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Abstract: In this study, a solution casting method was used to prepare solid polymer electrolytes
(SPEs) based on a polymer blend comprising polyvinyl alcohol (PVA), cellulose acetate (CA), and
potassium carbonate (K2CO3) as a conducting salt, and zinc oxide nanoparticles (ZnO-NPs) as
a nanofiller. The prepared electrolytes were physicochemically and electrochemically characterized,
and their semi-crystalline nature was established using XRD and FESEM. The addition of ZnO to
the polymer–salt combination resulted in a substantial increase in ionic conductivity, which was
investigated using impedance analysis. The size of the semicircles in the Cole–Cole plots shrank as
the amount of nanofiller increased, showing a decrease in bulk resistance that might be ascribed to
an increase in ions due to the strong action of the ZnO-NPs. The sample with 10 wt % ZnO-NPs was
found to produce the highest ionic conductivity, potential window, and lowest activation energy (Ea)
of 3.70 × 10–3 Scm–1, 3.24 V, and 6.08 × 10–4 eV, respectively. The temperature–frequency dependence
of conductivity was found to approximately follow the Arrhenius model, which established that
the electrolytes in this study are thermally activated. Hence, it can be concluded that, based on the
improved conductivity observed, SPEs based on a PVA-CA-K2CO3/ZnO-NPs composite could be
applicable in all-solid-state energy storage devices.

Keywords: cellulose acetate; conductivity; K2CO3; solid polymer electrolyte; polyvinyl alcohol;
zinc oxide

1. Introduction

Electrolytes have been recognized as one of the main components of energy storage
devices such as fuel cells, batteries, and, recently, supercapacitors. This is because ion
movement and conduction mechanisms occur exclusively within the electrolyte materials.
Electrolytes in energy storage devices have an important role in establishing critical prop-
erties in numerous areas, such as determining the role of voltage in the energy density of
the electrochemical supercapacitors, internal resistance, cycling lifetime, power density,
temperature range, rate performance, and self-discharge, which are all important in the
practical application of supercapacitors [1,2]. The ionic conductivity of electrolytes plays
an important role in the internal resistance of supercapacitors [2]. Electrolytes fill the gap
between the electrodes, allowing ions to pass through. It is a crucial component in the cre-
ation of energy storage since the maximal working voltage is determined by the electrolyte’s
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breakdown voltage [3]. Electrolytes also affect the equivalent series resistance (ESR), which
is a determinant factor of the power density. Electrolytes are normally acids, bases, or salts
in solution or solid form, and some have been reported to exist as gas electrolytes under
certain conditions, such as high temperature and low pressure [4]. Liquid electrolytes
have better conductivity than solid electrolytes [5,6]. However, they have a number of
limitations, such as environmental unfriendliness, leakage issues, limited cycle life, long
charging time, and a low potential window [7,8]. Therefore, improvement in energy storage
devices depends profoundly on the development of new types of electrolytes called solid
polymer electrolytes (SPEs) [9].

Recent research on electrolytes, particularly SPEs, is generally driven by the safety
of the electrolytes and their good electrochemical performance [10]. SPEs promise better
performance for lithium batteries, sensors, fuel cells, supercapacitors, and other devices [11].
SPEs exhibit realistic potential window stability, are easy to make, and have high thermal
stability, according to previous studies [12]. Different efforts were made to increase the ionic
conductivity of SPEs, including polymer blends and the addition of fillers [13–16]. Blending
polymers is a suitable technique to obtain a good mix of physical qualities and superior
attributes, and the miscibility of the components is the most significant element to consider
when choosing polymer blends [17]. Accordingly, there is increasing interest throughout
the scientific community in making SPE blends based on “green or natural polymers”
typically obtained from renewable and natural sources, owing to their environmental
friendliness. Due to the renewable and biodegradable nature of biopolymers, different
studies were conducted to replace the current fossil fuel with natural polymers. The
use of different biopolymers was reported earlier; however, in order to further enhance
the performance and other important properties, such as the thermal and mechanical
properties of SPEs based on biopolymers, it is vital to blend two natural polymers together.
It was reported that the polymer blending technique is useful in the improvement of the
electrochemical performance of SPEs [5]. Polymers such as cellulose acetate (CA) and
polyvinyl alcohol (PVA) were reported to exhibit some potential advantages due to their
ease of production [18–21]. The existence of polar groups in CA makes it an appropriate
material to blend with other polymers, such as PVA [22]. Hence, the synthesis of SPEs
based on polymer blends is proven to enhance conductivity of an electrolyte due to the
suitable morphological and structural properties of the two polymers (PVA and CA).

However, fundamental issues such as low conductivity and poor cycle stability must
be addressed before PVA–CA can be used as SPE material with improved performance. The
modification of polymers is required to improve the performance of SPEs based on blended
PVA–CA. The incorporation of salt into a polymer is a promising technique for achieving
synergistic electrochemical results. From both fundamental and application standpoints,
incorporating salt into the blended polymer matrix is a focus of research nowadays [17,23].
Various conducting salts are added to enhance the characteristics of the polymers for SPEs.
Additives such as transition metals have been added that have a considerable influence on
optical and electrical properties. Different studies were reported using different salts to
enhance the characteristics of polymer blends when combined with acids or salts. [12,14].
Kadir et al., for instance, reported the influence of salt on the performance of the PVA and
chitosan for SPE [21]. The study established that the performance of PVA and chitosan at
ambient temperature is insignificant. Nevertheless, an improvement in the performance
of the electrolyte was observed after successful incorporation of ethylene carbonate (EC)
and NH4NO3.

Consequently, to further improve ionic conductivity, chemical stability, and other
important electrochemical performances of SPEs, the use of different active fillers is
employed [24]. The inclusion of fillers is said to be one of the common ways to im-
prove ion mobility and interfacial contact between ions and polar groups within the
electrolytes [16,25]. Ion transport is further hindered by the crystalline structure of certain
polymers in SPEs [26]. Blending the polymer with an appropriate filler is found to be the
most active strategy to lessen the crystallinity of the polymer and improve conductivity.
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Furthermore, the addition of filler can change the electrolyte’s polymeric composition and
improve its conductivity. Film absorptivity and mechanical qualities have been observed
to be influenced by the filler chosen and its concentration [16,27].

Zinc oxide nanoparticles (ZnO-NPs) are wide-bandgap semi-conductors that have
opto-electrical features. Many SPE systems employ ZnO-NPs to enhance the conductivity,
structural characteristics, and other properties of the composite SPEs generated [28]. For
instance, Zebardastan et al. [29] reported the performances of SPEs involving various
amounts of ZnO in the PVdF-HFP:PEO:EC:PC:NaI:I2:ZnO, where the maximum conductiv-
ity was achieved with 3 wt % ZnO nano filler. The increase in conductivity was attributed
by the authors to an increase in the amorphous portion of the electrolyte. Similarly, the
effect of ZnO-NPs on the mechanical and thermal properties of PVA was reported, with
the findings indicating that adding ZnO-NPs improved the attributes of PVA [28]. Re-
cently, a study on proton-conducting composite SPEs based on PVA/NH4NO3 reported
that the incorporation of small amounts of ZnO-NPs considerably improved the proton
conduction of the electrolyte [30]. Nevertheless, in all the electrolytes reported earlier using
ZnO nanofiller, the conductivity was found to be low, and thus, further improvement
is necessary.

Currently, the study of ZnO as a filler in polymer blend SPEs comprising PVA–CA–K2CO3
with the aim to further improve conductivity is yet to be reported in the literature. Based
on the optimization study conducted as reported in our previous study, SPEs based on
a PVA–CA blend with 20 wt % of K2CO3 display the highest amorphous structure and
a reasonable conductivity of 5.30 × 10−4 Scm−1 [31]. Although the conductivity of this
SPE is improved by the addition of K2CO3, it is still inadequate for practical applications.
Accordingly, in this article, the effects of ZnO-NPs on the electrochemical performance of
SPEs based on the optimized PVA–CA with incorporated 20% K2CO3 are investigated. The
electrolytes were prepared through a solution cast procedure and the developed SPEs were
characterized physicochemically and electrochemically.

2. Materials and Methods
2.1. Materials

PVA and CA (hydrolyzed 99%), dimethyl sulfoxide (DMSO), ZnO-NPs (~10 nm), and
potassium carbonate (K2CO3) (anhydrous) were purchased from Sigma-Aldrich through
Avantis Chemicals Supply (Ipoh-Perak, Malaysia), and all the reagents were used as
received. PVA and CA were used as polymers, DMSO as a solvent, K2CO3 as a salt, and
ZnO-NPs as nanofiller.

2.2. Synthesis of PVA–CA–K2CO3/ZnO-NPs Composite

A detailed description of how the optimum PVA–CA–K2CO3 composite SPEs were
prepared is given in our previous work [31]. To prepare the nanofiller containing SPEs,
different wt % of ZnO-NPs were incorporated into the optimized PVA–CA–K2CO3 SPE,
and the mixtures were heated until a clear solution was obtained. The resultant solution
was transferred into Petri dishes for drying purposes. The thickness of the dry samples
was measured using a digital micrometer screw gauge. Figure 1a shows an illustration of
the preparation steps and Figure 1b shows a photo of a typical PVA–CA–K2CO3/ZnO-NPs
film with the composition of 10 wt % ZnO-NPs (10 wt %).

To protect the samples from any trace of moisture, the prepared SPE membranes were
preserved in a desiccator before characterization. To obtain the optimum composition of
ZnO-NPs, the quantity of ZnO-NPs was varied while keeping the PVA–CA–K2CO3 fraction
constant, as presented in Table 1. The resultant samples were coded as PZ0, PZ5, PZ10, PZ15,
and PZ20 for samples incorporated with 0, 5, 10, 15, and 20 wt % ZnO-NPs, respectively.
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Figure 1. (a) Illustration steps for the preparation of SPEs, and (b) typical photo of the
PVA–CA–K2CO3/ZnO-NPs SPE film with the composition of 10 wt % ZnO-NPs.

Table 1. Variations of ZnO-NPs in the PVA–CA–K2CO3/ZnO SPE composites.

Description PVA–CA Polymer Blend Ratio K2CO3 Content (wt %) ZnO-NPs Content (wt %)

PZ0 80:20 20 0
PZ5 80:20 20 5

PZ10 80:20 20 10
PZ15 80:20 20 15
PZ20 80:20 20 20

2.3. Physicochemical Characterization

X-ray diffraction (XRD) was utilized to examine the crystal phase of the samples and
it was carried out using a Bruker D8 Advance Power diffractometer with Cu K radiation
(λ = 1.54) for a 2-scattering angle (0◦ to 100◦) at a rate of 5◦/min. Fourier-transform infrared
spectroscopy (FTIR) using PerkinElmer Spectrum One (Bruker Instruments, Oberkochen,
Germany) at a wavenumber of 500 to 4000 cm−1 with resolution of 4 cm−1 was utilized
to study the interaction and coordination between the polymers and the salt. Field emis-
sion scanning electron microscopy/energy-dispersive X-ray (FESEM/EDX) with a Zeiss
Supra 55 VP scanning electron microscope (Oberkochen, Germany) with a magnification
scale of 500 k was used to analyze the morphology and elemental composition of the
electrolytes [32]. Thermal properties of the electrolytes were investigated by means of
differential scanning calorimetry (DSC) (Model DSC Q2000 V24.11, Oberkochen, Germany).
The samples’ glass transition temperatures (Tg) were measured at a scan rate of 10 ◦C/m
from 50 ◦C to 400 ◦C in a N2 environment. Under nitrogen flow, a sample weight of roughly
4 mg was employed.
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2.4. Electrochemical Characterization

Electrochemical impedance spectroscopy (EIS) was carried out with a Metrohm Multi
Autolab M204 in the frequency range of 10 Hz to 105 Hz. The ionic conductivity of the
electrolyte was deduced from EIS study. Subsequently, using a two-electrode system, linear
sweep voltammetry (LSV) was utilized to examine the electrochemical stability of the
sample. The stability range was deduced using an AU-TOLAB/AUT51018 electrochemical
analyzer at a scan rate of 10 mVs−1 [16].

3. Results
3.1. Physicochemical Characterization
3.1.1. Crystal Phase for PVA–CA–K2CO3/ZnO-NPs

In our previous study, we reported the XRD peaks of pristine PVA, CA, and
PVA–CA–K2CO3 composites [31]. Accordingly, we determined that 20 wt % K2CO3 resulted
in the most amorphous sample in the group. Therefore, further study with the addition
of nanofillers and testing and characterization at different conditions were based on this
optimized combination [31]. Figure 2 displays the diffraction pattern of the electrolytes for
the PVA–CA–K2CO3 SPE with no nanofiller (PZ0) and SPE samples of PVA–CA–K2CO3
containing varying concentrations in wt % of ZnO nanofiller. The XRD arrays for all elec-
trolytes displayed a broad peak at 2θ = 19.25◦, which corresponds to the semi-crystalline
structure of the parent PVA arising from the intra- and inter-molecular connection of hydro-
gen of the OH group in the backbone of PVA. It could be observed that the regular structural
framework of PVA was conserved even after the incorporation of ZnO-NPs, which could
be attributed to the adequate distribution of the nanofiller into the PVA–CA–K2CO3 matrix
resulting in the successful formation of PVA–CA–K2CO3/ZnO-NPs SPE composites [30].
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Figure 2. XRD pattern of PVA–CA–K2CO3 composite SPEs (PZ0) and PVA–CA–K2CO3 composite
SPEs with varying concentrations of ZnO-NPs from 5 to 20 wt % (PZ5 to PZ20).

As can be observed, the lower peak intensity characteristic at about 2θ = 41◦ is exhibited
upon loading 5–10 wt % ZnO-NPs, indicating the more amorphous nature of the samples,
and this may result in a major conductivity increase in PVA–CA–K2CO3/ZnO-NPs SPEs.
Similarly, the XRD patterns show that the main diffraction peak of PZ5 and PZ10 at 2θ = 20◦

is weaker than the other samples (PZ15-PZ20). Furthermore, PZ5 and PZ10 show a larger
full width at half maximum (FWHM) value and a lower peak intensity, which suggests that
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an appropriate quantity of ZnO-NPs could reduce the crystalline phase of PVA–CA–K2CO3,
thus increasing the sample’s ionic conductivity. The low peak intensity observed could be
due to a further drop in PVA crystallinity with the addition of ZnO, which is caused by
the separation of polymer chains and the reconfiguration of its structure [27]. According to
a previous study, the XRD pattern’s low peak intensity indicates a rise in the amorphous
region of the electrolytes. As a result of the strong plasticizing impact of the ZnO-NPs,
it can be established that adding filler, particularly ZnO-NPs, to the polymer mix matrix
can extend the amorphous area [16]. However, beyond the concentration of 10 wt %, the
ZnO-NP peaks increase further, with the appearance of new peaks indicating an increase
in the crystalline phase of the electrolytes, and subsequently, a decrease in conductivity
owing to the re-combination of the dissociated ions. It was stated that any increase in the
crystalline phase of the polymers has an adverse effect on the ionic conductivity [30].

3.1.2. FTIR Analysis of PVA–CA–K2CO3/ZnO-NPs

FTIR analysis was used to study the complex formation between polymers, salt, and
the nanofiller. Figure 3 represents the FTIR results of the prepared composites with different
nanofiller concentrations in the wavenumber range of 400 to 4000 cm–1. The broadening OH
from blended polymers is attributed to the peak at 3454 cm–1. The band at 2917–2942 cm–1

is ascribed to the asymmetric broadening of CH, where the band at 1734 cm−1 is credited to
carboxyl group (CO) broadening [26,33]. Likewise, the band at 1562–1566 cm–1 is attributed
to the composite C=C widening and shaking at the α, β-unsaturated ketone. Equally,
the 1408 cm–1 peak matches CH2 twisting vibrations, whereas the peak at 1231 cm–1

corresponds to CH widening ambiances and CO widening of the ester group from the CA.
The CO enlargement of the acetyl group presence in the PVA and the C–O–C broadening
of a pyrose loop in the CA was allocated to the 1019 cm–1 band, while the absorption bands
at 647 cm–1 were allocated to C–H stunning vibration [34,35].
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Figure 3. FTIR spectra of pure PVA–CA–K2CO3 composite SPEs (PZ0) and PVA–CA–K2CO3 com-
posite SPEs with varying concentrations of ZnO-NPs from 5 to 20 wt % (PZ5 to PZ20).

Correspondingly, when K2CO3 salt and ZnO nanofiller were added to the polymer
blends, it could be observed that the strength, location, and form of the peaks differ,
signifying a reaction process linking oxygen from CA and the cations from the ZnO [36].
With the incorporation of the ZnO, the wide band at 3454 cm–1 that was assigned to the
widening and shuddering of OH of the PZ0 altered and extended. All the electrolyte
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samples (PZ5–PZ20) showed an increase in the OH peaks. The improved intensity of the
C=O widening and instability in the bands confirmed that PVA–CA–K2CO3/ZnO-NPs were
effectively formed. This reveals that the Zn+ of the nanofiller and the OH of the polymers
are matched, where acid–base interactions between the ZnO-NPs and polymer matrix were
formed [37,38]. Consequently, to establish the complex formation between polymers, salts,
and the nanofiller, variations in band strengths are vital [23]. Similarly, an absorption band
located at 410–417 cm−1 was linked to the widening bond of Zn-O [39]. The presence of
new bands confirmed that the content of ZnO-NPs incorporated into the polymer affected
the nature of the peaks, as can be seen in wave numbers 3269 and 3287 cm–1. Nevertheless,
there are no significant changes in the electrolyte’s wavenumber with the incorporation
of ZnO-NPs, which indicates the absence of chemical interactions arising following the
incorporation of ZnO-NPs; rather, simply physical interactions between the polymer blend
and ZnO nanofiller occurred. Similar findings where no such interactions occur between
polymers and ZnO-NPs were reported earlier [27,40].

3.1.3. Morphological and Structural Analysis of PVA–CA–K2CO3/ZnO-NPs

Figure 4 shows FESEM micrographs of the external morphology of the polymer blend.
The morphology of the sample without nanofiller as shown in Figure 4a is homogeneous
and smooth, demonstrating the homogeneousness of the host polymers and the salt, and
this is due to the formation of a complex as well as small connections between the OH
group of the PVA–CA blend and K+ from the salts [16,18]. With the incorporation of the
nanofiller, however, it can be noticed that the surface of the sample becomes rough, with
bricklike structures, revealing that the ZnO-NPs have been successfully incorporated, and
this is corroborated by the elemental peaks in the EDX plots shown in Figure 5. Moreover,
with the addition of 5–10 wt % ZnO nanofiller into the electrolyte film, it can be observed
that the morphological structure of the samples resulted in a rougher surface morphology,
as shown in Figure 4b,c. This designates an improvement in the amorphous region and
plasticity of the polymer chain that helps improve the conductivity of the prepared samples.
Furthermore, the roughness of the surface morphology of the electrolytes may be ascribed
to the decrease in the crystallinity of the PVA–CA–K2CO3 electrolyte and an increase in the
segmental motion of the polymer with the incorporation of ZnO nanofiller, as reported in
a previous study [41].

However, further increases in the ZnO filler concentration beyond 10 wt % caused
extra accumulation of ZnO particles on the surface of the films, as presented in Figure 4d,e,
which might cause a decrease in the conductivity of the film [41]. It was described that
excess quantity of filler could result in an irregular distribution and accumulation on the
surface polymer hosts, and this could be due to the surface energy and low adhesion within
the polymer hosts and ZnO [42]. Therefore, extra agglomerations were detected in the
samples with higher wt % ZnO, which could result in the damage of a substantial quantity
of ions that could consequently lead to a decline in conductivity [21,43]. Figure 5 present
the energy-dispersive X-ray analysis (EDXA), and it was found that Zn was effectively
embedded and dispersed into the PVA–CA–K2CO3 composites.

3.1.4. Glass Transition Temperature of PVA–CA–K2CO3/ZnO-NPs

To study the effect of the nanofiller on the polymer–salt electrolytes, DSC analysis was
conducted on the samples. Figure 6 presents the DSC pattern of the polymer blend with no
nanofiller and with varying concentrations in wt % of nanofillers. The lower value of glass
transition temperature (Tg) for all the samples evidently indicates the improved polymer
flexibility and the promoted ion dynamics in terms of rapid ion transit across polymer
chain coordination sites [34]. The Tg peak for the blended polymer SPE with no nanofiller
is observed to be located at 82.21 ◦C. On the other hand, with the successful incorporation
of low wt % nanofiller (5–10 wt %), there was no significant shift in the Tg peak toward
a higher temperature, confirming the polymer–salt–nanofiller complex formation, which is
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ascribed to the coordination between the coordinate sites of the polymers and the Lewis
base group and Lewis acid cation of the salt and the nanofiller [16,44].
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(a) PZ0 and (b) PZ10, showing successful incorporation of Zn into PVA–CA–K2CO3.

This similarly indicates that ion mobility is improved by disrupting the polymer chain
arrangement and creating disorder in the matrix, and this may promote the faster ion
dynamics in the matrix that subsequently increase the conductivity of the electrolyte [45].
Low Tg has been linked to a loss in crystallinity due to the addition of a filler substance.
Electrolytes with a low Tg are preferable because they allow the PVA–CA chains to be more
plastic, allowing rapid ion transport. This ionic movement in polymer matrix systems could
be linked to the limited fundamental relaxation classified by the Tg of the electrolytes [46].
However, at high nanofiller content (15–20 wt %), it can be noticed that the peaks shift
toward high temperature (103–123 ◦C), and this could be linked to the poor polymer–salt–
nanofiller complexation due to the high amount of nanofiller, and this subsequently led
to an increase in the crystalline region of the electrolytes, as observed earlier in the XRD
results of Figure 2 [34,47,48]. Table 2 presents a summary of the Tg and FWHM values
for all samples with various concentrations of the filler. It can be observed that the two
values (Tg and FWHM) obtained are all in accordance with conductivities and potential
windows achieved.
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Figure 6. DSC scans for the developed composite polymer electrolyte.

Table 2. Summary of Tg and FWHM of polymer blend SPEs.

Samples Tg (◦C) FWHM

PZ0 82.21 0.642
PZ5 85.78 0.470
PZ10 85.65 0.405
PZ15 103.36 0.367
PZ20 123.19 0.288

3.2. Electrochemical Characterization
3.2.1. SPE Resistance

The EIS approach is used to analyze the conductivity of the SPEs and the
electrode–electrolyte interface performance. The EIS results for all the prepared elec-
trolytes with various concentrations of ZnO nanofiller are depicted in Figure 7. At a higher
frequency range, the Nyquist plots for all the samples display a semicircle (inset in
Figure 7), while spikes at a lower frequency signify the resistive and capacitive nature
of the samples [49].

The semicircle shown in the high-frequency region indicates double-layer capacitance
at the electrode–electrolyte interface owing to the ion migration, whereas the low-frequency
spike was ascribed to the ion absorption, which indicates the capacitive nature of the
electrolytes [50]. Nevertheless, it could be observed that the semicircle of the samples
decreased with the successful incorporation of ZnO-NPs, which is attributed to a rise in
the amorphous phase within the polymer, as well as due to the low Tg value, which leads
to an increase in the electrochemical performance of the electrolytes [43,51]. The narrow
semicircles with a tilted spike in the low- and high-frequency region in the Cole–Cole
plots indicate that the samples contain mainly contain the resistive component [51]. The
resistance is calculated from intercepts on the x-axis of the complex impedance plots. This
high-frequency resistance is referred to as the bulk resistance (Rb), and it reflects the bulk
characteristics of the electrolyte from which the ionic conductivity (σ) is calculated using
Equation (1) [12,36].

σ =
t

Rb A
(1)
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where A is the electrode–electrolyte contact area (in cm2) and t is the thickness of the
samples (in cm) [36,52].
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Figure 7. Cole–Cole plots for the PVA–CA–K2CO3/ZnO-NPs SPE composites at room temperature.

The PZ0 with the larger semicircle has the highest bulk resistance, which was greatly
lowered when ZnO nanofiller was added. The strong conducting and plasticizing properties
of the ZnO-NPs play a key role in decreasing Rb of the polymer blend. This demonstrates
ZnO’s ability to enhance the interfacial interaction within the electrolyte and electrode.
With this reduced bulk resistance, ionic mobility and transport could be improved, resulting
in better ionic conductivity [53,54]. The Rb decreases with increasing ZnO nanofiller con-
centration until it reaches 10 wt % and increases thereafter, indicating that the conductivity
increased and subsequently decreased. This is due to the increased amount of mobile Zn+

cations within the polymer chains, which caused the chains to become more stretchy, and
the amorphous region increased, resulting in increased ion migration [23].

3.2.2. Ionic Conductivity

The ionic conductivity (σ) versus ZnO-NP concentration in PVA–CA–K2CO3 compos-
ite SPEs obtained from the EIS spectra was computed using Equation (1), and the result is
shown in Figure 8. The transportation of ions in the amorphous region is expected to be
faster than in the crystalline region, and this could be linked to the poor arrangement of
macromolecules in the amorphous region. The SPEs can produce faster ionic motion in the
amorphous region that results in better conductivity for the electrolyte [51]. ZnO-NPs, as
an important nanofiller, aid in flagging the coordinative bond between H and the weakly
bonded -OH of the polymer. Consequently, the H atoms are facilitated to transfer from
one position to another. As reported previously, the addition of filler such as ZnO to salted
electrolyte material could alter the electrical characteristics in various ways. For instance,
larger anion size is expected to dissociate and create a number of ions, thereby improving
the conductivity through aiding the migration of ions in the polymer matrix by generating
voids [55,56].
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Figure 8. Ionic conductivity of PVA−CA−K2CO3/ZnO−NPs composite SPEs versus ZnO nanofiller
concentration (in wt %) at room temperature.

The bulk groups of cations assist in enhancing the conductivity through creating
space for polymer segmental motion. Furthermore, the physicochemistry of ZnO nanofiller
enhances the ionic conductivity. Consequently, the ion and polymer coordination might be
disturbed, allowing conduction to continue [55]. The conductivity attained in this study
is 3.70 × 10–3 Scm–1 at 10 wt % ZnO nanofiller (PZ0), which is much higher (almost by
one order of magnitude) than the conductivity of 5.30 × 10–4 Scm–1 of the SPE without
the ZnO nanofiller (PZ0) [31]. The conductivity then gradually decreased as the wt % of
the ZnO nanofiller increased above 10 wt %. The substantial plasticizing effect of ZnO
nanofiller is the reason for the increase in conductivity up to 10 wt % ZnO-NPs [41]. The
strong influence of ZnO nanofiller helps to relax the strength of the polymer, which further
enhances the elasticity of the polymer. The flexibility of the ZnO nanofiller enables the ions
to easily migrate via the polymer matrix. Additionally, an increase in chain flexibility of
the polymer was reported to improve polymer segmental motion and help ion movement
within the composites [19]. ZnO-NPs are also known to affect the crystalline phase of the
polymer that may degrade the temporary coordinative bond in the molecule within the
region of crystallinity, which transforms the polymer chains into a flexible complex, as
noticed in the XRD and FESEM in Figures 2 and 4, respectively.

Nevertheless, the conductivity is observed to decrease beyond 10 wt % of ZnO-NPs,
and this could be attributed to the buildup of ions and the accumulation of larger ions in the
electrolytes. It was observed that a large number of ions in electrolytes leads ions to cluster,
hindering the conducting pathways and averting the ions from migration, which results in
a reduction in the moveable ions, and thus, a drop in conductivity is observed [57]. The
increase in the number of ions owing to ion recombination can lead to the reduction in
conductivity at higher wt % filler. Moreover, due to the excess number of ions in higher
wt % ZnO-NPs, Zn+ may form ion pairs rather than offer ions for conduction [41].

The ionic conductivity attained is higher by about two orders of magnitude than
that in previously reported studies using other polymers/salts [58]. The good perfor-
mance of the SPEs with ZnO nanofiller in this study might be ascribed to the significant
effect of the nanofiller, which assists in the movement of charge carriers [33]. Table 3
presents a comparison between blended SPEs prepared in this study with those of other
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studies published earlier. It is found that the electrolyte prepared in this study has a better
conductivity than other polymer blends in previous studies incorporated with different
fillers/plasticizers.

Table 3. Comparison of the conductivities at room temperature of polymer blend SPEs from
the literature.

Polymers Salt Filler/Plasticizer Conductivity (S/cm) Ref.

PVA–CA K2CO3 ZnO-NPs 3.70 × 10–3 This study
Starch–chitosan NH4I Glycerol 1.28 × 10–3 [58]
Chitosan–PEO NH4NO3 Ethylene carbonate (EC) 2.06 × 10–3 [56]

Chitosan-based solid biopolymer NH4Br Glycerol 1.51 × 10–3 [59]
Pectin–methylcellulose K3PO4 Glycerol 3.00 × 10–4 [24]

PEO–MC NH4I Polyethylene glycol 3.37 × 10−3 [10]
PVA NH4NO3 ZnO-NPs 4.71 × 10–4 [30]
PEO LiClO4 ZnO 1·28 × 10–5 [60]

3.2.3. Temperature versus Conductivity Relationship

Figure 9 shows the conductivity versus temperature plot of the PVA–CA–K2CO3/ZnO-
NPs composite SPEs, indicating a progressive increase in conductivity with the increase
in temperature. The thermal alteration of the samples, particularly the polymer hosts,
from semi-crystalline to more amorphous with an increase in ion migration and free
Zn+ from ZnO nanofiller, is responsible for the rise in conductivity with the increase in
temperature [30,61,62]. An earlier report similarly related the increase in conductivity of the
electrolyte with the increase in temperature to the transformation of polymers from semi-
crystalline to amorphous [63]. The linear difference in conductivity noticed at temperatures
below 60 ◦C indicates that ion transport is facilitated by thermally induced mechanisms and
thus follows the Arrhenius law. The Arrhenius model is a vital factor to study when dealing
with the transportation of ions relative to temperature. The observed linear relationship
points to a considerable phase transition in the prepared samples, signifying that the
temperature dependence of the conductivity might indeed be designated by the Arrhenius
model, as in Equation (2) [45]:

σ = σo exp
[
− Ea

kBT

]
(2)

where Ea is the activation energy, T is the absolute temperature in Kelvin (K), and σo denotes
the pre-exponential factor.
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Accordingly, an expansion of the polymers due to the polymer segmental motion at
higher temperatures generates vacancies where the ions easily flow. Consequently, the
mobility of ions improves and the ion cloud effect at the electrode–electrolyte interface
is reduced. Equally, with the increase in temperature, the chain of the polymer grows
a faster internal mode that causes segmental motion due to bond rotation. Therefore, the
inter-chain ion hopping is preferred, which leads to the increase in conductivity with the
temperature [64,65]. At temperatures above 373.15 K, nevertheless, the conductivity of
the samples was shown to decrease. This reduction could be ascribed to the formation
of elements inside the polymer matrix, which limits ion hopping and hence results in
increased resistance in the majority of the samples [66,67].

3.2.4. Activation Energy (Ea)

To study the dynamic motion of ions in the prepared polymer electrolytes, the ac-
tivation energy (Ea) of all the samples was computed and analyzed by fitting it into the
Arrhenius Equation (2) [30]. The results and values of Ea of all the samples are shown in
Figure 10 and Table 4, where the maximum conducting sample (PZ10) is found to have
the lowest activation energy, which indicates that it is inversely proportional to the ionic
conductivity. It shows that incorporation of ZnO nanofiller into the PVA–CA–K2CO3
composite tends to decrease the potential energy barriers for the ion migration, resulting
in the decrease in activation energy [30]. Furthermore, the addition of fillers into the
electrolyte was found to disturb the coordination within the backbone of the polymer and
consequently needs less energy to break and form coordination bonds within the matrix of
the polymer hosts. Thus, the diffusion of ions is promising, and this further enhanced the
conductivity [16]. As reported previously, low Ea is due to the tiny space within the transit
sites delivered by the polymer blend. This result is similar to a large body of past research
on various polymer electrolytes [13,30,46,66].
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Table 4. Activation energy (Ea) of the prepared SPEs based on PVA–CA–K2CO3/ZnO-NPs.

S/N Samples Activation (Ea) (eV)

1 PZ0 1.60 × 10–3

2 PZ5 1.00 × 10–3

3 PZ10 6.08 × 10–4

4 PZ15 7.80 × 10–4

5 PZ20 1.10 × 10–3

3.2.5. Electrochemical Stability Window

To investigate the electrochemical stability window of the SPEs, linear sweep voltam-
metry (LSV) was conducted. The working cell voltage range of SPEs is a significant feature
to investigate since it demonstrates the electrolyte’s capacity to maintain the operating
voltage of electrochemical devices [67]. Therefore, the electrochemical stability window of
the PZ0 and the optimized PVA–CA–K2CO3/ZnO-NPs composite (PZ10) were investigated
and studied at a 5 mVs–1 scan rate, and the resultant voltammograms are presented in
Figure 11a,b. For the PZ0 sample, we found that the current remained constant while the
voltage increased until the sample reached a maximum (Vmax) [68]. Sample PZ10 in this
study was determined to have a wide electrochemical stability window of 2.84 V, which
can be linked to the salt particles. The strong effects of K2CO3 and the dielectric constant
of the polymers can impact electrochemical stability, resulting in a higher charge carrier
concentration [69].
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However, the stabilities of the SPEs increased with the incorporation of ZnO nanofiller
into the polymer membrane, and the electrochemical stability window voltage further
improved to 3.24 V, as shown in Figure 11b, with the incorporation of 10 wt % ZnO
nanofiller. The observed increase in voltage stability could be attributed to ZnO functioning
as a filler that binds to the polymer–salt chain and causes the electrolyte to not decompose
rapidly. Similar findings have previously been published, with the authors claiming
that fillers can help expand an electrolyte’s stability window [16,27]. The increase in
the electrochemical stability window with the incorporation of ZnO-NPs as a nanofiller
may be due to the coordination within the polymers, K2CO3, and ZnO-NPs that changed
the physical properties of the polymer and consequently enhanced the electrochemical
stability [27,70]. The result attained in this study using ZnO-NPs as a nanofiller is much
higher than the conventional recommended value for electrochemical stability (1.7 V) of
an electrolyte for application in any energy storage devices and higher than other studies
reported earlier using different fillers [27,71]. Hence, from the results obtained in this study,
the PVA–CA–K2CO3/ZnO-NPs SPE composites has potential to be used as an electrolyte
in an all-solid-state for energy storage devices.

3.3. Transference Number (TNM) Measurements

To further support the conductivity study of the prepared samples, the analysis of
the ion transference number (tion) and electron transference number (tel) is vital. The
transference number is defined as the number of moles of ion transferred for one Farad
of charge transferred. Preferably, the transference number, t+, should be close to 1 in
a high-conductivity polymer electrolyte, and is calculated as in Equation (3) [72]:

t+ =
Is

Io
(3)

where Io and Is denote the initial and steady-state cell current, respectively.
In this study, the transference number equivalent to ionic transport (ti) was evaluated

in PVA–CA–K2CO3/ZnO-NPs SPE systems using Wagner’s polarization technique [72].
Prior to the analysis, the sample was sandwiched between two stainless steel blocking
electrodes and a fixed voltage was applied, and the current is studied as a function of
time until the saturation limit is reached. The resultant plot of the transference number as
a function of time for the samples is shown in Figure 12. It can be observed that the initial
current of all the samples is high and this could be linked to the flow of electrons and ions,
and the current thereafter decreased with an increase in time.

Previous research has reported that the initial decrease in the current is due to the
polarization effects, resulting in ion buildup at the electrolyte–electrode interface. Similarly,
the remaining current is due to electrons as ions become blocked with time [73]. The ion
transference number (tion) and electron transference number (tel) achieved in this study
for all the samples are summarized in Table 5, and all the results were found to be in
accordance with the values of ionic conductivity and LSV achieved. The suitable result of
the transference number achieved is due to the fast ion migration in the polymer dispersed
with ZnO nanofillers. It was found that the cation from the salt/plasticizer coordinates
with the electron-rich group of the polymer and thus modifies the chain arrangement of
the polymer, which results in the increment in the amorphous content of the electrolyte.
This increment in the amorphous content expedites the faster movement of ions that led to
improved ion TNM [74]. Hence, this indicates that the charge transport in this electrolyte
is mainly due to charge carriers. The good transference number could be ascribed to the
influence of ion–ion and polymer–ion interactions on the macroscopic transport parameters.
The ion transference number attained in this study is adequate for application in any energy
storage device [72,73].
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Table 5. Transference number of the PVA–CA–K2CO3/ZnO-NPs composite SPEs.

Samples Electron Transference Number (tel) Transference Number (tion)

PZ0 0.090 0.909
PZ5 0.089 0.911
PZ10 0.034 0.965
PZ15 0.078 0.922
PZ20 0.082 0.918

4. Conclusions

Free-standing polymer electrolyte films (SPEs) based on PVA blended with reinforced
cellulose acetate (PVA–CA) and K2CO3 composites incorporated with different contents of
ZnO nanofiller (5–20 wt %) were synthesized and characterized. The morphology of the
samples indicated that the ZnO nanofiller was regularly dispersed at lower amounts and
started to agglomerate at higher wt %. The structural characterization based on XRD and
FTIR revealed that the polymers, the salt, and the nanofiller are compatible and blended by
means of interfacial adhesion and coordination via hydrogen bonding due to the existence
of –OH of the polymer blend. This indicates the occurrence of good coordination between
the PVA–CA–K2CO3 and ZnO nanofiller that leads to a favorable distribution of ions within
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the polymers. The highest electrochemical performance was achieved by 10 wt % ZnO-NPs
with an optimum ionic conductivity (at room temperature), high potential window, and the
lowest activation energy (Ea) of 3.70 × 10–3 Scm−1, 3.24 V, and 6.08 × 10–4 eV, respectively.
The favorable performance observed was due to the increase in the number of charge
carriers and the effect of electrode polarization owing to the strong effect of ZnO nanofiller.
Temperature and frequency dependence were found to approximately follow the Arrhenius
model, at least below 60 ◦C, which established that the electrolytes in this study were
thermally activated below this temperature. Therefore, the results achieved in this study
confirm that polymer blend SPEs based on PVA–CA–K2CO3 with ZnO nanofiller have
considerable potential for application in portable electrochemical devices.
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