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Abstract: Haze, due to biomass burning, is a recurring problem in Southeast Asia (SEA). Exposure to
atmospheric particulate matter (PM) remains an important public health concern. In this paper,
we examined the long-term seasonality of PM2.5 and PM10 in Singapore. To study the association
between forest fires in SEA and air quality in Singapore, we built two machine learning models,
including the random forest (RF) model and the vector autoregressive (VAR) model, using a benchmark
air quality dataset containing daily PM2.5 and PM10 from 2009 to 2018. Furthermore, we incorporated
weather parameters as independent variables. We observed two annual peaks, one in the middle of
the year and one at the end of the year for both PM2.5 and PM10. Singapore was more affected by fires
from Kalimantan compared to fires from other SEA countries. VAR models performed better than RF
with Mean Absolute Percentage Error (MAPE) values being 0.8% and 6.1% lower for PM2.5 and PM10,

respectively. The situation in Singapore can be reasonably anticipated with predictive models that
incorporate information on forest fires and weather variations. Public communication of anticipated
air quality at the national level benefits those at higher risk of experiencing poorer health due to
poorer air quality.

Keywords: air quality; forest fires; random forest model; vector autoregressive model

1. Introduction

Biomass burning is the burning of living and dead vegetation, and it can occur naturally or
due to human activities. [1–3]. Haze, generated by biomass burning, causes air pollution that affects
local air quality as well as the air quality of distant places. Haze can have detrimental impacts on
human health [4–8], climate, biodiversity, tourism and agricultural production [9] as well as degrade
visibility [10].

In recent decades, biomass burning has become a recurring phenomenon in mainland Southeast
Asia (SEA) and the islands of Sumatra and Borneo [10–14]. The majority of biomass burning in
Southeast Asia occur due to human initiated activities such as land clearing for oil palm plantations,
other causes of deforestation, poor peatland management, and burning of agriculture waste [15,16].
Haze can be felt even in downwind locations such as Singapore [17,18].
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Several studies have shown that meteorological conditions have significant influence on the
formation of haze [19–24]. In 2012, Reid et al. [25] investigated relationships between fire hotspot
appearance and various weather phenomena as well as climate variabilities in different timescales
and found that the influence of these factors on fire events varies over different parts of the Maritime
Continent. Haze was also shown to be worse in El Niňo years [26]. In addition, a study in Singapore
demonstrated that haze fluctuates according to localities and seasons and is also influenced by factors
such as weather parameters and the extent of burning in the neighboring regions [10].

Studies have also shown that forest fires in one area can affect air quality in surrounding countries.
For example, a study on the 1997 Indonesia forest fires reported aerosols being transmitted from
Kalimantan to other countries in SEA, including Singapore [27]. Reports have also shown the
differences in air quality within a country. For instance, Singapore reported that the concentration of
particulate matters in haze measured across the different regions in Singapore varied, according to
seasonality as well as relative contribution from various source regions [10]. The significant variations
in haze concentration across a small city like Singapore stresses the importance of a need for spatial
and temporal modelling. A haze forecast system was established by the Met Office (MO) and the
Meteorological Service Singapore (MSS) to predict haze in Singapore [28]. The modelling system
developed could accurately reproduce the haze conditions observed in the Maritime Continent and in
mainland Southeast Asia in 2013 and 2014. However, to the best of our knowledge, there is no long
term study on the seasonality of air quality in Singapore, and no predictive modelling that provides
daily air quality predictions. A daily prediction of air quality will be useful for nationwide planning
for community activities.

Researchers have used several machine learning techniques to predict air quality. A novel
spatiotemporal deep learning based air quality prediction method was proposed by researchers
in Beijing, and the study showed that the proposed method outperformed models using the
artificial neural network, regression moving average, and support vector regression techniques [29].
Another study explored three methods: (i) laboratory univariate linear regression, (ii) empirical multiple
linear regression, and (iii) machine-learning-based calibration models using random forests (RF)
and concluded that combining RF models with carefully controlled state-of-the-art multipollutant sensor
packages improves the performances of prediction models of air quality sensors [29]. Another study,
focusing on forecasting urban air pollution, showed that using different features in multivariate
modelling with the M5P algorithm yields the best forecasting performances [30].

In this present study, we examined the association between forest fires in SEA and air quality in
Singapore using different statistical models. Daily air quality forecasts will help the community to be
better prepared for outdoor activities, and is especially useful for vulnerable individuals.

2. Methods

2.1. Study Setting

We conducted our study in Singapore (1◦17′ N 103◦50′ E) (Figure 1), a city state with a land area
of 724.2 square kilometer, and a population density of 7804 people per square kilometer, one of the
highest population densities in the world [31]. Singapore experiences a tropical climate with abundant
rainfall, high and uniform temperatures and high humidity all year round [32].
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Figure 1. Map of study setting. Source: https://www.openstreetmap.org/#map=11/1.3680/103.8387.

2.2. Climate Data

Daily mean temperature (in degrees Celsius), minimum temperature (in degrees Celsius),
maximum temperature (in degrees Celsius), relative humidity (in percentage), mean wind speed
(meters per speed), minimum wind speed (in meters per speed), maximum wind speed (meters per
speed), wind direction (0 to 360 degrees) and total rainfall (in millimeter) from 2009 to 2018 recorded in
Changi weather station in Singapore is obtained from MSS. MSS maintains a comprehensive network
of specialized meteorological observing systems. It undertakes weather observation practices in
accordance with international standards, and manages the long-term archive and quality control of
national climate data [33].

2.3. Air Quality Data

Biomass burning contributes mainly to two pollutants; particulate matter 2.5 (PM2.5) which are
particles in the air that are 2.5 micrometers or less in aerodynamic diameter, and particulate matter
10 (PM10), which are particles in the air that are 10 micrometers or less in aerodynamic diameter.
These two pollutants are chosen for this study. The 24-h average of PM2.5 and PM10 for Singapore is
recorded daily from 2009 to 2018 (Figure 2). The units for both PM2.5 and PM10 are microgram per cubic
meter. Air quality readings are obtained from the USEPA AQI (United States Environmental Protection
Agency Air Quality Index) system, which has been supported as an appropriate measurement by the
Advisory Committee [34,35].

https://www.openstreetmap.org/#map=11/1.3680/103.8387
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2.4. Forest Fire Data

Daily forest fire hotspot counts in Malaysia (Peninsular Malaysia, Sabah and Sarawak)
and Indonesia (Sumatra and Kalimantan) are obtained from Association of Southeast Asian Nations
Specialized Meteorological Centre for 2009 to 2018 [33] (Figure 3). The hotspots depicted are derived
from the NOAA (National Oceanic and Atmospheric Administration) satellite and they represent
locations with possible fires. Some hotspots may go undetected due to cloudy conditions or incomplete
satellite pass. Hotspot counts from year 2016 onwards are based on the NOAA-19 satellite, and for the
period from year 2006–2015 are based on the NOAA-18 satellite. The fire detection algorithm and how
the hotspots are counted is described in detail on the website [36].
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Figure 3. Daily distribution of forest fires hotspots counts (A) Sumatra (B) Kalimantan (C) Sabah/Sarawak
(D) Peninsular Malaysia from 2009 to 2018.

2.5. Statistical Analyses

The outcome variables for this study are PM2.5 and PM10. The independent variables are
(i) mean temperature, (ii) minimum temperature, (iii) maximum temperature, (iv) relative humidity
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(v) mean wind speed, (vi) minimum wind speed, (vii) maximum wind speed, (viii) wind direction,
(ix) total rainfall, (x) counts of hotspots in Kalimantan, (xi) counts of hotspots in Sumatra,
(xii) counts of hotspots in Sabah and Sarawak and (xiii) counts of hotspots in Peninsular Malaysia.
Each independent variable has 31 variations, with lags from 0 days to 31 days (Supplementary
Table S1). Correlation tests are carried out using the “corrr” package in the R statistical language [37]
to determine the association between the outcome variables and each of the independent variables.
We evaluated the trend and seasonality of the daily values of PM2.5 and PM10 in separate time series
models using the “ts” and “decompose” package implemented in the R statistical language [37].
The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) was used to test if the time series was stationary.
KPSS test for both PM2.5 and PM10 showed they were both stationary over time (p-value < 0.05).
Therefore, the subsequent models used for prediction in this study are appropriate.

2.6. Model Parameters and Evaluation

Several models such as backward stepwise multivariate regression model, Holtwinter’s Time
Series model, Seasonal Autoregressive Integrated Moving Average model, RF and VAR models were
explored for the analyses. We chose RF and VAR model for the following reasons. The RF model
was chosen due to the ease of interpreting results; predictors that affect the outcomes most can be
easily interpreted based on the importance calculation. Comparing the different time series models,
VAR stands out as we can incorporate multiple independent variables into the model, which is
relevant for our dataset. All the independent variables were also stationary hence the model was also
appropriate for the analyses. Separate statistical models using RF and VAR techniques were built for
both PM2.5 and PM10. The independent variables that were incorporated into the models can be found
in Supplementary Table S1. All dataset (2009–2018) were randomly split into training (70%) dataset and
testing (30%) dataset to evaluate the accuracy of the models. The accuracy of the models was tested by
calculating the mean absolute percentage error (MAPE) for each model using the following equation,
where n is the total number of fitted points:

1
n

(∑ Actual value− Predicted value
Actual value

)
∗ 100 (1)

All data and statistical analyses were performed using R software version 3.6.1 [37]. Statistical
significance was assessed at the 5% level. All results, where indicated, are computed for 95% confidence
intervals (CI).

2.7. RF Model

RF is an ensemble machine learning method that uses an ensemble of decision trees [38]. In RF,
several bootstrap samples are drawn from the training set data, and an unpruned decision tree is fitted
to each bootstrap sample. At each node of the decision tree, variable selection is carried out on a small
random subset of the predictor variables. The best split on these predictors is used to split the node.

To find the best split for the model, we plotted the Out of Bag Error estimates and the error
calculated on the test set [39]. We chose the split that gives the lowest error. We also calculated the
percentage mean squared error (MSE) for each independent variable to determine the importance of
each variable. MSE is calculated by the following equation:

MSE =
1
n

n∑
i = 1

(Actual value− predicted value) 2 (2)

Percentage MSE is computed by calculating the percent increase in MSE of the RF model when
the data for each variable were randomly permuted. For each tree, the MSE on test is recorded.
Then the same is done after permuting each predictor variable. The difference between the MSE on
test and the MSE of the new model, from permuting each predictor variable, are then averaged over all
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trees, and normalized by the standard deviation of the differences. If the standard deviation of the
differences is equal to 0 for a variable, the division is not done. The higher the difference is, the more
important the variable. We categorized the top-ranked variables with a MSE of >10%. The predicted
response is obtained by averaging the predictions of all trees. RF analyses are performed using the
“Random Forest” package implemented in the R statistical language [37].

2.8. VAR Model

The VAR model extends the idea of univariate autoregression to multi time series regressions,
where the lagged values of all series appear as regressors. The model can be seen as a linear prediction
model that predicts the current value of a variable based on its own past value on the previous point in
time and the past values of the other variables [40]. For example, the VAR model of two variables Xt

and Yt (k = 2) with the lag order p is defined as

Yt = β10 + β11Yt−1 + . . . . + β1pYt−p + γ11Xt−1 + . . . . + γ1pXt−p + µ1t, (3)

Xt = β20 + β21Yt−1 + . . . . + β2pYt−p + γ21Xt−1 + . . . . + γ2pXt−p + µ2t. (4)

The βs and γs can be estimated using ordinary least squared on each equation [41]. Analyses are
carried out under the assumption of normality of the data. The function “VARselect” is first used
to select the maximum lag which has the lowest Akaike information criterion (AIC). The AIC is an
estimator of out-of-sample prediction error and it estimates the quality of each model, relative to each
of the other models. VAR analyses are conducted using the “vars” package implemented in the R
statistical language [37].

3. Results

3.1. Association between PM2.5 and PM10 with Climate and Hotspots Variables

The independent variables had weak correlation with PM2.5 and PM10; however, we noticed that
for both PM2.5 and PM10 counts of hotspots in Kalimantan with lags between 1 to 18 days had an
average correlation coefficient of 0.2, and p-value < 0.05. The correlation coefficients and corresponding
p-values between the outcome variables (PM2.5 and PM10) and the climate and hotspot variables are
listed in Supplementary Table S2.

3.2. Time-Series Analyses of Daily 24-h Average of PM2.5 and PM10

There are seasonal fluctuations in both PM2.5 and PM10 over the study period. We observed two
annual peaks, one in the middle of the year and one at the end of the year for both PM2.5 (y = −2 ×
10−9x4 + 3 × 10−6x3

− 0.0013x2 + 0.2445x − 12.161) and and PM10 (y = −2 × 10−9x4 + 3 × 10−6x3
−

0.0013x2 + 0.2316x − 11.364). There was no discerning trend, but we noticed two episodes of extremely
poor air quality in mid-2013 and mid-2015, and these appeared to be outliers. Figure 4 shows the
breakdown of the seasonality of PM2.5 and PM10.

3.3. RF Model

The RF models are built using 500 trees, and the number of variable splits that gives the lowest
error for model PM2.5 and model PM10 are 193 and 89, respectively. Among the independent variables,
relative humidity with lags of 0, 1 and 2 days are top-ranked for PM2.5 and PM10. In addition, counts of
hotspots in Kalimantan with lags of 8 and 11 days are top-ranked for PM2.5, whilst counts of hotspots
in Kalimantan with lags of 1, 8 and 9 days are top-ranked for PM10. The MSEs calculated for the rest
of the variables are listed in Supplementary Table S3. Figure 5 shows graphical comparison of the
predicted and actual values for PM2.5 and PM10.
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Figure 4. The seasonality of (A) PM2.5 and (B) PM10. The first two years are shown for easier visualization.
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3.4. VAR Model

To get the lowest AIC, the VAR model for PM2.5 and PM10 was built using maximum lags of 8 and
9 respectively. The variables used in the models PM2.5 and PM10 are listed in Supplementary Table S4.
Tables 1 and 2 summarize the coefficients of the variables that were significant (p < 0.05) for PM2.5 and
PM10, respectively.

Table 1. Coefficients for variables associated with PM2.5 that are significant (p < 0.05) using vector
autoregressive (VAR) model.

Variables Estimate (CI)

Mean temp with 2 days lag −2.77 (−1.58 to −3.94)
PM2.5 with 1 day lag 0.76 (0.56 to 0.95)

Mean wind speed with 2 days lag 0.56 (0.10 to 1.01)
PM2.5 with 5 days lag 0.12 (−0.10 to 0.33)

Relative humidity with 1 day lag −0.36 (−0.75 to 0.03)
Mean wind speed with 1 day lag −0.44 (−0.87 to −0.01)

Mean temp with 1 day lag −2.81 (−3.91 to −1.72)
Count of hotspots in Kalimantan with 3 days lag 0.01 (−0.08 to 0.11)

Max temp with 2 days lag −0.63 (−1.3 to 0.04)
Count of hotspots in Kalimantan with 8 days lag 0.01 (−0.08 to 0.09)

Rainfall with 1 day lag −0.0008 (−0.03 to 0.02)
PM2.5 with 6 days lag −0.06 (−0.28 to 0.16)

Min temp with 1 day lag 0.69 (−0.05 to 1.44)
Mean wind speed with 5 days lag 0.24 (−0.21 to 0.7)
Mean wind speed with 4 days lag −0.24 (−0.69 to 0.22)

Count of hotspots in Sabah/Sarawak with 8 days lag −0.04 (−0.21 to 0.14)
Count of hotspots in Kalimantan with 6 days lag 0.01 (−0.08 to 0.10)
Count of hotspots in Kalimantan with 1 day lag 0.01 (−0.08 to 0.09)

Max wind speed with 2 days lag −0.05 (−0.28 to 0.17)
Count of hotspots in Sabah/Sarawak with 6 days lag −0.04 (−0.22 to 0.15)

Table 2. Coefficients for variables associated with PM10 that are significant (p < 0.05) using VAR model.

Variables Estimate (CI)

PM10 with 1 day lag 0.75 (0.59 to 0.91)
Mean temp with 1 day lag −3.53 (−2.49 to −4.56)

PM10 with 5 days lag 0.08 (−0.08 to 0.24)
Relative humidity with 1 day lag −0.52 (−0.93 to −0.10)
Mean wind speed with 2 days lag 0.68 (0.19 to 1.16)

Mean temp with 2 days lag −3.72 (−2.58 to −4.87)
Relative humidity with 2 days lag 0.31 (−0.09 to 0.72)
Mean wind speed with 1 day lag −0.35 (−0.79 to 0.09)

Counts of hotspots in Kalimantan with 8 days lag 0.01 (−0.07 to 0.09)
Counts of hotspots in Sabah/Sarawak with 8 days lag −0.05 (−0.24 to 0.13)

Min temp with 4 days lag 0.61 (−0.01 to 1.23)
Mean wind speed with 4 days lag −0.33 (−0.78 to 0.13)

Rainfall with 1 day lag −0.001 (−0.03 to 0.03)
Min temp with 1 day lag 0.84 (0.06 to 1.62)
Min temp with 2 days lag −0.85 (−1.65 to −0.05)

Mean wind speed with 5 days lag 0.23 (−0.19 to 0.65)
Max temp with 2 days lag −0.57 (−1.23 to 0.10)

Mean wind speed with 3 days lag −0.23 (−0.68 to 0.22)
Counts of hotspots in Sumatra with 3 days lag 0.001 (−0.08 to 0.09)

Counts of hotspots in Sabah/Sarawak with 6 days lag −0.04 (−0.21 to 0.14)
Rainfall with 7 days lag 0.0007 (−0.03 to 0.03)

Min temp with 9 days lag −0.44 (−1.09 to 0.21)
Max wind speed with 2 days lag −0.06 (−0.29 to 0.18)

Counts of hotspots in Kalimantan with 1 day lag 0.006 (−0.07 to 0.09)

Figure 6 shows the graphical comparison of the predicted and actual values for PM2.5 and PM10.
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3.5. Comparison of Models

Table 3 shows the MAPE values for each of the four models. From Table 3, we can see that
VAR models have lower MAPE performance compared to that of the RF models for both PM2.5 and
PM10 experiments.

Table 3. Mean Absolute Percentage Error of the Random Forest and Vector Autoregressive models for
both PM2.5 and PM10.

MAPE (%)

Outcome Variable Random Forest VAR

PM2.5 26.8 26.0

PM10 21.3 15.2

4. Discussion

In this study, we sought to examine the association between forest fires and air quality in Singapore.
We found a positive association between ambient air particulate concentrations in Singapore and counts
of instances of forest fires. This association was observed with a 1 to 8 days’ lag depending on the
location of the forest fires. Our study findings were consistent with other studies. Significant build-up
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of aerosol and black carbon concentrations was observed in the Tibetan plateau due to the occurrence
of fires and transport of pollution from the nearby regions of Southeast Asia and the northern part of
the Indian Peninsula [42]. Similarly, forest fires in Serbia resulted in air pollution through Mongolia,
eastern China, down to the Korean peninsula [43]. This finding is not unexpected. Past research has
shown that forest fire emissions were the largest contributors to the air pollution problem in regions
tens of kilometers away from the fire source [44]. Our RF model picked up counts of hotspots in
Kalimantan up to 11 days’ lag as significant variable that affects PM2.5 and PM10 concentration in the
air. A similar study on the 1997 Indonesia forest fires corroborates our results that Singapore was
more affected by fires from Kalimantan compared to fires from other countries, due to the shifting
of the monsoons [45]. Although Malaysia and Sumatra are closer to Singapore in terms of distance
than Kalimantan [46], the models show that climatic factors are important in influencing the impact of
forest fires on air quality.

Seasonality shows that the peaks in poor air quality in Singapore occurs twice, once in the middle
of the year, and one at the end of the year. This finding corresponds with other studies that show
that high values of PM2.5 and PM10 are reported in the middle of the year, which corresponds to the
burning season [42]. Similarly, it is also reported that the burning season in SEA peaks from July to
October [47]. High amounts of PM2.5 and PM10 not only aggravate health issues, but they also degrade
visibility. Hence, these results can be used to guide tourism as well as large scale community programs.

• Based on our RF model’s importance plot, relative humidity is another significant variable that
affects PM2.5 and PM10 concentration in the air. Other studies have also concluded that relative
humidity is a key factor in influencing the distribution of air quality [48,49].

• In contrast, the VAR models picked up mean temperature lagging PM2.5 and PM10 by one and
two days having significant negative effect on the concentration of PM2.5 and PM10 in the air.
The effect of mean temperature on air quality has, however, been inconsistent, with several studies
showing conflicting findings. Some studies have observed a negative correlation between mean
temperature and concentrations of PM2.5 and PM10 [50,51]. However, there are other studies that
have shown that there is a combined effect of climatic factors on the concentration of PM2.5 and
PM10. For example, a study in Nagasaki, Japan concluded that temperature is positively correlated
with PM2.5 and PM10 during monsoons and negatively correlated during other seasons [52].
Another study in Dhaka also showed variable response of relative humidity with air pollutants
according to seasonal variation [53]. Hence, machine learning methods are relevant for the
predictions of air quality, due to the mixed effects of climatic factors.

• Comparing RF and VAR models, the VAR models performs slightly better with MAPE values
being 0.8% and 6.1% lower for PM2.5 and PM10, respectively. Hence, the VAR model can be
reliably used for future predictions of the concentration of PM2.5 and PM10 in urban atmosphere
in Singapore. To improve the communication of predictions to the community, we can categorize
the predicted values according to the Table 4 [54]. Singapore uses this category to show the
levels of pollutants in the air. It will be useful to release a daily prediction of PM2.5 and PM10 for
community preparedness.

Table 4. Breakdown used to define the index for PM2.5 and PM10.

Index Category 24-h PM2.5 (µg/m3) 24-h PM10 (µg/m3)

Good 0–12 0–50
Moderate 13–55 51–150
Unhealthy 56–150 151–350

Very unhealthy 151–250 351–420

Hazardous
251–350 421–500
351–500 501–600
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There are several study limitations. The fire detection algorithm used to identify forest fires
hotspots is based on higher emissions of mid-infrared radiation. The fire detection algorithm compares
the values of suspected fire pixels against a set of absolute thresholds, and with values of surrounding
pixels. We note that hotspot detected does not always correspond to actual land fires. Other than
climatic factors, there are other factors that can affect the air quality in Singapore. The models did not
account for other anthropogenic sources of PM such as those from industry and shipping. Data on these
factors should be collected and included into the models, to see if they can improve the predictions.
In addition, currently, the dataset for independent variables were collected from Changi Meteorological
Station, which is the eastern meteorological station in Singapore. Daily news reports on pollutants
have shown that different parts of Singapore can be affected by the biomass burning at different
intensities [55]. It will be useful to provide predictions for the five areas in Singapore (north, south, east,
west and central). In order to achieve this, we need to collect climate data in different meteorological
stations around the island which is spatially representative, and also obtain the measurements from
the hotspots to the stations as one of the variables. The models can be further developed for better
spatial resolution. Lastly, analyses were done using average values for a daily prediction. It might be
more useful to the community to predict the air quality on an hourly basis. Hence, moving forward we
could collect hourly data and run the models.

5. Conclusions

There was a positive association between ambient air particulate concentrations in Singapore and
counts of instances of forest fires, and Singapore was more affected by fires from Kalimantan compared
to fires from other SEA countries. In addition, the peaks in poor air quality in Singapore occurs twice,
once in the middle of the year, and one at the end of the year. VAR models performed better than
RF model in predicting air quality. Our study findings suggest that air quality in Singapore can be
reasonably anticipated with predictive models that incorporate information on forest fires and weather
variations. The public communication of anticipated air quality at the national level benefit who are at
higher risk of experiencing poorer health due to poorer air quality.
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