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ABSTRACT: The 3D-QSAR models were developed using CoMFA and CoMSIA techniques
to investigate essential molecular fields, optimization strategies, and structure−activity
relationships for utrophin-modulating compounds. The data set (71 molecules) was divided
into two training and test sets using the hierarchical clustering approach. The training set was
aligned based on the most active compound. The built and optimized models based on the PLS
approach provided acceptable results. The results were q2 = 0.528 and r2 = 0.776 for CoMFA
and q2 = 0.600 and r2 = 0.811 for CoMSIA models. According to the statistical results, it was
found that both the CoMFA models with and without regional focusing and also the CoMSIA
model have good estimation ability. Molecular docking was also performed with high-activity
compounds (as ligands) and target receptors (protein), and its results, together with the results
of 3D-QSAR, give new insights for the design of compounds with higher biological activity.
Finally, based on the overall results, the design of new compounds with higher utrophin
modulation activity was carried out.

1. INTRODUCTION
Duchenne muscular dystrophy (DMD) is a debilitating
condition associated with a progressive genetic disorder that
leads to severe muscle weakness and wasting over time.1

According to studies, the main cause of this disease is the
mutation in the dystrophin gene, which disrupts the functional
dystrophin protein. Since the dystrophin gene is known as a
very large gene, it therefore exhibits an extraordinarily high rate
of new mutations.2 Dystrophin is the protein responsible for
the aforementioned condition that stabilizes muscle fibers
during movement and acts as a critical structural link between
the actin cytoskeleton and the extracellular matrix.3 Although
significant advancements are being made in the development
of promising approaches such as the removal of specific exons
and their adjacent introns from mRNA structures before
translation, stop-codon read-through, and gene modification,
there is presently no universally effective treatment available
for the entire target community. In addition, to solve the lack
of functional dystrophin in these patients, oral small molecules
have been made using utrophin.4 The mentioned therapeutic
approach has the potential to be beneficial for all sufferers,
regardless of specific dystrophin mutations. Despite the
progress made in targeting specific patient subsets with the
aforementioned therapies, their limited efficacy and potential
toxicity pose significant challenges.5 Therefore, it is crucial to
explore alternative therapeutic techniques that offer greater
efficacy and are not limited to specific mutations. Among the
studies that have been reported about solving these challenges,
we can mention the study of Hadwen and his colleagues6 who,

by identifying the factors that cause the expression of utrophin,
conducted an in silico study about reporting a method for
potential treatment of DMD. Using systematic databases of
human gene expression changes, they performed an Affymetrix
array-based analysis on different cell lines using 1600
compounds and identified a list of small compounds that
increase utrophin mRNA. Also, anisomycin, a p38-activating
antibiotic, was one of the most promising utrophin mRNA
regulators that they reported. Another study by Echigoya et al.7

reported a potential therapeutic approach for DMD using
antisense “modifying” oligonucleotides to induce exon
skipping. They proposed an in silico prescreening approach
based on predictive statistical modeling. Although these studies
show that mRNA control and removal of specific exons or
skipping exons can be an effective way to treat DMD, as said,
universal effective treatment is not available for the entire
target population, so studying a new method such as
modulating the expression of utrophin can be promising.
Utrophin (UTRN) upregulation represents a mechanism-

based approach that holds promise for treating all patients with
DMD, regardless of their specific mutations. As mentioned,
utrophin is an autosomal paralog of dystrophin protein and has
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been identified as a potential operational substitute. Studies
conducted on DMD animal models have demonstrated that
utrophin can compensate for the absence of dystrophin. As a
result, there is considerable interest within the scientific
community to explore approaches that can modulate utrophin
levels in dystrophic tissues. Such an approach has the potential
to provide a comprehensive treatment option for individuals
with DMD, but there are still obstacles that need to be
overcome. A modulator must interact with the correct part of
the target molecule to be effective, but designing a drug that
can only interact with the desired region (without altering
other important functions) seems difficult. This can be
considered an important challenge for a complex molecule
like utrophin, which is composed of different parts. On the
other hand, since the modulation of utrophin expression is
done in parts of the body where direct drug delivery is difficult
(embryonic tissue, heart fibers, etc.), computer modeling
studies can be of great help regarding these challenges.
Examining drugs designed as modulators of utrophin
expression to reduce unwanted side effects due to cellular
processes with similar proteins seems to be another challenge
that can be overcome based on studies of structure−activity
relationships and the design of new compounds.4,8 Recently,
Vuorinen and co-workers have introduced a new series of
utrophin modulators in a novel cellular screening course.9 In
their report, they investigated how utrophin is transcribed in
firefly genes. According to the Vuorinen group study,
Chatzopoulou and colleagues reported further optimization
and structure−activity relationships (SAR) for their main
compound (OX01914).10 This approach could enhance the
intrinsic potency of the compound and improve its overall
physicochemical properties.
Quantitative structure−activity relationship (QSAR) model-

ing has gained considerable popularity as a suitable alternative
to practical studies in predicting changes in the activity of
molecules by changes in their structure.11−14 The 3D-QSAR
methods have emerged as a more sophisticated approach for
modeling structure−activity relationships in drug discov-
ery.15−17 This method considers the complete 3D representa-
tion of molecules, taking into account their steric character-
istics and the associated electrostatic effects that influence their
biological activity.18−20 Investigating changes in the biological
activity of molecules by changing their structure, based on

quantitative relationships using computational algorithms and
statistical techniques, is the goal of 3D-QSAR studies.21,22

Comparative molecular field analysis (CoMFA)23 and
comparative molecular similarity indices analysis (CoMSIA)24

are two prominent analysis techniques among the various
methods used in 3D-QSAR. In the CoMFA technique, by
preparing contour maps and examining the steric and
electrostatic fields around a compound, it is possible to obtain
the highest biological activity available for the molecule in a
virtual Cartesian grid.23 The number of interactions of these
fields around the molecules can be seen in these contour maps.
Contrarily, CoMSIA broadens the scope of the study by
integrating new parameters such as hydrophobicity, hydrogen-
bond donor, and hydrogen-bond acceptor characteristics.24 By
combining 3D-QSAR and molecular docking studies, a
pervasive approach can be presented to detect the effects
between different functional groups in the molecular structure
and its interaction with the receptor in the presence of fields
created around the molecule.25

The present work aims to create a 3D-QSAR model utilizing
CoMFA and CoMSIA techniques to investigate the essential
molecular fields, optimization strategies, and design of new
compounds with higher utrophin modulation activity. The
molecular docking technique was also used to study the
effective interaction between the modulator and its associated
receptor.

2. RESULTS AND DISCUSSION
2.1. CoMFA Analysis. To study the relationship between

chemical structures and the UTRN modulation activity of
compounds, the CoMFA model named CoMFA-1 consisting
of a training set with 57 compounds was used. Also, to
establish a relationship between the structural features of the
compounds and their UTRN modulation activity, the PLS
approach was used to build the model. Many statistical
parameters were selected and used to evaluate the estimation
power of the model and its performance in accurately
predicting modulation activity based on chemical structure
descriptors. The results obtained from the CoMFA analysis are
listed in Table 1. The most favorable result is when the
number of components is three, according to which the highest
value of q2 was obtained. Based on the results of the PLS
technique in nonvalidation mode, the r2 is 0.776, the standard

Table 1. Statistical Results Obtained from CoMFA and CoMSIA Models

parameter CoMFA-1 CoMFA-2 (focusing) CoMSIA

PLS statistics
LOO cross q2/SEP 0.528/0.371 0.553/0.361 0.600/0.341
group cross q2/SEP 0.555/0.357 0.522/0.373 0.586/0.347
nonvalidated r2/SEE 0.776/0.255 0.750/0.270 0.811/0.235
F 61.324 53.126 75.797
rbootstrap2 0.858 ± 0.019 0.826 ± 0.048 0.857 ± 0.049
Sbootstrap 0.209 ± 0.085 0.217 ± 0.091 0.190 ± 0.095
optimal compounds 3 3 3
rtest2 0.674 0.695 0.529
CCCtraining 0.8741 0.8574 0.8956
CCCtest 0.7567 0.7800 0.6589

field distribution
steric 0.525 0.593 0.134
electrostatic 0.475 0.407 0.482
hydrophobic 0.269
H-bond acceptor 0.115
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error of estimate (SEE) is 0.255, and the F value is equal to
61.324. Also, the bootstrap r2 value was 0.848, which shows the
good performance and reliability of the model. CoMFA-1
demonstrated that 52.5% of the variance is attributed to the
steric field, while the remaining 47.5% of the variance is related
to the electrostatic field. Finally, the obtained results, including
high F value, high rbootstrap2 value, and low SEE, confirm the
reliability and accuracy of the model. There is a statistical
relationship between the experimental pEC50 values and the
values predicted by the CoMFA-1 model as shown in Figure 1.
This plot serves as a visual representation of how well the
model’s predictions align with the actual experimental data. In
some cases, applying focusing to the CoMFA model can
improve the results of the model; for this reason, the new
CoMFA-2 model was built by applying focusing. This
approach resulted in enhancements to several statistical
parameters (such as the qLOO

2), but overall, it provided similar
results to the initial model. The results obtained from this
model are also shown in Table 1. Additionally, the models
underwent extensive validation protocols, as listed in the

relevant table, which ultimately resulted in the acceptance and
validation of the proposed models. Also, there is a statistical
relationship between the experimental pEC50 values and the
values predicted by the CoMFA-2 model as shown in Figure 2.
According to the figure, the closeness of the data points to the
diagonal line reflects the model’s ability to make accurate
predictions. Also, for the CoMFA-2 model, the variance ratio
of the fields was checked, which was 40.7 for electrostatic fields
and 59.3 for steric fields, which shows that steric fields have a
greater effect on changes in the activity of structures. In Table
5, the estimated pEC50 values obtained through the CoMFA-1
and CoMFA-2 models are reported. Also, Table S2 lists the
calculated residual values for the reported models. Data for
which the calculated residual value is greater than three times
the standard deviation of the residuals are considered
outliers.26 Therefore, two molecules 48 and 52 based on the
residual values and the graphs obtained from the correlation of
the predicted pEC50 values against the calculated residual
values (Figures S1−S3) were removed from the set due to the
distance from the line (as outlier data). Also, these compounds

Figure 1. Graph obtained from the correlation of experimental values against predicted values of pEC50 by the CoMFA model.

Figure 2. Graph obtained from the correlation of experimental values against predicted values of pEC50 by the CoMFA focusing model.
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Figure 3. Diagram of 31 different states of CoMSIA descriptors (S, steric; E, electrostatic; H, hydrophobic; D/A, H bond donor/acceptor) with
their corresponding q2 values and the number of principal components used in the model.

Figure 4. Graph obtained from the correlation of experimental values against predicted values of pEC50 by the CoMSIA model.

Figure 5. Contour maps obtained from the CoMFA model: (a) steric and (b) electrostatic based on molecule 50.
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are in the experimental set and are not effective in predicting
the activity by the models. This inconsistency could be due to
experimental error in measuring the EC50 value for the target
structures.
2.2. CoMSIA Analysis. To explore the impact of each

CoMSIA field on prediction accuracy, a comprehensive
analysis of all possible combinations of CoMSIA descriptors
was conducted. The training set with 57 compounds was used
to optimize the number of components by qLOO

2 values, as
depicted in Figure 3. This process aimed to identify the most
influential CoMSIA fields and their respective contributions
toward improving the accuracy of predictions. Among the
different combinations of descriptors, the optimal statistical
results were achieved when there was a combination of four
descriptors: steric, electrostatic, hydrophobic, and hydrogen
bond acceptor. As per the data presented in Table 1, the built
model showed good statistical results for qLOO

2 (0.600) and r2

(0.811) when utilizing three principal components. The results
of this validation process indicated both CoMSIA and CoMFA
are better models for investigating structure−activity relation-
ships for the modulation of UTRN. Also, there is a statistical
relationship between the experimental pEC50 values and the
values predicted by the CoMSIA model as shown in Figure 4.
The CoMFA-1 and CoMSIA models, accompanied by their
explained contour maps, were employed to justify the
modulation of UTRN.

2.3. Steric Contour Map. The contour maps around
molecule 50 (the most active compound) for steric and
electrostatic fields based on the CoMFA-1 model can be seen
in Figure 5a,b, respectively. To better describe the contours of
different fields (to replace suitable functional groups),
molecule 50 was divided into three distinct regions A, B, and
C according to Figure 1. As shown in Figure 5a, the steric
interactions have green and yellow default color contours.
Areas where bulky groups have a favorable effect on compound
modulator activity and help increase activity are marked with
green contours. These green regions account for 80% of the
steric field’s contribution, signifying the significance of these
areas in promoting favorable interactions. Conversely, the
yellow contours indicate regions where bulky substitutes are
unfavorable within the template molecule. These yellow
regions constitute 20% of the steric field’s contribution,
suggesting that substituents in these areas may lead to reduced
activity or unfavorable interactions with the target. Also,
according to Figure 5b, electrostatic interactions have blue and
red default color contours. In the areas where the blue
contours are spread, by replacing the positive groups, the
modulatory activity of the compound increases. These areas,
contributing 80% to the electrostatic field, suggest that
incorporating positively charged moieties at these positions
can enhance the interaction with the target. However, using
the negatively charged groups in the areas marked by red
contours can improve the modulatory activity of the

Figure 6. Contour maps obtained from the CoMSIA model: (a) steric, (b) electrostatic, (c) hydrophobic, and (d) HBA based on molecule 50.
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compounds. These red areas account for 20% of the
electrostatic field’s contribution, suggesting that incorporating
negatively charged substituents in these regions can lead to
improved activity by facilitating specific electrostatic inter-
actions. As can be seen, from Figures 5a and 10, around region
A and related to R1 and R2 positions in the CoMFA-1 steric
contour map, a large green contour is marked. This contour is
accompanied by smaller yellow contours in region C near R3,
indicating that the use of bulky groups in these areas decreases
the molecules’ modulation activity. Based on Table 5, the use
of bulky groups in region A, specifically as R1 substitutions for
molecules 8, 10, and 11, leads to increased modulation activity
(pEC50) values (5.57 < 5.61 < 5.75). A similar trend is
observed for molecules 31 and 32, where utilizing the bulky
group (OCH3 < Ph) in region A and near R1 and R2 results in
better modulation activity (4.83 < 5.08). These observations
demonstrate that incorporating specific bulky groups in region
A and near R1 and R2 can positively influence the molecules’
modulation activity, as indicated by higher pEC50 values. Also,
by comparing molecules 33 and 34, it is clear that the
biological activity increases as the molecule becomes larger in
the R1 and R2 positions of region A (5.05 < 5.96).
Replacing a phenol group with naphthalene in molecules 47

and 48 shows that the use of a bulky group in R1 of region C
reduces the modulation activity of the compound. This is due
to the presence of a yellow contour around the R1 position of
region C. The presence of a relatively large yellow contour
spanning between regions A and B leads to a reduction in
pEC50 when utilizing larger groups in these regions. Analyzing
compounds 20 and 23 reveals that the substitution of a phenyl
group (considered a bulky group) results in a decrease in
modulation activity from 5.62 to 5.51. Similarly, the
comparison of compounds 19 and 22 shows that the
substitution of a bulky group (phenyl) in these regions
decreased the biological activity of the compounds. Also, the
contour maps for spatial, electrostatic, hydrophobic, and
hydrogen bond acceptor fields based on the CoMSIA model
can be seen in Figure 6a−d. As shown in Figure 6a for the
steric fields around molecule 50, green contours (favorability
of bulky groups) and yellow contours (favorability of small
groups) are similar to the distribution of contours in the
CoMFA-1 model. With the comparisons made, it was
concluded that changes in region A can significantly increase
the modulator activity of the compounds.
2.4. Electrostatic Contour Map. According to Figure 5b,

the contour maps for the electrostatic field around molecule 50
based on the CoMFA-1 model are known. In this figure, two
red and blue contours are shown. The red contour indicates
the positions where the modulation activity of compounds
increases by replacing an electron-withdrawing group in these
areas. But the concept of the blue contour is that by replacing
an electron-donating group in these areas, the modulatory
activity of the compounds increases. Looking at Figure 5b,
there is a relatively large red contour in region A, in which,
based on the comparison of the structures in Table 5 with their
corresponding pEC50, replacing the electron-withdrawing
groups can increase the pEC50 of the compounds. According
to the above points, a clear illustration of the impact of
electron-withdrawing groups in enhancing the modulation
activity can be observed by comparing molecules 9 (R1 = 3-
OMe) and 11 (R1 = 3-OCHF2). In molecule 11, where the
electron-withdrawing group (3-OCHF2) is substituted in R1,
the modulation activity significantly increases to a value of

5.75. However, in molecule 9, where a 3-OMe group (with less
electron-withdrawing properties than 3-OCHF2) is substituted
at the same position, the activity value is 5.15. Also, the
comparison of compounds 14 and 15 shows that increasing the
electron-withdrawing property in the R1 position of region A
increases the modulation activity of UTRN. By adding an
−OH group to the para position in compound 15, pEC50
increases from 4.90 (in compound 14) to 5.44. Another
comparison can be made between compounds 16 and 18,
where the F group was substituted by the OCHF2 group, and
the modulation activity increased from 5.27 to 5.51, indicating
that the modulation activity increased by replacing the
electron-withdrawing groups into these regions.
If we give attention to Figure 5b again, a small red contour

in region C is evident in which the substitution of the electron-
withdrawing group in these regions may increase the activity of
the molecules. Comparison of compounds 48 and 49 shows
such an effect in which the biological activity increases from
5.45 to 6.92 by substituting an isoquinoline group instead of a
naphthalene group in the R1 position of region C. Also, by
adding an electron-withdrawing group instead of H in
compounds 1 and 70, the modulation activity increased from
4.67 to 5.14, respectively. The mentioned comparisons confirm
that the substitution of electron-withdrawing groups in the R1
position of region C increases the modulation activity of the
compound. Again, according to Figure 5b, there is a wide blue
contour that extends from region A to region C and also
includes region B. By examining two molecules 37 and 52, it
can be concluded that by adding negatively charged groups
(−N− and CF3) to R1 of region C, the activity of the molecule
decreases from 5.69 (in molecule 37) to 4.92 (in molecule 52).
It is clear that the addition of negatively charged groups in this
region is undesirable and reduces the modulation activity of
the compound. The contour map of the electrostatic field for
the CoMSIA model is shown in red and blue colors in Figure
6b. According to the figure, it can be understood that the
presence of a red contour in region A, like the CoMFA-1
model, increases the modulation activity of the compound
when using electron-withdrawing groups.
2.5. Hydrophobic and HBA Contour Maps. Hydro-

phobic contour maps generated using CoMSIA are shown in
Figure 6c. Based on this figure, the areas where the
hydrophobic properties have a favorable effect on the
biological activity of the compound are marked with gray
color, and the areas where the modulation activity is reduced
by replacing the hydrophobic groups are marked with a yellow
contour. In conclusion, regions A and C could be considered
as the main substructures to increase the modulation of UTRN
by manipulating the hydrophobicity of the functional groups
used. Comparing compounds 4 and 2, where the addition of a
CF3 group instead of CN in the R1 position of the C region,
indicates that the substitution of a hydrophobic group
increases the modulation activity from 5.09 to 5.25. Figure
6d shows the map of hydrogen bond acceptor contours with
purple and cyan colors. Purple contours are favorable positions
for hydrogen bond acceptor groups, and cyan contours are
unfavorable positions for these groups. According to the data
in Table 1, the field distribution percentage for different
descriptors of CoMSIA has been determined, which is 13.4 for
steric fields, 48.2 for electrostatic fields, 26.9 for hydrophobic
fields, and 11.5 for hydrogen bond acceptor fields. These
results show that the effect of electrostatic and hydrophobic
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fields is more than the other descriptors of the presented
model in increasing the modulation activity of compounds.
2.6. Molecular Docking Analysis. Compounds with

pEC50 higher than 6 (molecules 53, 54, 51, 45, 47, 49, and
50) along with some compounds with the lowest modulating
activity (molecules 1, 71, 42, 69, and 31) were selected and
prepared for binding to the receptor binding site. The docking
results of molecule 50 (the most potent modulator of UTRN)
showed H-bond interaction with Glu252A residue. In addition,
residues Leu254A, Phe251A, Val253A, and Trp159A were
involved in hydrophobic interactions, which are shown in
Figure 7 along with the surface display of hydrophobicity. To
simplify and further identify interactions as well as to compare
compounds with high activity and compounds with low
activity, a pharmacophore was created using LigandScout 2.03
for the presented compounds.
The pharmacophore analysis of compounds with high

modulatory activity highlighted a hydrogen bond donor
interaction with Glu252A, and some number of aromatic

ring interactions were found involving Trp159A, Phe251A,
Gln256A, Val253A, Leu254A, and Glu252A. Based on the
results, it was found that the pharmacophore created on
molecule 50 (the highest activity) covers all the features
identified from the pharmacophore analysis on compounds
with high activity and provides more useful information than
other compounds. The results of compounds with high pEC50
are shown in Figure S4, and the results of molecule 50 are
shown in Figure 8a. Also, comparing the pharmacophore
analysis of compounds with high activity and compounds with
low activity showed that the information obtained from the
pharmacophore results of compounds with low activity is weak
and not reliable (it does not confirm the information obtained
from other molecules with low activity). On the other hand,
the results of the analysis of pharmacophore compounds with
high activity confirm the identified characteristics and the
information obtained from other molecules with high activity.
The results of compounds with low pEC50 are given in Figure
S5. The combined docking and pharmacophore analysis

Figure 7. Representation of H-bonding and hydrophobic interactions with residues in the docking of molecule 50 to the receptor along with a
graphical representation of the hydrophobic surface.

Figure 8. Interactions between molecule 50 and the corresponding receptor and their types as determined by (a) LigandScout and (b) Discovery
Studio.
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provided valuable insights into the interactions between high
activity molecules and the receptor binding site, guiding the
systematic design of potential new modulators. Based on
Figure 7 and Figure S4, focusing on the distribution of
hydrophobic properties around high activity molecules during
docking to the receptor can serve as a valuable guide for
replacing appropriate functional groups to enhance com-
pounds’ biological activity. However, comprehending how
hydrophobicity may cause modulation activity in other regions
throughout the data set seems challenging. This problem may
be due to the lack of sufficient information in the receptor to
understand the structural features of the compounds and their
relationship with the changes in the activity of the molecules.
The interactions identified in Figures 7 and 8a,b and Figure S4
as well as the hydrophobic contour maps of CoMSIA, which
are shown in Figure 6c, match and can be useful in identifying
regions involved in hydrophobic interactions.
2.7. Design of New UTRN Modulators. To design new

structures with high modulation power, studying contour maps
can be of great help. Figures 5a,b and 6a−d obtained from the
CoMFA-1 and CoMSIA models provided valuable insights
into the effects of different substituents in regions A, B, and C

of the reference molecule. According to the figures, by adding
bulky or electron-withdrawing groups such as tert-butyl,
phenyl, −COH, −NH2, −CF3, and Br to the R1 and R2
positions in region A, the activity of the compound increases.
As mentioned, another solution to increase the modulation
activity of compounds is to avoid the use of undesirable groups
in different regions. For instance, using the positive groups,
especially at positions R1 and R2, or incorporating negative
groups at position R3 should be avoided. Based on the
comprehensive analysis, the six new compounds with
estimated pEC50 values, higher than the reference molecule
(molecule number 50), have been designed and are listed in
Table 2. As mentioned, molecular docking together with 3D-
QSAR results provided new insights to design compounds with
higher biological activity. Docking and pharmacophore analysis
were also performed on the newly designed compounds to
prove their pharmacophoric features and the descriptors
appearing in the QSAR model. Based on the results of this
analysis, the relationships identified between the ligand and the
receptor in the newly designed compounds were also
confirmed. The results of pharmacophore analysis on new
compounds are shown in Figure S6.

Table 2. Newly Designed Utrophin Modulators, with Their Corresponding Estimated Activity (pEC50) by the CoMFA Model
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2.8. Pseudo-Drugs and ADME Assessment. A general
method for assessing drug-likeness or figuring out whether a
chemical compound with a particular pharmacological or
biological activity has chemical and physical characteristics that
would likely make it an orally active drug in humans is
Lipinski’s rule of five, also referred to as Pfizer’s rule of five
(RO5). According to this guideline, an orally active drug
should not exceed one violation of the following criteria: (a) a
maximum of five H-bond donors (N−H and O−H bonds),
(b) a maximum of 10 H-bond acceptors (N or O atoms), (c) a
molecular weight of no more than 500 Da, (d) the log P no
more than five for the compounds, and (e) not more than 120
cm3/mol molar refractivity for the compound. A chemical is
considered high risk in terms of oral bioavailability if it breaks
more than one of these guidelines. The guidelines outline
molecular characteristics that are critical to a drug’s
pharmacokinetics, that is, how it is absorbed, distributed,
metabolized, and excreted in the human body in the “ADME”
section. The rule, however, is unable to determine if a
substance is pharmacologically active.27,28 Using the Swiss
ADME web server (http://www.swissadme.ch/), the physical
properties and ADME parameters of the designed compounds
were calculated.29,30 Based on these findings summarized in
Table 3, except for two compounds (D1 and D4) that only
violated the molecular weight guideline, the rest of the
designed compounds obeyed Lipinski’s rule of five. As can be
seen in Table 3, all the compounds designed in this work
included the properties of a drug and showed very good
synthetic accessibility. Also, Veber’s rule calls into further
question a 500 molecular weight cutoff. The polar surface area
and the number of rotatable bonds have been found to better
discriminate between orally active compounds and those that
are not for a large data set of compounds. According to this
rule, compounds that meet only the two criteria of 10 or fewer
rotatable bonds and polar surface area no greater than 140 Å2

are predicted to have good oral bioavailability.31 The summary
of obtained results is indicated in Table 4.

3. PRINCIPLES OF THE METHOD
3.1. Data Set. The different structures of the main

compound, along with the utrophin modulatory activity
(EC50), were collected from the literature.9,10 The utrophin
modulatory activity of all compounds, which was reported as
EC50 (μM), was converted to the corresponding logarithmic
value [pEC50 (M)]. The data set was divided into two training
and test sets using the hierarchical clustering approach. All
compounds used in this study with their corresponding
biological activity are listed in Table 5. Also, to easily
reproduce the models by researchers, the SMILES code of
drawn molecules is given in Table S1.
3.2. Hierarchical Clustering Approach. One of the

important steps in creating a QSAR model is how to divide the
data set. This divide is essential to increase the test set’s variety
and assess the model’s predictive power when extrapolating
outside of the training set.32 For this purpose, a hierarchical
clustering approach was employed to partition the data set into
the test and training sets. The CoMFA descriptors and
biological activity have been used as the data set. In this
approach, each molecule is categorized based on its similarities
with other molecules. Eventually, this process generates
clusters that group molecules with similar characteristics
together.33 The dendrogram resulting from hierarchical
clustering is shown in Figure 9. Based on the distribution of T
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biological activity data over the full data set and the variety of
chemical structures included within it, the test set compounds
were chosen. Using the information obtained from hierarchical
clustering, out of a total of 71 structures, 57 compounds (80%)
were selected as the training set, and 14 compounds (20%)
were used as the test set.
3.3. Computational Analysis and Structural Align-

ment of Molecules. The 3D chemical structures of 71
compounds were constructed and analyzed using molecular
modeling methods with the aid of SYBYL-X.34 The Gasteiger−
Hückel technique was used to determine the atomic charges.35

Subsequently, all compounds underwent optimization, and
default force field parameters were used for energy
minimization. The Powell-CG algorithm was utilized with
0.01 kcal/mol Å convergence criteria.36 In 3D-QSAR analysis,
choosing a template molecule is a critical step as it greatly
influences the alignment and subsequent correct prediction of
the model, and it helps in establishing a reliable and accurate
model. Typically, the compound chosen as the reference
molecule for alignment purposes is the most active one.
Considering that in this research, compound 50 had the
highest biological activity, this compound was chosen as the
templet molecule for alignment purposes. Then, based on the
common part of the compounds, all of them were aligned on
compound 50. Figure 10 displays the reference molecule’s
chemical structure together with its common substructure,
while Figure 11 showcases the aligned compounds.
3.4. CoMFA/CoMSIA Procedures. Using a probe atom in

SYBYL-X, the steric and electrostatic fields were calculated for
each compound everywhere in the lattice. The probe atom
used in this network is an sp3 carbon atom with the default
values of the software (van der Waals radius of 1.52 Å and
charge of +1.0). A threshold of 30 kcal/mol was set for both
steric and electrostatic fields. If the value of either field at any
point exceeds this threshold, the threshold replaces the field

value. Region focusing is a repeatable technique that enhances
a model by assigning weights to lattice points. CoMFA
focusing enhances the model compared to the initial CoMFA
by assigning greater weight to specific grid points. As a result,
these points contribute more significantly to improving the
model’s resolution and predictive power. Through careful
selection of the focusing value, lattice resolution can be
considerably increased compared to approaches that do not
employ focusing.23 In addition to grid spacing, standard
deviation coefficients were utilized as distinct weighting factors
to achieve a more suitable model.37 In addition to CoMFA,
CoMSIA was employed to generate supplementary fields,
offering additional information such as hydrogen bond donor
(HBD), hydrogen bond acceptor (HBA), and hydrophobic
descriptors. These extra descriptors contribute to a more
comprehensive understanding of the molecular properties and
interactions being analyzed. The identical lattice box that was
utilized for constructing the CoMFA model was used to
calculate the CoMSIA model. This ensures consistency and
comparability between the two methods by maintaining the
same spatial parameters and grid dimensions. As a probe atom,
a carbon atom that has undergone sp3 hybridization was used
to calculate the five CoMSIA descriptors.24

The steric descriptors for the CoMSIA model are related to
the third power of the atomic radius. The atomic partial
charges serve as the basis for the electrostatic descriptions.
Atomic parameters provided by Viswanadhan et al. are used to
determine hydrophobic interactions.38 According to Folkers et
al.,39 the HBD and HBA indices are calculated from
experimental findings. These various descriptor types capture
different aspects of molecular interactions and properties,
providing a comprehensive representation for CoMSIA
analysis.
3.5. Partial Least-Squares Calculations. Partial least-

squares (PLS) analysis is a modeling method that can be used
to analyze the relationship between two sets of variables.40−42

This technique is an advanced form of MLR analysis that
provides the identification of the smallest set of points in the
lattice by establishing the relationship between CoMFA
descriptors as independent variables and the biological activity
of compounds (pEC50 in this case) as dependent variables. In
this work, the PLS method was employed to construct various
3D-QSAR models, and the leave-one-out (LOO) cross-
validation method was utilized to assess the predictive
capability of these models.43 This assessment involved
obtaining the q2 value as a measure of the model’s estimation
accuracy. Additionally, to determine the optimal number of
components and minimize the standard error of predictions
(SEP), the PLS approach was examined using cross-validation.
Then, PLS was performed with the nonvalidation method with
the optimal number of components and appropriate column
filtering, and r2, SE, and F values were obtained. To confirm
the validity of the created model, q2 and r2 coefficients are
good criteria and, if their results are in the range of 0.5 and 1.0,
it is considered that the model is satisfactory.44 After building
the final PLS model for the training set, rtes2 of the test set was
also calculated.
3.6. Molecular Docking. In this study along 3D-QSAR

research, molecular docking analysis was also performed to
investigate the behavior between the modulator molecules of
UTRN and its corresponding receptor. The AutoDock 4.2
software was employed for this purpose.45 The receptor
utilized in the docking analysis was obtained from RCSB PDB

Table 4. Summary of the Results Obtained from ADME
Predictions

ADME parameter observed range standard Range

physicochemical property
molecular
weight

432−529 below 500

H-bond
donors

two to three not more than 5

H-bond
acceptors

five to eight not more than 10

rotatable
bonds

four to five not more than 10

heavy atoms 32 to 35 20 to 70
log P 2.69−4.00 less than 5
water solubility moderately

soluble
polar surface
area

97−138 no greater than 140 Å2

pharmacokinetic property
GI absorption low to high
BBB permeant no

drug-likeness
PAINS 0
synthetic
accessibility

3.2 to 3.9 1 (very easy) to 10 (very
difficult)

Lipinski no violations
bioavailability
score

0.55 0.55 (sufficiently absorbable oral
route)
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Table 5. Chemical Structure of Utrophin Modulators and Experimental and Predicted pEC50 by CoMFA and CoMSIA Models

aTest set molecules. The asterisk symbol (*) indicates outliers.
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Figure 9. Hierarchical clustering dendrogram for two training and testing sets (testing set molecules are marked in red).

Figure 10. Chemical structure of the target molecule (molecule 50).
Three regions A, B, and C are marked with different colors, and the
common area is bold.

Figure 11. Molecule 50 on which all the structures are aligned.
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(https://www.rcsb.org/) with PDB ID 1QAG, representing
the actin-binding region of the dystrophin homologue utrophin
at a resolution of 3.0 Å. Before the docking procedures,
appropriate preparations were made for the protein structure,
involving the removal of ions and water molecules. Then, to
prepare the protein, Kollman charges and polar-H were added
to it.46 For correct docking, a grid box with dimensions of 65 ×
65 × 65 Å, a grid spacing of 1 Å, and Cartesian [x, y, z]
coordinates of [29.9885, 32.2400, 71.9803] was defined to
effectively cover the docking site. A number of compounds
with high pEC50 along with a few compounds with low UTRN
modulatory activity were selected as ligands during docking
analysis, and the number of 100 runs based on the genetic
algorithm was considered to select a conformation with
suitable binding. These conformations were then evaluated
to identify orientations with lower binding energy levels and
examine conformational clusters with more members, and the
best conformation was selected for further investigation by
LigandScout 2.03.47

4. CONCLUSIONS
In this work, for the development of UTRN modulators, the
3D-QSAR studies based on CoMFA and CoMSIA models
were used. By using the PLS approach, the relationship
between the biological activity of molecules and CoMFA and
CoMSIA descriptors was investigated and the estimation
power and accuracy of the created models were confirmed. To
achieve better results, CoMFA focusing was used, and the
obtained results were similar to the CoMFA model without
focusing. Analyzing the built models as well as examining the
contour maps of CoMFA and CoMSIA descriptors and their
effects on the modulation activity of molecules could provide a
new path for the preparation of UTRN modulators with higher
potency. In addition, molecular docking results identified a
number of hydrophobic interactions associated with the
corresponding receptor. By examining the results, it was
understood that the positions of R1 and R2 in region A have a
good potential to increase the biological activity of the
molecules by replacing the bulky and electron-withdrawing
groups. This conclusion is confirmed by the combination of
molecular docking and 3D-QSAR analysis and results in the
design of six new compounds with higher modulation activity.
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