HEAD INJURY
To understand the singularities of each type of post-traumatic
metabolic disturbance (hyperglycolysis, ischemia, and metabolic
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Carre et al. Metabolic crisis in head injury

FIGURE 1 |The iceberg of metabolic disturbances associated with a
high lactate/pyruvate ratio.

crisis), some physiological aspects of the cerebral metabolism need
to be considered.

CEREBRAL METABOLISM IN PHYSIOLOGICAL CONDITIONS
Neurons and astrocytes can efficiently utilize lactate, pyruvate, glu-
tamate, and glutamine as energetic substrates, in addition to glu-
cose (9). Astrocytes play a pivotal role in providing these energetic
substrates to neurons (Figure 2A). The astrocyte-neuron lactate
shuttle model of Pellerin and Magistretti (10) suggests that neu-
ronal activity is tightly coupled to glucose utilization/glycolysis.
Glutamate is released from active synapses and uptaken by astro-
cytes. Glutamate uptake stimulates the activity of the Na/K-ATPase
and subsequently the entry of glucose from the vasculature into
astrocytes. A large portion of the glucose entering the astrocytes
is then directed to the glycolytic pathway and is metabolized
into lactate which is released in the extracellular space. Lactate
is then transported to neurons and converted to pyruvate that
can be used as an energetic substrate through the tricarboxylic
acid (TCA) cycle (10). In addition, part of the neuronal pyru-
vate is transferred to astrocytes in order to close the redox loop
(11). Under certain circumstances, astrocytic glycogen stores may
also be metabolized into lactate, which is subsequently released
in the extracellular space (12). Astrocytes also play an impor-
tant role in providing glutamate back to neurons through the
glutamate-glutamine cycle. Indeed, glutamate is converted into
glutamine in astrocytes; then, glutamine is transported to neu-
rons where it is finally converted into glutamate (10). Gluta-
mate and glutamine can also be metabolized through diverse
pathways in astrocytes and neurons, especially through the TCA
cycle (9).

COMPENSATORY HYPERGLYCOLYSIS
An increase in glucose utilization is commonly observed in head-
injured patients in the first days after injury. Several roles have
been proposed for this post-traumatic hyperglycolysis, including
restoration of the ionic balance. This compensatory hyperglycol-
ysis can induce a transient accumulation of lactate in the extra-
cellular compartment of the brain in head-injured patients (2, 7).
Under these conditions, lactate is likely to be used by neurons
as an additional source of energy. This may explain why cerebral

accumulation of extracellular“good”lactate, in absence of hypoxia,
has been associated with good long-term recovery in subarachnoid
hemorrhage patients (13). Other mechanisms may participate,
in addition to hyperglycolysis, to restore the ionic homeostasis,
such as an increase in the glutamate-glutamine cycle turnover
(14–16).

METABOLIC DISTURBANCES DURING ISCHEMIA
It is commonly admitted that ischemia is one of the most deteri-
orating post-traumatic insults. Experimental studies of traumatic
brain injury have shown that cerebral oxidative metabolism is
reduced due to ischemia, because of oxygen and glucose depri-
vation (14, 16). In neurons, as a result of the lack of oxygen,
pyruvate no longer enters the TCA cycle and the need for lac-
tate may decrease (Figure 2B). On the other hand, pyruvate and
glycogen are heavily metabolized into lactate in astrocytes (12).
Therefore, lactate accumulates and pyruvate level decreases in the
extracellular space, leading to an increase of the LPR. This pattern
is known as “Type I” LPR elevation (8, 17) and has been associ-
ated with a poor outcome in head-injured patients (18). Type I
LPR elevation can also be associated with high extracellular glu-
tamate, as a consequence of the reversal of neuronal glutamate
transporters (19).

METABOLIC CRISIS
Vespa’s article published in 2005 may be considered as the prin-
ceps article introducing the concept of the metabolic crisis (2).
Metabolic crisis is characterized by a “Type 2” LPR elevation,
which is due to a reduction in extracellular pyruvate level, with
normal or elevated tissue oxygen level (Figure 2C) (8, 17). Occur-
rences of high extracellular glutamate and low glucose have also
been reported during metabolic crisis (4, 7). This pattern may
appear very similar to that of ischemia; however, the underlying
mechanisms are profoundly different (see below).

SUSPECTED MECHANISMS OF METABOLIC CRISIS
There is a gap of knowledge regarding the exact mechanisms
underlying metabolic crisis. Nevertheless, two main hypotheses
have been proposed: mitochondrial dysfunction and excessive
increase in metabolic demand.

As early as 1942, Lindquist proposed the hypothesis that “some
more fundamental factor of disturbed physiology was responsi-
ble for the syndrome of head injury, and [. . .] that the injured
nerve cells might be unable to utilize oxygen normally in spite of
an adequate oxygen supply” (20). More recently, clinical studies
have demonstrated that some head-injured patient have distur-
bances in oxidative metabolism due to mitochondrial dysfunction,
despite good oxygen supply (21, 22), suggesting that mitochon-
drial dysfunction may be one of the mechanisms underlying
metabolic crisis. In experimental settings, however, mitochon-
drial dysfunction, induced by cyanide poisoning, is associated
with an increase in LPR and brain tissue oxygen (PtiO2), but not
with a decrease in extracellular pyruvate level (23, 24). Therefore,
mitochondrial dysfunction per se may be a mechanism involved
in metabolic crisis but it is not responsible for the decrease in
extracellular pyruvate level. Instead, the low interstitial pyru-
vate measured during metabolic crisis may be the consequence
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Carre et al. Metabolic crisis in head injury

FIGURE 2 | Schematic representation of the proposed exchange of energetic metabolites between neurons and astrocytes, in physiological
conditions (A), during ischemia (B), and during metabolic crisis (C). Gc, glucose; Gg, glycogen; Gn, glutamine; Gt, glutamate; L, lactate; O2, oxygen; P,
pyruvate; TCA, tricarboxylic acid.

of a shunting of the glycolytic pathway in favor of the pentose
phosphate pathway, which plays a protective role in neutralizing
oxygen free radicals. This shunting may limit oxidative mitochon-
drial damage (25). In addition, neuronal pyruvate may not be
transferred to astrocytes anymore and might serve as a endoge-
nous free radical scavenger to stabilize neuronal mitochondrial
function (26).

Excessive increase in metabolic demand is the other proposed
mechanism leading to metabolic crisis. Indeed, post-traumatic
seizures and cortical spreading depression both result in excessive
increases in metabolic demand (2, 27). Under these circumstances,
neuronal and astrocytic hyperglycolysis may not be sufficient to
compensate for the deficits in oxidative metabolism. In addi-
tion, when astrocytic glycogen stores are depleted, the resulting
energetic failure can alter the activity of the Na/K-ATPase and

lead to intracellular accumulation of Na+, consecutive astro-
cytic swelling and subsequent mitochondrial swelling, which may
further alter mitochondrial function (28, 29). In response to
swelling, astrocytic volume-regulated anion channels can open
and allow the efflux of glutamate and other amino acids, as
part of an osmoregulation process (30). A reversal of astrocytic
glutamate transporters can also be observed (19). The resulting
catastrophic surge of extracellular glutamate can lead to exci-
totoxic NMDA-receptor activation and mitochondrial calcium
overload, which result in drastic mitochondrial depolarization
and cellular death by apoptosis and/or necrosis (31). Further-
more, as a consequence of intracellular glutamate depletion in
astrocytes, the glutamate-glutamine cycle turnover decreases (15),
and glutamate and glutamine can no longer be used as energetic
substrates.
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It is difficult to determine which of mitochondrial dysfunc-
tion and excessive energetic demand, if any, is the initial trig-
ger of metabolic crisis but we may assume that mitochondrial
impairment enhances excessive energetic demand and that energy
failure alters mitochondrial function. Here could be the vicious
circle of metabolic crisis.

DIAGNOSIS AND TREATMENT OF METABOLIC CRISIS
The occurrence of metabolic crisis is associated with poor out-
come after brain injury (4, 7, 32). It is therefore important to
identify patients with metabolic crisis to optimize their manage-
ment.

According to us, one of the main problems in the management
of head-injured patients is the lack of knowledge about metabolic
crisis. Indeed, medical education about metabolic crisis is still very
limited. The last Brain Trauma Foundation guidelines, in partic-
ular, do not mention metabolic crisis or any similar metabolic
pattern (33). Neurointensivists are usually familiar with multi-
modal monitoring and have consequently at least some knowledge
of metabolic crisis. On the other hand, in “general” ICUs, inten-
sivists, and medical staff are well-trained to treat patients with
multi-organ failure, but some specificities in the management of
neurocritical care patients may sometimes be under-recognized
(34). Have all intensivists in “general” ICUs already heard of
metabolic crisis? We are not so sure. As only 33% of the US pop-
ulation are within 90 min of a Neurocritical Care Unit (35), the
vast majority of head-injured patients may be treated in “general”
ICUs, where metabolic crisis is unlikely to be suspected, largely
because of unawareness. We believe that an effort should be made
in providing medical education about metabolic crisis in all of
the ICUs.

Up to now, no therapeutic treatment has shown effective-
ness in improving the outcome of patients with metabolic cri-
sis. Indeed, in clinical studies, aggressive maintenance of cere-
bral perfusion pressure, or decrease of the intracranial pressure
(with mannitol, hyperventilation, . . .), have unfortunately failed
to improve the oxidative metabolism or normalized the biomark-
ers of metabolic crisis (4, 36–39). In addition, the treatments
used to target ischemia may even be particularly deleterious
in patients with metabolic crisis. Hyperoxia, in particular, does
not improve cerebral oxygen utilization and may generate free
radicals that can exacerbate mitochondrial dysfunction in these
patients (40). According to Verweij, “Restoring mitochondrial
function might be as important as maintaining oxygen deliv-
ery” in patients with severe brain injury (21). Permeabilization
of the mitochondrial membrane may therefore represent a par-
ticularly interesting target for therapeutic strategies against meta-
bolic crisis (29). Consistent with this hypothesis, recent studies
have demonstrated that treatment with Ro5-4864, an inhibitor of
mitochondrial membrane permeabilization, decreases intracra-
nial pressure and consequently improves cerebral perfusion in
experimental brain injury. This neuroprotective effect has been
correlated with normalization of the extracellular markers of
metabolic crisis (41). On the other hand, clinical studies have
demonstrated that tight glycemic control and intensive insulin
therapy result in increased cerebral metabolic crises in patients

with head injury (42, 43). Thus, we may assume that an adapted
energetic supply may limit metabolic crisis. This is the strategy
chosen by Oddo in his ongoing clinical trials: “Lactate ther-
apy after traumatic brain injury” (ClinicalTrials.gov Identifier:
NCT01573507).

Protocol-driven management is currently used to treat most
head injuries (44). This approach, which relies on evidence-based
recommendations and particularly those collected from clinical
trials, has led to improvements in the outcomes of head-injured
patients (45). Nevertheless, one main concern regarding these clin-
ical trials is that they are typically conducted on mixed categories
of head-injured patients, regardless of their pathological state.
As the underlying mechanisms for each type of post-traumatic
metabolic disturbance are different, standard therapeutic inter-
ventions may not be equally efficient on patients that are (1)
stabilized, (2) hyperglycolytic, (3) ischemic, or (4) experiencing
metabolic crisis. Thus, there is a real need for clinical trials that
would be conducted on homogenous populations of patients with
a specific type of post-traumatic metabolic disturbance. As far
as we known, no such specific clinical trial has ever been con-
ducted, and especially not in patients with metabolic crisis. In
addition to specific clinical trials, there would be clear benefits
to shift to an approach targeting the individual needs of the
patients (44). Indeed, individualized management may allow the
adaptation of the treatment based on the metabolic state of the
patient, at any time-point of the pathology. This kind of ther-
apeutic strategy might be particularly helpful in the context of
metabolic crisis.

The most important factor to consider in future clinical tri-
als is the segregation of patients with metabolic crisis. To date,
in everyday clinical practice, only multimodal monitoring, i.e.,
microdialysis and brain tissue oxygen (PtiO2) monitoring, has
allowed the detection of metabolic crisis. However, these tech-
niques do not meet the requirements for determination of a
gold standard: sensitivity and specificity. Indeed, (1) the micro-
dialysis markers of metabolic crisis are not sufficiently specific,
and (2) PtiO2 primarily reflects a compromise between local
CBF and oxygen delivery and therefore gives only very indi-
rect information on cerebral oxygen metabolism (46). Moreover,
multimodal monitoring generates a lot of data that requires
specialized powerful software and adequate training in inter-
pretation (17). So, because its implementation is expensive and
time-consuming, not all ICUs are ready to use multimodal
monitoring (47). Future research should establish a new gold
standard for metabolic crisis that would be easy to deploy in
all ICUs.

CONCLUSION
Although metabolic crises are frequent and deleterious after trau-
matic brain injury, they have not been much studied so far.
The challenge of the coming years will be to clearly define
the specific mechanisms underlying metabolic crisis in order
to improve its diagnosis and to optimize therapeutic treat-
ment. Medical education about metabolic crisis will be a key
factor for optimal management of head-injured patients with
metabolic crisis.
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