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ABSTRACT The genetic contribution of additive vs. non-additive (epistatic) effects in the regulation of
complex traits is unclear. While genome-wide association studies typically ignore gene-gene interactions, in
part because of the lack of statistical power for detecting them, mouse chromosome substitution strains
(CSSs) represent an alternate approach for detecting epistasis given their limited allelic variation. Therefore,
we utilized CSSs to identify and map both additive and epistatic loci that regulate a range of hematologic-
andmetabolism-related traits, as well as hepatic gene expression. Quantitative trait loci (QTL) were identified
using a CSS-based backcross strategy involving the segregation of variants on the A/J-derived substituted
chromosomes 4 and 6 on an otherwise C57BL/6J genetic background. In the liver transcriptomes of offspring
from this cross, we identified and mapped additive QTL regulating the hepatic expression of 768 genes, and
epistatic QTL pairs for 519 genes. Similarly, we identified additive QTL for fat pad weight, platelets, and the
percentage of granulocytes in blood, as well as epistatic QTL pairs controlling the percentage of lymphocytes
in blood and red cell distribution width. The variance attributed to the epistatic QTL pairs was approximately
equal to that of the additive QTL; however, the SNPs in the epistatic QTL pairs that accounted for the largest
variances were undetected in our single locus association analyses. These findings highlight the need to
account for epistasis in association studies, and more broadly demonstrate the importance of identifying
genetic interactions to understand the complete genetic architecture of complex traits.
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The severity, presentation, and prevalence of complex traits and diseases
are influenced bymany genetic variants (Fu et al. 2013; Boyle et al. 2017).
However, it remains unclear whether the variants work together in
an additive manner or have non-linear effects on the phenotype,
referred to as epistasis (Cordell 2002; Carlborg and Haley 2004;
Jasnos and Korona 2007; Manolio et al. 2009; Bloom et al. 2013).

Epistasis has been extensively observed in model organisms including
S. cerevisiae (Jasnos and Korona 2007; Bloom et al. 2013; Forsberg
et al. 2017), C. elegans (Lehner et al. 2006), D. melanogaster (Huang
et al. 2012), and M. musculus (Shao et al. 2008; Tyler et al. 2017). In
humans, epistasis has been more difficult to detect with standard
genetic analyses. This is potentially due to low allele frequencies,
limited sample sizes, complexity of interactions, insufficient effect
sizes, diversity of genetic backgrounds, and methodological limita-
tions due to the fact that in humans evidence for genetic effects is
almost always statistical (Mackay 2014; Huang and Mackay 2016).
However, despite these inherent difficulties, epistasis in humans has
been detected in genome-wide interaction-based association studies
and other methods for Crohn’s disease, Glaucoma, Behçet’s disease,
multiple sclerosis, Hirschbrung disease, among others (Liu et al. 2011;
Hu et al. 2013; Kirino et al. 2013; Hemani et al. 2014; Huang et al.
2015; Verma et al. 2016; Galarza-Munoz et al. 2017; Chatterjee and
Chakravarti 2019; Tyler et al. 2020). Assuming these examples
generalize, discovering and understanding epistatic interactions
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will be critical for improving the predicting of phenotypes from
genetic data as well as understanding of pathophysiology, thereby better
guiding precision medicine-based decisions (Moore and Williams
2009; Cole et al. 2017).

One method for detecting epistasis in a mammalian system is
based on studies of mouse chromosome substitution strains (CSSs)
(Nadeau et al. 2000). The genomes of CSSs are comprised of one
chromosome derived from a donor strain, with the remainder derived
from a host strain such that when two CSSs are crossed together, any
genetic interactions between the two non-homologous donor chro-
mosomes can be detected. Thus, CSSs are comprised of a fixed genetic
background with limited allelic variation, which is in contrast to
populations with genome-wide allelic variation that segregate in
mapping populations such as the Diversity Outbred mouse population
or typical analyses in humans (Churchill et al. 2012). Specifically, as it
relates to epistasis, what might otherwise be a rare allelic combination
in a segregating cross can be fixed in the genome of a CSS, allowing
for detailed and reproducible studies of specific allelic combinations.
Initial studies of CSSs derived from strains C57BL/6J and A/J, which
differ with respect to metabolic disease and cancer risk, indicated that
epistatic interactions were a dominant feature of many complex traits
(Shao et al. 2008).

More recent work on CSS combinations with two substituted
chromosomes highlighted the importance of epistasis in the regula-
tion of complex traits and gene expression, and built upon previous
studies by directly identifying pairs of QTL (chromosomes) with non-
additive phenotypic effects. These studies found that in mice carrying
two A/J-derived chromosomes on an otherwise C57BL/6J genetic
background, the A/J chromosomes frequently showed evidence of
non-additive interactions (Chen et al. 2017). The patterns of inter-
actions were largely in the direction of negative (or suppressing)
epistasis, such that traits that were altered due to the effects of one of
the substituted chromosomes were returned to baseline levels due to
the combined effects of the two interacting substituted chromosomes
(Chen et al. 2017). These findings indicated that epistatic interactions
can be a common feature of complex traits as well as important for
maintaining homeostasis.

A major limitation to previous analyses of epistasis using CSSs
is that the resolution of QTL mapped was at the size of the entire
substituted chromosomes. However, to identify the molecular nature
of such QTL requires identification of the underlying genes, which
necessitates higher resolution mapping studies. Therefore, to identify
novel epistatic QTL that regulate complex traits and gene expression
levels with greater mapping resolution, we generated and analyzed
the N2 generation mice from a modified backcross based on using
some of the same CSSs in Chen et al. (2017). The resulting analyses
demonstrate the ability of a CSS-based backcross to detect and
fine-map epistatic QTL for complex traits. The analyses discovered
significant epistatic interactions that control lymphocyte quantity and
the distribution of red cell width, and the expression of hundreds of
genes in the liver. Studies of this type are essential to make progress
toward the molecular characterization of epistatic interactions that
will provide insight into the biological pathways of disease patho-
physiology as well as improve our understanding of trait heritability
and genetic architecture.

MATERIALS AND METHODS

Mice
Strains C57BL/6J-Chr6A/J/NaJ (B6.A6) (stock #004384), C57BL/
6J-Chr4A/J/NaJ (B6.A4) (stock #004382), and C57BL/6J (B6)

(stock #000664) were purchased from The Jackson Laboratory. Mice
were maintained by brother-sister matings with offspring weaned
at 3 weeks of age. Mice were housed in ventilated racks with access
to food and water ad libitum and maintained at 21� on a 12-hour
light/12-hour dark cycle. All mice were cared for as described under
the Guide for the Care and Use of Animals, eighth edition (2011) and
all experiments were approved by IACUC (protocol #2016-0064) and
carried out in an AAALAC approved facility. Mice were anesthetized
with isoflurane prior to retro-orbital bleeding and subsequently killed
under anesthesia by cervical dislocation for tissue collection.

Genotyping
Genomic DNA was isolated from mouse tail tissue using DNeasy
Blood and Tissue Kits (Qiagen) following digestion with proteinase
K. N2 offspring of the CSS backcross were genotyped with 57 SNP
markers on Chromosome 4 and 50 SNP markers on Chromosome
6 (�1 marker per 1.5 cM) using the PlexSeq technology (Agriplex
Genomics Inc.) (Kayima et al. 2017; Soong et al. 2018). Genotyping
results are listed in Supplemental Table 1. Of the 150 samples, one
sample did not pass the PlexSeq quality control (,66% of genotypes
called) and was not used in these analyses.

Mouse Phenotyping
Five-week old mice were fasted overnight prior to phenotypic anal-
ysis. Mice were anesthetized with isoflurane and measurements were
collected for total body weight and nose to anus length. Body mass
index (BMI) was calculated as g/cm2. Blood was collected retro-
orbitally and glucose levels were measured using an OneTouch Ultra2
meter (LifeScan, Milpitas, CA, USA). Mice were subsequently killed
by cervical dislocation, gonadal fat pads were removed and weighed,
and the caudate lobe of the liver was collected and immediately placed
in RNAlater Stabilization Solution (Thermo Fisher Scientific). Com-
plete blood counts were performed on either a Heska HemaTrue or
Drew Scientific Hemavet 950 blood analyzer and included measure-
ments of white blood count (wbc), neutrophils (ne), lymphocytes (ly),
monocytes (mo), red blood count (rbc), hemoglobin (hb), hematocrit
(hct), mean corpuscular volume (mcv), mean corpuscular hemo-
globin (mch), mean corpuscular hemoglobin concentration (mchc),
red cell distribution width (rdw), platelet count (plt), mean platelet
volume (mpv), granulocyte % (gran%), granulocyte KuL (gran KuL),
and red cell distribution width (absolute) (rdwa).

Transcriptome analysis
Total RNA was isolated from liver using PureLink RNA mini kit
(Thermo Fisher Scientific). RNA quality was analyzed using an Agilent
TapeStation with all resulting RNA Integrity Numbers (RIN) greater
than 8.5. Sequencing libraries were generated from total RNA (1 ug)
using the TruSeq stranded mRNA kit (Illumina Corp.) and were
sequenced using a NovaSeq6000 S4. Paired-end sequencing was per-
formed at an average read number of 51,404,5876 12,403,503 reads per
sample with an average of 92.7% of bases reaching quality scores of
at least Q30. RNA quality control, library construction, and sequenc-
ing were performed by Macrogen Inc (now Psomagen) of Rockville,
Maryland.

Prior to gene expression analysis, Fastqc (version 0.11.8) was used
to determine the sequence quality of the fastq files before and after
adapters were trimmed with Trimmomatic (version 0.36) (Andrews
2010; Bolger et al. 2014). Sequencing reads were aligned to the
C57BL/6J mouse genome by Hisat2 (version 2.1.0) using the
Ensembl GRCm38.p5 primary DNA assembly reference sequence
(Kim et al. 2015; Cunningham et al. 2019). On average, the overall
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alignment rate was 98.1% 6 0.3% [range: 96.9–98.6%]. Sequence
alignment files were written into bam files, sorted, and indexed by
Samtools (version 1.9.0) and genomic reads were counted by HTSeq
(version 0.11.1) (Anders et al. 2015; Morgan et al. 2019). Genes with
genomic read counts of 0 or a low yield were identified and removed
from the analysis by EdgeR (version 3.10) as low yield genes provide
little evidence for differential expression, followed by normalization
for the remaining expressed genes (McCarthy et al. 2012).

QTL mapping
Trait data were analyzed from offspring of the CSS backcross (n = 149)
(Figure 1). To generate N2 offspring for analysis, B6.A4 mice and
B6.A6 mice were first separately backcrossed to B6 mice. The
resulting (B6.A4 x B6)F1 and (B6.A6 x B6)F1 offspring were then
intercrossed to each other (Figure 1A). Their offspring, which we
refer to as the N2 generation, carried one chromosome 4 and one
chromosome 6 that was entirely of B6 origin and one chromosome
for each of these homologs that was recombinant, partially of B6 and
partially of A/J origin (Figure 1B). The remainder of the genome,
excluding chromosomes 4 and 6, is entirely from B6. Trait data were
measured and analyzed for 149 N2 offspring at 5 weeks of age. All
trait data for all samples can be found in Supplemental Table 2.
Additionally, summary statistics, Student t-tests, and Wilcoxon tests
were performed in R (version 3.5.3). Gene expression was analyzed
from a subset of the backcross offspring (n = 49).

QTL linkage analysis was performed using R/qtl software (v.1.44-9),
freely-available statistical software that performs single and multiple
QTL mapping analyses and allows for the inclusion of covariates
(Broman et al. 2003). One-dimensional (one locus) scans for main
effects and two-dimensional (two loci) scans for epistatic effects
were conducted for both the trait data and the transcriptome data
to detect and map main and epistatic effects using the R/qtl functions
“scanone” and “scantwo”, respectively. The scans were performed
with and without sex as a covariate using logistic regression with
the Haley-Knott (“hk”) algorithm (one-dimensional) or the Expec-
tation-Maximization algorithm (“em”) algorithm (two-dimensional).
Two-dimensional scans were also performed with the Haley-Knott
algorithm to test the effect of the algorithm on the output. The exact
same loci were identified as significant with the EM and HK algorithms,
demonstrating the robustness of the results. Two-dimensional scans
report the interaction with the largest LOD score for each possible
chromosomal interaction: Chromosome 4 to Chromosome 4,
Chromosome 6 to Chromosome 6, and Chromosome 4 to Chromo-
some 6. Trait data were also performed with BMI as an additive
covariate to account for variation due to adiposity (Samocha-Bonet
et al. 2008; Mărginean et al. 2019).

LOD significance thresholds were obtained from permutation tests
for both additive and epistatic models using a permutation-based LOD
threshold equivalent to P , 0.05. The exact LOD threshold was
calculated specifically for each trait given that data from all traits was
not available for all mice in the study. The R/qtl permutation test
permutes the phenotypes relative to the genotype data, applies the
QTL mapping method to the shuffled version of the data to obtain a
set of LOD curves, and derives the genome-wide maximum LOD
score. Permutation tests for each trait were performed with 10,000
permutations; thus, concerns of multiple testing related to the number
of statistical tests performed for each trait are accounted for by using
permutation p-values (Broman 2009). QTL locations were updated in
the context of a multiple QTL model based on maximum likelihood
using an iterative scan with the “refineqtl” function in R/qtl (Broman
et al. 2019).

Intra-chromosomal interacting QTL regulating gene expression
within 30 MB of each other were removed as visual inspection of the
data suggested a high frequency of suspected false positives, which is
also consistent with the limited mapping resolution given the study’s
sample size. The selection of a 30 MB window ensured that each
genotype class at a given pair of loci was represented by multiple
animals, and thus excluded analysis of genotype groups represented
by extremely small sample sizes (i.e., n = 1) due to the low frequency
of recombination between tightly linked loci. Significant interactions
were visualized in three-dimensional space using the R packages
“circularize” (Gu 2014) and “rgl” (Adler 2019).

Data availability
All RNA sequencing files can be found at accession number GSE145607
at the NCBI gene expression omnibus. All genotype data can be found
in Supplemental Table 1 and all phenotype data can be found in
Supplemental Table 2. The complete QTL analysis pipeline can be
found on protocols.io at dx.doi.org/10.17504/protocols.io.bmwtk7en.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.12816482

RESULTS

Identification of additive QTL for complex traits
B6.A6 and B6.A4 mice have previously been found to carry allelic
variation on their respective substituted chromosomes that non-
linearly interacted with each other to regulate plasma glucose levels.
This particular strain combination demonstrated the third most sta-
tistically significant interaction regulating glucose levels among 15 strain
combinations tested, with evidence of this interaction found in both
male and female mice. Additionally, mRNA expression of 83 genes
were identified that were regulated by epistatic interactions between
these two CSSs (Chen et al. 2017). Beyond the epistatic interactions
regulating glucose and gene expression, previous studies also found
evidence of QTL mapped to these chromosomes for other complex
traits, including a number of hematology-related traits that can quickly,

Figure 1 Diagram of the CSS backcross strategy to map epistatic QTL
pairs. (A) (B6.A4 x B6)F1 mice were crossed with (B6 x B6.A6)F1 mice to
generate 149 “N2” offspring. (B) Seven hypothetical “N2” offspring are
shown. The recombinant chromosomes 4 and 6 are derived from A/J or
C57BL/6J as indicated. All other chromosomes are B6- derived in all
mice and therefore lack any allelic variation in this cross.
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quantitatively, and cost-effectively be measured in hundreds of mice
(Lake J. et al.). Studies of hematology-related traits in the B6.A6
strain in particular identified as many or more QTL mapped to that
substituted chromosome (Chr. 6) than were found on any other
chromosome. Thus, given the previous findings of epistasis between
allelic variation on Chromosomes 4 and 6, as well as the evidence
for additional QTL regulating clinically relevant traits that could be
efficiently studied in a large mapping population, this particular
strain combination was chosen for additional studies. To further map
the genetic loci that control plasma glucose levels and other traits, a
total of 17 metabolism- and blood-related traits were analyzed in N2
offspring from a modified backcross between B6.A6 and B6.A4
(Figure 1).

A single-locus QTL genome scan was performed to test for main
(additive) effects in the 149 N2mice (Broman et al. 2003). Unadjusted
main effect QTL analysis identified significant QTL for two traits:
platelet count (plt) (LOD score . 2.04, p-value , 0.05) and gran-
ulocyte % (gran%) (LOD score . 2.02, p-value , 0.05). To test
whether including sex as a covariate might affect QTL detection, we
first tested for phenotypic differences in metabolism- and blood-
related traits between male and female mice from the same crosses.
There was a significant difference between sexes for 8 of the 17 factors
tested: fasted body weight, fasting glucose, length, fat pad weight,
mcv, mchc, plt, and rdwa (P, 0.05, Table S3). Thus, sex was included
as a covariate to better account for sex-specific trait differences. Sex-
adjusted main effect QTL were identified for three traits: plt and gran
% as before, plus an additional QTL for fat pad weight (Table 1). The
1-LOD support QTL intervals for these traits were located between
38.9 - 104.8 Mb on Chr. 6 (fat pad weight), 83.2 - 128.8 Mb on Chr.
4 (plt), and 125.0 - 146.5 Mb on Chr. 6 (gran%) (Table 1). These three
loci accounted for 28.3% (fat pad weight), 29.4% (plt), and 29.0%
(gran %) of their respective trait variances.

Main effect QTL analyses were also performed with BMI in the
model to account for variation due to adiposity. QTL analyses that
included sex and BMI resulted in the same significant main effect
QTL as sex alone. However, there was an increase in significance
for the plt QTL when BMI was added to the model (sex p value =
0.018 vs. sex and BMI p value = 0.010) (Table 1), which aligns with
the previously seen association between platelet count and BMI
(Samocha-Bonet et al. 2008; Mărginean et al. 2019).

Identification of epistatic QTL for complex traits
To test for epistatic QTL interactions, a two-dimensional (two-locus)
genome scan with sex as a covariate was performed for the metab-
olism- and blood-related trait data from 149 N2 mice. Epistatic QTL
pairs were identified for two of the traits: lymphocytes (ly%) and red

cell distribution width (rdw). An inter-chromosomal interaction was
discovered between loci on chromosomes 4 and 6 that regulated ly%
and an intra-chromosomal interaction between two distinct loci on
chromosome 6 regulated rdw (Table 2). The 1-LOD support QTL
intervals for ly% were between 5.09 – 104.51 Mb on Chr. 4 and
between 38.85 – 93.25 Mb on Chr. 6. The 1-LOD support interval for
ly% on Chr. 4 contains a second peak (Figure 2D), however the
direction of the effect on lymphocyte levels is the same for both
regions, and given the overlap between the 1-LOD support intervals
the possibility remains that these seemingly distinct peaks represent
one signal. The 1-LOD support QTL intervals for rdw were between
3.49 – 16.06 Mb and 14.36 Mb - 17.72 Mb on Chr. 6 (Table 2).

For ly%, the most significant interacting SNPs within the QTL
intervals were rs13477644 (Chr. 4) and rs13478739 (Chr. 6). Testing
for effects of these SNP genotypes individually on ly% revealed no
marginal effect on lymphocyte count (Figure 2A, B). Accordingly,
a main effect QTL analysis of these regions individually found no
evidence for a QTL at either locus (Figures 2C, S4). However, when
accounting for both SNP genotypes taken together, association with
lymphocyte count became readily apparent (Figure 2D), with the
resulting QTL analysis for interacting loci revealing a strong epistatic
QTL (Figure 2E). The epistatic regulation of ly% represents a case of
negative epistasis, as each individual A/J-derived allele at rs13477644
and rs13478739 is associated with a modest increase in ly% (Figure 2E,
middle two sections relative to the left section); however, the com-
bination of A/J-alleles at both rs13477644 and rs13478739 (Figure 2E,
far right section) together reduce ly% back toward the control levels.
The context dependent effects of this interaction are graphically
illustrated in Figure 2F, as shown by the crossing lines connecting
the mean values for each genotype combination indicating suppres-
sion epistasis. Remarkably, this epistatic interaction alone accounted
for 12.1% of the variance in this trait.

For rdw, the most significant interacting SNPs within the QTL
intervals were rs13478633 (Chr. 6) and rs13478641 (Chr. 6). Testing
for effects of these SNP genotypes individually on rdw revealed no
marginal effect on red cell distribution width (Figure S1A, B) and a
main effect QTL analysis found no evidence for a QTL at either locus
(Figures S1C, S4). However, when both SNP genotypes were jointly
analyzed (Figure S1D), the association with red cell distribution
width was identified (Figure S1E). The epistatic regulation of rdw
again represents a case of negative epistasis, as each A/J-derived
allele at rs13478633 and rs13478641 is associated with a modest
decrease in rdw (Figure S1D, middle two sections relative to the left
section); however, the combination of A/J-alleles at both rs13478633
and rs13478641 (Fig. S1D far right section) revert rdw back toward
the control levels. The context dependent effects of this interaction

n■ Table 1 1-LOD SUPPORT INTERVALS FOR MAIN EFFECT TRAIT QTLS

Chromosome Marker Position (Mb) LOD p-value BMI LOD BMI p-value

Fat Pad Weight 6 rs13478720 38.85 1.17 1.19
6 rs13478811 70.31 2.18 0.030 2.24 0.030
6 rs13478947 104.84 1.06 1.08

Platelets 4 rs13477808 83.18 1.56 1.55
4 rs13477911 111.29 2.61 0.018 2.64 0.010
4 rs13477973 128.75 1.41 1.36

Granulocyte (%) 6 rs3023094 125.04 1.61 1.49
6 rs13479068 137.48 2.64 0.006 2.57 0.02
6 rs3090690 146.46 1.55 1.55

Peak SNPs are in bold with the SNPs defining the 1-LOD support interval shown above and below the peak SNP. The LOD and P-value columns include sex in themodel,
The BMI LOD and BMI p-value columns include sex and BMI in the model.
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are graphically illustrated in Figure S1F. This epistatic interaction
accounted for 10.7% of variance in this trait.

Identification of QTL that regulate hepatic
gene expression
In addition to the metabolism and blood traits, we measured the liver
transcriptomes in a subset (n = 49) of the offspring from the B6.A4
and B6.A6 backcross to identify additive and epistatic QTL regulat-
ing hepatic gene expression. Linkage analyses of the RNA-Seq data
revealed 768 main effect QTL (single locus) (Table S5). Among the
main effect QTL, there were 159 genes within the QTL interval on
either chromosome 4 or 6, and are thus cis-QTL, whereas 609 were
located elsewhere in the genome and are therefore trans-QTL. There
were 519 epistatic QTL pairs regulating hepatic gene expression
(LOD Score. 2.44, p-value, 0.05) (Table S6). As the R/qtl mapping
software used only identifies the most significant inter-chromosomal
epistatic interaction between chromosome 4 and 6 and the most
significant intra-chromosomal epistatic interactions for each chro-
mosome, if anything these numbers represent an underestimate of
the true number of epistatic QTL pairs, thus demonstrating the
pervasive effects of epistasis in the regulation of gene expression.
In addition to the detection of widespread epistasis, the N2 cross
strategy used in this study (Figure 1) enabled higher resolution QTL
mapping relative to prior CSS studies in which the mapping reso-
lution was limited to entire chromosomes (Chen et al. 2017). For
example, previous studies mapped main effect QTL regulating the
expression of Extl1 to Chromosome 4, Cadps2 to Chromosome 6,
and an epistatic interaction controlling the expression of Tmem245 to
Chromosomes 4 and 6, all of which were mapped with higher
resolution with the N2 cross (Figures S2 and S3).

The relationship between main effect QTL LOD scores and
interaction QTL LOD scores shows that a large interaction QTL
LOD score does not predict a large main effect QTL LOD score, and
vice versa (Figure 3). Of the 748 unique genes with significant main
effects and 510 unique genes with significant epistatic effects, 727 genes
had only main effects, 489 had only epistatic effects, respectively, and
21 genes had both significant main and epistatic effects. Thus, there
appears to be little overlap between marginal and epistatic effector
loci (Figure 3). The percent variance explained by interaction QTL

(mean 24.5%; range 20.5–85.6%) was similar to that explained by
single locus QTL (mean 28.5%; range 20.5–44.4%). The detection of
so many epistatic QTL accounting for such a high proportion of the
variance was not unexpected, as our previous data suggested the
widespread importance of epistasis in regulating gene expression
(Chen et al. 2017). Of 519 epistatic QTL (the 510 unique genes and
genes regulated by multiple eQTLs), 243 (46.8%) exhibited positive
epistasis whereas 276 (53.2%) exhibited negative epistasis. That a
slight majority of QTL exhibited negative epistasis indicates that
epistasis can have a profound effect on maintaining homeostasis,
although the proportion of negative epistatic QTL pairs in this study
was not as high as previously detected using CSSs (.95%) (Chen
et al. 2017), However, the current proportion of negative epistasis is
more in line with other studies comparing negative and positive
interactions (Segre et al. 2005; Costanzo et al. 2016; Guerrero et al.
2017).

The most statistically significant epistatic QTL regulating gene
expression was for Arhgap25, with LOD peaks at the SNPs rs13478003
(Chr. 4) and rs13478976 (Chr. 6). As seen in the analysis of ly%,
analysis of Arhgap25 expression associated with each individual
SNP failed to reveal a main effect of genotype (Figure 4A, B), and
neither resulted in a significant QTL association (Figure 4C).
However, when Arhgap25 expression was analyzed with SNP-
SNP interactions, a clear genetic effect of the combination of
rs13478003 and rs13478976 was detected (Figure 4D-F). This in-
teraction accounted for a remarkable 41.7% of the variance for this
trait, but was completely absent in a standard single locus associ-
ation analysis (Table S6). Beyond Arhgap25, 518 additional genes
were identified with significant epistatic QTL. Interaction plots of
the next 5 most significant regulated genes (after Arhgap25) are
shown in Figure 5A-E and include Irf2bpl, Gnmt, Rasa3, Flnb,
and Capn10, all demonstrating interactions that act to maintain
homeostatic levels of gene expression (negative epistasis), rather than
exacerbate strain differences in expression levels (Figure 5). None
of the interacting loci that associated with the regulation of these
transcripts was marginally associated with controlling gene expres-
sion levels.

Interacting loci on chromosomes 4 and 6 were widely distributed
along each chromosome (Figure 6A). Of the 186 intra-chromosomal

n■ Table 2 1-LOD SUPPORT INTERVALS FOR EPISTATIC TRAIT QTLS

Trait Chromosome Marker (nearest SNP) Position (Mb) LOD p-value

Lymphocytes (%) 0.032
Interval 1

4 rs13477536 5.09 2.86
4 rs13477644 35.28 4.23
4 rs3695339 104.51 2.72

Interval 2
6 rs13478720 38.85 2.29
6 rs13478739 47.03 3.85
6 rs13478897 93.25 1.95

Red Cell Distribution Width 0.036
Interval 1

6 rs13459096 3.49 3.10
6 rs13478633 12.25 5.69
6 rs13478641 16.06 0.90

Interval 2
6 rs13478638 14.36 3.70
6 rs13478641 16.06 5.95
6 rs3023064 17.72 3.91

Peak SNPs are in bold with the SNPs defining the 1-LOD support interval shown above and below both peak SNPs.
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interactions, 37 were located on Chromosome 4 and 149 on Chro-
mosome 6 (Figure 6B). The remaining 333 interactions were
inter-chromosomal (Figure 6C). Of the genes whose expression
was regulated by an epistatic QTL pair, 19 were located within the
QTL interval on either chromosome 4 or 6, and are thus likely

controlled by cis-QTL. This represents a 2.0-fold enrichment of
cis-QTL based on the size of the QTL intervals and relative to the
number of cis-QTL expected by chance (P = 0.006). The remaining
500 interacting eQTLs were located elsewhere in the genome and are
therefore trans-QTL. Although there appeared to be few if any QTL

Figure 2 Epistatic interaction between loci
on chromosomes 4 and 6 regulate the
percentage of lymphocyte cells in blood.
Lymphocyte % based on genotype at
SNP markers (A) rs13477644 on chromosome
4 and (B) rs13478739 on chromosome 6. Each
dot represents one mouse. (C) QTL mapping
results for main effects on chromosomes
4 and 6. The LOD threshold for significance
(P , 0.05) was calculated by permutation
testing (n = 10,000) and is indicated by a
horizontal line. Mb position is indicated for
both chromosomes 4 and 6 along the x-axis.
No significantmain effectQTLwere detected.
(D) Lymphocyte % based on the combined
genotypes at rs13477644 on chromosome
4 and rs13478739 on chromosome 6. (E)
QTL mapping results for interaction effects
on chromosomes 4 and 6. The LOD thresh-
old for significance (P , 0.05) was calcu-
lated by permutation testing (n = 10,000)
and is indicated by a horizontal line. The
most significant interaction QTL pairs were de-
tected with peaks centered at rs13477644
(17.3 Mb) and rs13478739 (22.6 Mb), with a
potentially second peak on chromosome
4 centered at rs13477796 (37.6 Mb). Mb
position is indicated for both chromosomes 4
and 6 along the x-axis. (F) Context-dependent
effects of the BB and AB genotypes at
markers rs13477644 and rs13478739. Mean
and standard error are shown for each ge-
notype combination. An “A” genotype indi-
cates A/J-derived. A “B” genotype indicates
C57BL/6J-derived.

Figure 3 Little overlap between main effect QTL and epistatic QTL pairs. (A,B) LOD scores for peak SNPs defining significant epistatic QTL pairs
were plotted against the corresponding main effect LOD scores for each SNP within the epistatic pair. (C) LOD scores for peak SNPs defining
significant main effect QTL were plotted against themost significant interaction LOD score for that SNP. The solid horizontal red line in panels A and
B indicates the threshold level for significance for epistatic QTL pairs and the vertical dashed red line in panel C indicates the threshold level for
significance for main effect QTL.
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hotspots, the genes that were regulated by epistatic QTL pairs were
enriched for a number of biological pathways (Supplemental Table 7).
Gene ontology analysis discovered that the most significantly
enriched pathways tended to be non-specific pathways related
to various metabolic processes. Other pathways identified were
related to basic cellular processes including the regulation of gene
expression and signal transduction, RNA processing, and stress
responses. All this is to say that the genes regulated by epistasis
collectively have broad cellular functions and represent the most
fundamental cellular biological processes.

DISCUSSION
N2 CSS mice with allelic variation from two substituted chromo-
somes were used to study epistatic interactions and map loci con-
trolling complex traits and gene expression, as these CSSs have a
greatly simplified genetic background relative to other commonly
used mapping resources in mammalian systems. The resulting anal-
yses identified widespread epistatic interactions, including specific
interacting loci that contributed to the heritable variation in lym-
phocyte percentage (ly%), red cell distribution width (rdw), and
hepatic gene expression of over 500 genes. Intra-chromosomal
interactions were detected in rdw and hepatic gene expression data
that could not be identified in studies of the B6.A4 and B6.A6 CSS

strains carrying the entire nonrecombinant A/J-derived substituted
chromosomes (Chen et al. 2017). That this number of traits and genes
were identified with detectable regulation by epistasis is remark-
able considering that only a single time point was examined, gene
expression was only measured in the liver, and only one pairwise
strain combination of CSSs was examined. Given that ly% and
rdw are associated with diagnosis and prognosis in cancer patients
as well as cardiometabolic disease, identifying a more complete
genetic model that incorporates interaction may improve our ability
to predict those at greatest risk or modulate these traits based on
improved knowledge of the biological pathways that underlie these
interactions (Iseki et al. 2017; Zhao et al. 2017; Pilling et al. 2018).

Among the most significant genes whose expression is regulated
by epistatic interactions, Capn10 is particularly interesting given its
controversial association with T2D risk. It was the first T2D suscep-
tibility gene identified in linkage studies (Horikawa et al. 2000), with
multiple subsequent GWAS or candidate gene studies having also
identified an association between variants near CAPN10 and T2D risk
and other diabetes-related phenotypes (Baier et al. 2000; Evans et al.
2001; Orozco et al. 2014; Ibrahim et al. 2015; Cui et al. 2016; Zhao
et al. 2016; Bayramci et al. 2017; Hou et al. 2017; Castro-Martínez
et al. 2018). However, many other studies failed to replicate these
findings (Hegele et al. 2001; Tsai et al. 2001; Khan et al. 2014;

Figure 4 Epistatic interaction between loci
on chromosomes 4 and 6 regulates Arhgap25
mRNA expression. Arhgap25 mRNA expres-
sion based on genotype at SNP markers
(A) rs13478003 on chromosome 4 and (B)
rs13478976 on chromosome 6. Each dot rep-
resents one mouse. (C) QTL mapping results
for main effects on chromosomes 4 and 6. The
LOD threshold for significance (P , 0.05) was
calculated using R/qtl and is indicated by a
horizontal line. Mb position is indicated for both
chromosomes 4 and 6 along the x-axis. No
significant QTL were detected. (D) Arhgap25
mRNA expression based on the combined
genotypes at rs13478003 on chromosome
4 and rs13478976 on chromosome 6. (E) QTL
mapping results for interaction effects on
chromosomes 4 and 6. The LOD threshold for
significance (P, 0.05) was calculated by R/qtl
using 10,000 permutations and is indicated
by a horizontal line. The most significant in-
teraction QTL were detected with peaks at
rs13478003 (69.1Mb) and rs13478976 (52.2Mb).
Mb position is indicated for both chromosomes
4 and 6 along the x-axis. (F) Context- dependent
effects of the BB and AB genotypes at
rs13478003 and rs13478976. Mean and stan-
dard error are shown for each genotype combi-
nation. An “A” genotype indicates A/J-derived.
A “B” genotype indicates C57BL/6J-derived.
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Al-Sinani et al. 2015; Plengvidhya et al. 2015; Zhang et al. 2019). It is
tempting to speculate that one potential reason for the inconsistent
results could be an incomplete understanding of epistatic interactions
between CAPN10 and other loci. To illustrate how this could happen,
previous simulation studies of interacting loci revealed that small
differences in allelic frequencies between populations can lead to a
failure to replicate GWAS results (Greene et al. 2009). Therefore, it is
of note that one study of �1,400 T2D and control individuals found
no evidence of main effects in CAPN10, but did identify evidence
for gene-gene interactions involving CAPN10 influencing T2D risk
(Uma Jyothi and Reddy 2015). This is remarkably similar to what we
have shown with ly% (Figure 3) and Arhgap25 expression (Figure 4),
where a failure to account for interactions can mask an otherwise
strong association.

The �500 genes whose hepatic expression was regulated by
epistasis is significantly more than were first identified in studies of
the B6.A4 and B6.A6 CSS strains carrying the entire nonrecombi-
nant A/J-derived substituted chromosomes (Chen et al. 2017). This
may be, in part, because the recombination events within chromo-
somes 4 and 6 decoupled intra-chromosomal interactions in order
to reveal previously undetected intra- and inter-chromosomal
epistatic QTL. This phenomenon has been frequently observed in
previous studies of CSS for a wide range of traits, with numerous
previously hidden QTL revealed upon deconstruction of the substituted

chromosome (Buchner and Nadeau 2015). The high prevalence of
epistatic interactions provides evidence for complex molecular mod-
els underlying the genetics of many quantitative traits (Gerke et al.
2009; Gerke et al. 2010; Chow 2016; Sackton and Hartl 2016). In
addition, it is of note that there is little overlap between the genes that
affect gene expression via marginal vs. epistatic actions. This indicates
that conditioning tests for epistasis based on prior detected marginal
effects, as is often done, may underestimate the importance of
epistasis in complex traits (Greene et al. 2009).

Beyond the identification of specific epistatic QTL, this study has
broad implications for understanding the genetic architecture of
complex traits. For instance, among the traits where an epistatic
QTL was detected, those QTL accounted for a considerable pro-
portion of the variance for that trait (11.4% for blood-related traits,
24.5% for gene expression). The gene expression QTL revealed a
similar number of loci with comparable variance explained (inter-
action: mean 24.5%; range 20.5–85.6%, marginal: mean 28.5%; range
20.5–44.4%). This demonstrates that epistatic interactions can have
large effect sizes. However, it is important to note that studies in CSSs
have consistently found QTL that explain larger proportions of the
variance relative to other mapping populations such as the hybrid
mouse diversity panel and the diversity outbred mapping populations
(Buchner and Nadeau 2015). The high variance accounted for by
QTL in studies based on CSSs has been attributed in part to the

Figure 5 Epistatic interactions control gene
expression. Context dependent effects on
gene expression for (A) Irf2bpl, (B)Gnmt, (C)
Rasa3, (D) Flnb, and (E) Capn10. The y-axis
represents the number of unique sequencing
reads per gene after normalizing read depth
across samples. Mean and standard error are
shown for each genotype combination. An
“A” genotype indicates A/J-derived. A “B”
genotype indicates C57BL/6J-derived.
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limited allelic variation within each CSS, the limited power for
detecting smaller effects given study sample sizes, and the study of
genetically identical replicates within each CSS strain to improve
genotype-phenotype correlations and reduce “noise” in the analysis,
although the later does not apply to these data given the unique
genotypes of each N2 offspring (Figure 1). Therefore, caution must be
applied to directly extrapolating these effect sizes to human genetic
studies or even studies in other mammalian systems. Nonetheless,
within this CSS-based study, these same factors apply equally to main
effects and interaction effects, and the fact that the variance explained
was similar between these two classes of QTL contributes to the
growing body of evidence that epistatic interactions play an impor-
tant role in the genetic architecture of complex traits. This finding has
broad implications for the genetic architecture of complex traits,
where most studies to date have exclusively identified main effect
QTL. Despite this limitation, clinical applications based on these
studies, such as the use of polygenic risk scores, are beginning to be
clinically evaluated with some promising early results (Torkamani
et al. 2018). Our results highlight that these models are likely to
remain severely handicapped until they account for interactions, as
the individual and cumulative effects of the interacting loci can be
equivalent to the main effects, but remain unaccounted for in the
models.

While it is relatively easy to lament the absence of epistatic
interactions in modeling genetic architecture, the problem is not
simply that the models do not account for interactions, but rather
that experimentally or statistically identifying such interactions has
proven exceedingly difficult. Herein lies the strength of this new CSS
interaction-based mapping paradigm, which enabled the detection
and higher-resolution mapping of otherwise hidden QTL, revealing
the genomic locations of numerous novel loci that interact to control
a number of complex traits and the expression of hundreds of genes
that were not found using only a marginal analysis strategy. This
was all accomplished with a relatively small number of mice for a

mapping population, including just �150 mice for the trait data and
�50mice for the gene expression analyses. Thus, the use of additional
CSS crosses and larger mapping populations promises to facilitate the
widespread identification of the specific genes and alleles that un-
derlie a broad spectrum of complex traits. These results point to the
importance of searching for epistasis in as simplified a genetic context
as possible, knowing that even within the limited allelic variation of a
single substituted chromosome there is a remarkable genetic com-
plexity contributing to phenotypic variation. As we attempt to move
toward more personalized medicine, it will no doubt require a
more comprehensive understanding of the many interacting loci
throughout the genome, which should be greatly facilitated by this
CSS-based mapping paradigm.
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