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ABSTRACT

BACKGROUND/OBJECTIVES: Nutritional status and food intake during pregnancy and 
lactation can affect fetal programming. In the current metabolic syndrome epidemic, high-
fructose diets have been strongly implicated. This study investigated the effect of maternal 
high-fructose intake during pregnancy and lactation on the development of metabolic 
syndrome in adult offspring.
SUBJECTS/METHODS: Drinking water with or without 20% fructose was administered 
to female C57BL/6J mice over the course of their pregnancy and lactation periods. After 
weaning, pups ate regular chow. Accu-Chek Performa was used to measure glucose levels, 
and a tail-cuff method was used to examine systolic blood pressure. Animals were sacrificed 
at 7 months, their livers were excised, and sections were stained with Oil Red O and 
hematoxylin and eosin (H&E) staining. Kidneys were collected for gene expression analysis 
using quantitative real-time Polymerase chain reaction.
RESULTS: Adult offspring exposed to maternal high-fructose intake during pregnancy 
and lactation presented with heavier body weights, fattier livers, and broader areas under 
the curve in glucose tolerance test values than control offspring. Serum levels of alanine 
aminotransferase, aspartate aminotransferase, glucose, triglycerides, and total cholesterol 
and systolic blood pressure in the maternal high-fructose group were higher than that in 
controls. However, there were no significant differences in mRNA expressions of renin-
angiotensin-aldosterone system genes and sodium transporter genes.
CONCLUSIONS: These results suggest that maternal high-fructose intake during pregnancy 
and lactation induces metabolic syndrome with hyperglycemia, hypertension, and 
dyslipidemia in adult offspring.
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INTRODUCTION

Metabolic processes during pre- and postnatal development influence the likelihood 
of developing metabolic disease later in life. Fetal programming has been reported to 
affect adult health, with nutrition during the perinatal period reported as one of the most 
influential variables thereof [1]. A maternal high-fat diet during pregnancy increases the 
risk of her offspring to develop metabolic diseases in adulthood [2], and maternal fructose 
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intake has also been associated with epigenetic modifications in her offspring [3]. Although 
fructose consumption has declined significantly over the last decade, it is still a common 
sweetener in many processed foods and sugar-sweetened beverages such as sodas, fruit 
drinks, and even sports drinks [4]. Evidence from experimental and clinical studies indicates 
that liquid forms of sugar confer greater risks of metabolic syndrome than solid forms [5]. 
Caloric overconsumption and body weight gain can result from fructose intake through 
prolonged activation of hunger and reward signals and depression of satiety signals [6]. 
Excessive fructose intake can induce several signs of metabolic syndrome [7].

Owing to overweight and inactive lifestyles, the incidence of metabolic syndrome is steadily 
increasing in developed countries [8,9]. Metabolic syndrome refers to a series of metabolic 
conditions that can lead to heart disease. According to American Heart Association 
guidelines, the person is diagnosed as having metabolic syndrome if 3 or more of the 
following traits are met: abdominal obesity, serum triglycerides (TGs) of > 150 mg/dL, HDL 
cholesterol of < 50 mg/dL in women, blood pressure of > 130/85 mm Hg, and fasting blood 
glucose of > 100 mg/dL [10]. Most of all, hypertension is a key factor in metabolic syndrome; 
hypertensive patients have been reported to be more likely to have metabolic syndrome 
[11]. The body contains multiple mechanisms for controlling blood pressure, of which the 
renin-angiotensin-aldosterone system (RAAS) is a critical regulator. In response to decreased 
blood pressure, the kidneys release renin to help make angiotensin II, its physiologically 
active form. Angiotensin II has diverse effects on the kidneys, vascular smooth muscle, and 
the brain and stimulates aldosterone secretion by the adrenal cortex. Aldosterone, a steroid 
hormone, regulates epithelial sodium channels (ENaC, encoded by the scnn1b) and sodium-
chloride cotransporters (NCCs, encoded by the slc12a3) [12]. Renal transporters, such as 
sodium-hydrogen antiporter3 (NHE3, encoded by the slc9a3), sodium-potassium-chloride 
cotransporter (NKCC, encoded by the slc12a1), NCC, and ENaC, cause an increase in sodium 
reabsorption at the nephron, which raises circulating blood volume and blood pressure [13].

We hypothesized that maternal high-fructose intake during pregnancy and lactation 
induces metabolic syndrome in adult offspring. Thus, we assessed offspring by supplying 
pregnant mice with large quantities of liquid fructose during pregnancy and lactation, and 
their offspring were evaluated for metabolic syndrome-associated parameters.

SUBJECTS AND METHODS

Animals
This study was conducted in accordance with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals after approval by the Institutional Review Board of 
Kyungpook National University (2018-0176). Every effort was made to minimize both the 
number of animals used and their suffering. Breeding was carried out between nulliparous 
1 male and 3 females to produce the next generation for a week. Eight-week-old pregnant 
C57BL/6J mice (F0) were randomly divided into 2 groups (n = 4 in each group) and offered 
fructose solution (treatment group, 20% wt/vol) [14] or regular water (control group) 
throughout pregnancy and lactation. Fructose was purchased from Millipore (Billerica, MA, 
USA). After the lactation for 4 weeks, all pups (F1) were separated from dams and were fed 
regular chow. Pups were sacrificed at 7 months of age for additional analysis. Mice were 
anesthetized with pentobarbital sodium (50 mg/kg intraperitoneally; Hanlim Pharm, Yongin, 
Korea). Tissues were frozen in liquid nitrogen and stored at −80°C until further study.
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Histological analysis
Liver and kidney tissues were fixed in 4% formalin overnight, then dehydrated and embedded 
in paraffin using conventional methods. Paraffin-embedded samples were sectioned to a 
thickness of 2 μm. Liver sections were stained with Oil Red O and hematoxylin and eosin 
(H&E). Kidney sections were stained with trichrome and H&E. After staining, slides were 
examined with light microscopy.

Hepatic TG assay
Lipids were extracted by homogenizing 100 mg liver tissue in 1ml 5% NP-40/ ddH2O solution 
using pestles, then slowly heated to 90°C in water bath for 5 min. The samples were cooled 
down and again heated to solubilize all TGs into solution. The samples were centrifuged 
for 2 min and supernatants were diluted 10 fold with ddH2O for quantification. Hepatic TG 
analyzed using the TG assay kit-quantification (ab65336, Abcam, Cambridge, UK).

Western blot
For protein expression analysis, frozen tissues were homogenized in RIPA buffer containing 
protease inhibitors. Protein-matched samples (Bradford assay) were electrophoresed (SDS- 
PAGE) and then transferred to nitrocellulose (NC) membranes. The NC membranes were 
blocked with 5% skim milk in TBS (25 mmol/L Tris base and 150 mmol/L NaCl) for 2 h at 
room temperature and then incubated with the following primary antibodies (1:1000 diluted) 
at 4°C overnight. SREBP1 antibody (Santa Cruz Biotechnology, CA, USA), ac-K antibody (Cell 
Signaling Technology, MA, USA), ACC antibody (Thermo Fisher, MA, USA), FAS antibody 
(Thermo Fisher), GAPDH antibody (Thermo Fisher), and SCD1 antibody (Abcam, Cambridge, 
UK). The membranes were incubated with secondary antibodies (1:5,000 diluted) at room 
temperature for 1 hour and then washed 3 times for 10 min each in TBST. The target proteins 
were detected with ECL plus detection reagents (Amersham, Pittsburgh, PA, USA). The 
expression levels were quantified using optical densitometry and the ImageJ software (ImageJ 
software; http://rsbweb.nih.gov).

Glucose tolerance test (GTT)
GTTs were performed on offspring at 7 months of age. Mice were fasted for 16 h, after which 
fasting glucose levels were determined using an Accu-CHEK Performa (Roche, Berlin, 
Germany). Glucose (20% solution, 2 g/kg; Sigma-Aldrich, St. Louis, MO, USA) was then 
injected intraperitoneally, and blood glucose levels were measured at 30, 60, and 120 min.

Blood chemistry
Whole blood was collected from the tail vein. HbA1c was measured using a Mouse 
Hemoglobin A1c (HbA1c) Assay Kit (#83010, Crystal Chem, Downers Grove, IL, USA) for 
the quantitative determination of HbA1c in whole blood depending on manufacturer's 
instructions. Serum was isolated by centrifugation at 2,000 rpm for 10 min. Blood chemistry 
analysis was performed at the Pohang Center for Evaluation of Biomaterials, Pohang 
Technopark in Pohang, Korea.

Blood pressure measurement
Blood pressure was measured in mice using the tail-cuff method. Mice were warmed on a 
hotplate at 35°C for 10 min and then placed in a plastic restrainer. A cuff with a pneumatic 
pulse sensor was attached to the tail. Blood pressure values were recorded on a CODA system 
(Kent Scientific Corporation, Torrington, CT, USA) with heating, and at least 10 consecutive 
readings obtained from each mouse for averaging [15,16].
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Quantitative polymerase chain reaction (qPCR)
RNA from whole kidneys was extracted using Trizol Reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer's instructions. Total RNA (5 μg) was reverse-transcribed into 
cDNA using RevertAid first strand cDNA synthesis (Fermentas EU, Glen Burnie, MD). QPCR 
was performed using SYBR Green PCR master mix (Applied Biosystems, Foster City, CA, 
USA) and an ABI PRISM® 7000 Sequence Detection System (Applied Biosystems, California, 
USA). Relative mRNA expression levels were determined by calculating the values of Δ cycle 
threshold (ΔCt) by normalizing the average Ct value compared with its endogenous control 
(Gapdh) and then calculating 2−ΔΔCt. All primer sets used in the present study are shown in 
Supplementary Table 1.

Hormone measurements
Serum renin, angiotensin II, and aldosterone levels were analyzed individually by ELISA 
(E-EL-M0061, E-EL-M2612, E-EL-0070, Elabscience Biotechnology Inc., Houston, TX, USA). 
All samples were analyzed in duplicate.

Statistics
Results are expressed as mean ± SE. Data were analyzed with Student's t-test for the 2 
comparisons or ANOVA followed by Tukey's post hoc tests for multiple comparisons. A P value 
of less than 0.05 was considered significant. Statistical calculations were performed using 
SPSS software (version 19.0, SPSS, Chicago, IL, USA).

RESULTS

Maternal high-fructose intake induced dyslipidemia and hyperglycemia in 
adult offspring
The offspring of fructose-fed dams presented with noticeable increases in liver size and 
body weight at the age of 7 months (Fig. 1A and B). Oil Red O staining for the liver revealed 
that maternal high-fructose intake also induced steatosis in their offspring (Fig. 2A). 
Quantification of TG accumulation in the liver supported this observation (Fig. 2B). The 
expression of lipogenesis proteins was detected by western blotting in female (Fig. 3A) and 
male offspring (Fig. 3B). High-fructose intake during pregnancy and lactation increases the 
levels of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase 
1 (SCD1), and sterol regulatory element-binding proteins (SREBP) in both offspring. In 
addition, male offspring had higher basal expression levels of FAS, SCD1, and SREBP than 
female offspring (Fig. 3C). These results suggested that maternal high fructose induced 
steatosis and lipogenesis in the liver.

Compared with the control group, maternal high-fructose exposure induced glucose 
intolerance and hyperglycemia at 7 months in offspring of both sexes and higher area under 
the curve (AUC) values (Fig. 4A and B). Glycated hemoglobin A1c in the whole blood was 
measured, and an increase in HbA1c by high-fructose intake was observed in male offspring 
than female offspring, similar to GTT (Fig. 4C). The serum levels of aspartate transaminase, 
TG, and total cholesterol were higher in both fructose groups than in control. We found 
that male offspring had higher basal expression levels of alanine aminotransferase and total 
cholesterol than female offspring (Table 1).
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Fig. 1. Effects of maternal high-fructose intake on body weight and liver size. The representative pictures of female and male offspring at 7 months of age. 
Dams were fed drinking water, either with or without 20% fructose. Offspring were fed chow diets and drunken tepid water after weaning. (A) Photographs of 
representative mice of each group after 7 months. Photograph of visceral fat and liver in offspring. (B) Body weight at 7 months of offspring. Data are presented 
as mean ± SE (n = 8). Statistical analyses were conducted using 2-way analysis of variance, followed by Tukey's post hoc tests for multiple comparisons (*P < 
0.05, control vs. fructose).
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Fig. 2. Effects of maternal high-fructose intake on fatty liver development. (A) Representative microscopic images of livers from female and male offspring at 7 
months. Liver sections were stained with Oil Red O or H&E (bar = 50 μm, 100× magnification). (B) Hepatic TG level was measured by colorimetric method using 
TG quantification kit. Data are presented as mean ± SE of 6 mice in each group. 
TG, triglyceride; H&E, hematoxylin and eosin. 
Statistical analyses were conducted using 2-way analysis of variance, followed by Tukey's post hoc tests for multiple comparisons (**P < 0.01, control vs. fructose).



Maternal high-fructose intake induced hypertension in adult offspring
To determine the effect of maternal high-fructose intake on the blood pressure of their 
offspring, blood pressures of all study animals were measured at the age of 7 months. 
Systolic blood pressure values were elevated in the offspring of fructose-fed dams (Fig. 5A). 
However, there were no statistically significant differences in serum levels of renin (Fig. 5B), 
angiotensin II (Fig. 5C), and aldosterone (Fig. 5D) between treatment and control groups.

Quantitative real-time polymerase chain reaction (qRT-PCR) of sodium transporter genes 
was performed to ascertain whether maternal high-fructose intake caused increased blood 
pressure by overexpression of these genes in the kidneys of their offspring. Maternal high-
fructose intake did not affect expression levels of sodium transporters in offspring. However, 
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Fig. 3. Effects of maternal high-fructose intake on lipid metabolism in liver. (A, B) The expression of lipogenesis proteins was detected by western blotting in 
female and male offspring. Maternal high-fructose exposure increased the expression of lipogenesis in both gender. The gel is representative of 3 independent 
experiments. Glyceraldehyde-3-phosphate dehydrogenase expression was used as control. (C) Densitometry analysis of expressed ACC, FAS, SCD1, and SREBP 
using ImageJ program and normalized by the control level. 
Statistical analyses were conducted using 2-way analysis of variance, followed by Tukey's post hoc tests for multiple comparisons (*P < 0.05, **P < 0.01, control 
vs. fructose. ##P < 0.01, between female and male controls).

Table 1. Effects of maternal high-fructose intake on serum biochemical parameters in 7-month-old-offspring
Parameters Female Male

Control Fructose Control Fructose
ALT (U/L) 12.2 ± 0.1 21.72 ± 1.3 26.2 ± 2.1# 31.0 ± 3.5**
AST (U/L) 42.0 ± 8.0 134.86 ± 15.1** 55.5 ± 8.0 208.0 ± 15.2**
Glucose (mg/dL) 76.2 ± 12.1 282.61 ± 20.3* 96.3 ± 15.5 249.8 ± 22.0*
Triglyceride (mg/dL) 60.0 ± 22.0 192.57 ± 30.2* 84.5 ± 12.4 221.6 ± 22.3*
Total cholesterol (mg/dL) 44.0 ± 8.0 82.29 ± 13.5* 82.2 ± 15.2# 136.33 ± 25.2*
Uric acid (mg/dL) 6.9 ± 1.2 6.43 ± 3.5 6.1 ± 2.1 6.5 ± 2.5
Blood was obtained from 8 mice in each group.
ALT, alanine aminotransferase; AST, aspartate aminotransferase.
Statistical analyses were conducted using Student's t-test. (*P < 0.05, **P < 0.01, control vs. fructose. #P < 0.05, 
between female and male controls).



166https://doi.org/https://doi.org/10.4162/nrp.2021.15.2.160

Maternal fructose intake and metabolic syndrome

https://e-nrp.org

(A)

Control
Fructose

Bl
oo

d 
gl

uc
os

e 
(m

g/
dL

) 300

200

100

0
0 30 60 120

Time (min)

Female

*
**

(C)
12

9

6

3

0
Female Male

%
H

bA
1c

*

Control
Fructose

Bl
oo

d 
gl

uc
os

e 
(m

g/
dL

) 300

200

100

0
0 30 60 120

Time (min)

Male

*

**

Control Fructose(B)
50,000

40,000

30,000

20,000

10,000

0
Female Male

G
TT

 A
UC

(m
g/

dL
 ×

 m
in

) **

**

Control Fructose

Fig. 4. Effects of maternal high-fructose intake on glucose tolerance. (A) GTTs were performed on female and 
male offspring at 7 months. Statistical analyses were conducted using Student's t-test. (B) Corresponding AUC 
values were obtained (A). Maternal high-fructose intake was strongly associated with glucose intolerance. (C) 
Glycated HbA1c was measured by colorimetric method using HbA1c Assay Kit. 
GTT, glucose tolerance test; AUC, area under the curve; HbA1c, hemoglobin A1c. 
Statistical analyses were conducted using 2-way analysis of variance, followed by Tukey's post hoc tests for multiple 
comparisons. Data are presented as mean ± SE of 8 mice in each group (*P < 0.05, **P < 0.01, control vs. fructose).
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Fig. 5. Maternal high-fructose intake induced hypertension. (A) SBP was measured using a tail-cuff method in 
female and male mice at 7 months. Maternal high-fructose intake induced hypertension. (B-D) Serum renin, 
angiotensin II, and aldosterone (renin; expressed as ng/mL of the serum) were measured using enzyme-linked 
immunosorbent assay. Data are presented as mean ± SE of 6 mice in each group. 
SBP, systolic blood pressure. 
Statistical analyses were conducted using 2-way analysis of variance, followed by Tukey's post hoc tests for 
multiple comparisons (*P < 0.05, control vs. fructose).



we found that male offspring had higher basal expression levels of Slc9a3 and Slc12a3 than 
female offspring (Supplemental Fig. 1A-D).

The expression patterns of genes related to oxidative and antioxidative enzymes was 
evaluated using qRT-PCR. Maternal high-fructose intake increased the expression of Cyba 
in female offspring, but not in male offspring (Fig. 6A), and did not affect the expression 
levels of Cybb and Nox4, but females presented with a higher basal expression level thereof 
than males (Fig. 6B and C). Maternal high-fructose intake increased the expression of Sod1 in 
female offspring, but not in male offspring (Fig. 6D), and there was no difference in the Cat 
expression in either sex (Fig. 6E).

Trichrome staining was performed to analyze levels of fibrosis. Supplemental Fig. 2A showed 
slight collagen deposition, but there were no significant differences in the expression levels 
of inflammatory factors Tgfb, Nfkb, and Il6 between groups (Supplemental Fig. 2B).

DISCUSSION

This study demonstrates that maternal high-fructose intake during pregnancy and lactation 
is associated with metabolic syndrome in adult offspring. We found that a fructose 
solution intake in pregnant dams was associated with higher body weights, dyslipidemia, 
hyperglycemia, hypercholesterolemia, and hypertension in their 7-month-old offspring and 
increased inflammation in the treatment group.

During pregnancy, maternal nutrition is the major contributing factor in the intrauterine 
environment associated with altered expression of the fetal genome, and poor maternal 
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Fig. 6. Effects of maternal high-fructose intake on the expression of oxidant enzyme and antioxidant enzyme genes in offspring kidneys. Expression of oxidant 
enzyme genes such as (A) Cyba, (B) Cybb, and (C) Nox4 in the kidney was quantified using qPCR. Expression of antioxidant enzyme genes such as (D) Sod1 and 
(E) Cat in the kidney was quantified using qPCR. Data are presented as mean ± SE of 6 mice in each group. 
qPCR, quantitative polymerase chain reaction. 
Statistical analyses were conducted using 2-way analysis of variance, followed by Tukey's post hoc tests for multiple comparisons (*P < 0.05, control vs. fructose. 
##P < 0.01, between female and male controls).



nutrition can have lifelong consequences [17]. The composition of breast milk is directly 
influenced by maternal nutrient intake and thereby influences neonatal nutrition [18]. Some 
researchers have suggested the negative effects of maternal fructose intake during gestation 
and lactation on their offspring [19]. Clayton et al. [20] investigated the maternal, fetal, and 
neonatal hepatic gene expression at embryonic day 21 and postnatal day 10, whereas we 
investigated gene expression in adult offspring of 7 months after birth. Fructose consumption 
is strongly implicated in obesity and changes the effects of physical exercise on hepatic 
metabolism [21]. This study demonstrated that the offspring of fructose-fed dams presented 
with increased body weights and altered size and morphology of the liver (Figs. 1 and 2). Fetuses 
of dams fed a high-fructose diet exhibited activated hepatic fructose transporters and reduced 
fructokinase mRNA levels and presented with hepatic lipid accumulation, hepatic endoplasmic 
reticulum (ER) stress, and suppression of genes that regulate beta-oxidation [20]. Maternal 
consumption of a high-fructose diet during fetal development might alter fetal programming 
in a way that predisposes offspring to adult obesity and dyslipidemia (Table 1). The metabolic 
pathway of fructose is uniquely increased SREBP1c and downstream fatty acid synthesis genes 
[22]. In our study, maternal high-fructose intake caused steatosis and increased the expression 
of lipogenesis in both sexes (Fig. 3). SREBPs directly activate the expression of enzymes for 
synthesis and uptake of cholesterol, fatty acids, TGs, and phospholipids [23]. In our previous 
study, ACC, FAS, and SCD1 play important roles in the development of steatosis [24,25]. De 
novo lipogenesis involves 2 key enzymes, that is, FAS and ACC; the latter carboxylates acetyl-
CoA to form malonyl-CoA, which is further converted to long-chain fatty acids by FAS [26].

As expected, maternal high-fructose intake was significantly associated with offspring 
glucose intolerance, which is a prodromal stage of diabetes mellitus (Fig. 4). Although 
fructose and glucose metabolism share many intermediates, they have different metabolic 
fates in animals [7]. Owing to its hepatic metabolism and low levels of expression of the 
fructose transporter GLUT5 in insulin-secreting pancreatic β-cells, fructose, unlike glucose, 
does not stimulate insulin secretion [27]. Insulin resistance contributes to impaired glucose 
tolerance in some combination of liver, muscle, and adipose tissues [28]. In addition, 
fructose intake mediates epigenetic modifications associated with nonalcoholic fatty liver 
disease pathogenesis [29]. Our laboratory recently reported a paper that maternal high-
fructose intake induces hypertension in subsequent generation offspring through activating 
histone codes on the pattern recognition receptor promoter [30].

Although there were no significant differences in circulating hormones related to RAAS 
between experimental and control groups, systolic blood pressure was elevated in the 
offspring of fructose-fed dams (Fig. 5). Expression levels of genes related to RAAS in kidney 
were examined, but maternal fructose intake was not associated with RAAS-related blood 
pressure increases in offspring (Supplemental Figs. 3 and 4). It has been reported to be the 
effect of maternal fructose intake on the expression of RAAS genes is more prominent in 
second-generation offspring than first-generation offspring [16]. Although renal sodium 
transporters regulate blood pressure [31], there were no differences in gene expression of 
transporters in several tubules of the offspring. Sodium transporters in the nephron are 
regulated by the hormones angiotensin II, insulin, nitric oxide, and others [32], of which 
angiotensin II is the most powerful stimulator [33]. Therefore, we speculate that other factors 
caused the increase in blood pressure of treatment offspring.

Renal injury occurs after oxidative stress, insulin resistance, increased proinflammatory cytokine 
production, and many more [34]. Oxidative stress elevates intracellular levels of reactive oxygen 
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species [35] using a superoxide-generating NADPH oxidase (NOX) [36]. P22phox, encoded 
by the Cyba gene, is a component of the NOX1, NOX2, NOX3, and NOX4 [37]. Conversely, 
superoxide dismutase 1 (SOD1) is an antioxidant that scavenges free superoxide radicals [38]. 
Fibrosis in kidney tissues stained with trichrome was so mild in treatment group offspring that 
the expression of genes involved in inflammation did not differ between groups (Supplementary 
Fig. 2). Inflammation is a predominant sign of metabolic syndrome and often aggravates it 
[39]. Chronic low-grade inflammation is a comorbidity of obesity caused by the activation of 
inflammatory signaling pathways [40]. Fructose increases intracellular cortisol and expands 
visceral adiposity by increasing adipocyte size and adipocyte number [41]. The increased 
adipose mass induces ER stress, oxidative stress, and inflammasome activation [42]. Increased 
expression of both prooxidative Cyba and antioxidative sod1 was found in female offspring of 
fructose-fed dams, which presented with slightly more inflammation than males (Fig. 6).

Interestingly, our data revealed the differences in basal gene expression between female and 
male control groups. Cybb and Nox4 were expressed in female more than in male (Fig. 6),  
whereas Ace, Mas1, Slc9a3, and Slc12a3 were expressed in males more than in females 
(Supplementary Figs. 1, 3, and 4). The incidence of hypertension in fructose-fed rats varies by 
sex. Hypertension is regulated not only by sex but also by the interaction of certain sex hormones 
such as estrogen, androgen, and testosterone [43-45]. The level of proteins involved in fructose 
metabolism in male mice that consumed fructose for 3 months increased, but not in female mice 
under the same condition. However, female mice had increased urine output and plasma K+ and 
decreased plasma Na+ and NKCC2 expression in the kidney [46]. Further investigation is needed 
to understand the basic mechanisms of fructose-induced metabolic syndrome by sex.

Our results indicate that maternal high-fructose intake induces metabolic syndrome, 
including increased body weight, dyslipidemia, hyperglycemia, hypercholesterolemia, and 
hypertension in adult offspring.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Primers for quantitative polymerase chain reaction

Click here to view

Supplementary Fig. 1
Expression levels of sodium transporter genes such as (A) Slc9a3, (B) Slc12a1, (C) Slc12a3, and 
(D) Scnn1b in the kidney were quantified with quantitative polymerase chain reaction. Data are 
presented as mean ± SE of 6 mice in each group.

Click here to view

Supplementary Fig. 2
Kidney sections were stained with (A) trichrome or H&E (bar = 50 μm, 200× magnification). 
Expression of inflammatory cytokines in the kidney was quantified with quantitative polymerase 
chain reaction in (B) Tgfb, Nfkb, and Il6. Data are presented as mean ± SE of 6 mice in each group.

Click here to view
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Supplementary Fig. 3
Expression of genes related to renin-angiotensin-system such as (A) Agt, (B) Ren1, (C) Ace, 
(D) Agtr1a, and (E) Agtr1b in the kidney was quantified using quantitative polymerase chain 
reaction. Data are presented as mean ± SE of 6 mice in each group.

Click here to view

Supplementary Fig. 4
Expression of genes related to renin-angiotensin-system such as (A) Ace2, (B) Agtr2, and (C) 
Mas1 in the kidney was quantified using quantitative polymerase chain reaction. Data are 
presented as mean ± SE of 6 mice in each group.

Click here to view
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