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ABSTRACT

As the cost of single-cell RNA-seq experiments
has decreased, an increasing number of datasets
are now available. Combining newly generated and
publicly accessible datasets is challenging due
to non-biological signals, commonly known as
batch effects. Although there are several compu-
tational methods available that can remove batch
effects, evaluating which method performs best is
not straightforward. Here, we present BatchBench
(https://github.com/cellgeni/batchbench), a modular
and flexible pipeline for comparing batch correc-
tion methods for single-cell RNA-seq data. We ap-
ply BatchBench to eight methods, highlighting their
methodological differences and assess their perfor-
mance and computational requirements through a
compendium of well-studied datasets. This system-
atic comparison guides users in the choice of batch
correction tool, and the pipeline makes it easy to eval-
uate other datasets.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technologies
have made it possible to address biological questions that
were not accessible using bulk RNA sequencing (1), e.g.
identification of rare cell types (2,3), discovery of devel-
opmental trajectories (4–6), characterization of the vari-
ability in splicing (7–11), investigations into allele specific
expression (12–15) and analysis of stochastic gene expres-
sion and transcriptional kinetics (11,16). There are cur-
rently a plethora of different protocols and experimental
platforms available (17,18). Considerable differences exist
among scRNA-seq protocols with regards to mRNA cap-
ture efficiency, transcript coverage, strand specificity, UMI
inclusion and other potential biases (17,18). It is well known
that these and other technical differences can impact the ob-
served expression values, and if not properly accounted for
they could be confounded with biological signals (19). Such

differences arising due to non-biological factors are com-
monly known as batch effects.

Fortunately, with appropriate experimental design it is
possible to remove a portion of the batch effects com-
putationally, and recently there has been a large degree
of interest in developing such methods for scRNA-seq.
We group the methods into three categories depending on
what space they operate on with respect to the expression
matrix (Figure 1A). The expression matrix represents the
number of reads found for each cell and gene, and it is
central to computational analyses. The first set of meth-
ods, mnnCorrect, limma, ComBat, Seurat 3 (hereafter re-
ferred to as Seurat) and Scanorama, produce a merged,
corrected expression matrix. The second set, Harmony and
fastMNN, instead operate on a low-dimensional embed-
ding of the original expression matrices. As such their out-
put cannot be used for downstream analyses which re-
quire the expression matrix, limiting their use for some
applications. Finally, the BBKNN method operates on
the k-nearest neighbor graph constructed from the ex-
pression matrices and consequently its output is restricted
to downstream analyses where only the cell label can be
used.

As the choice of batch correction method may impact the
downstream analyses, the decision of which one to use can
be consequential. To decide what method to use, most re-
searchers rely on benchmarking studies. Traditionally such
comparisons are carried out using a compendium of rele-
vant datasets. The downside of this approach is that meth-
ods published after the benchmark was carried out are not
included and that the comparison may not have featured
datasets that contain all the relevant features required to
evaluate the methods. To overcome these issues we have de-
veloped BatchBench (Figure 1B), a flexible computational
pipeline which makes it easy to compare both new methods
and datasets using a variety of criteria. Here we report on
the comparison of eight popular batch effect removal meth-
ods (Table 1) using three well-studied scRNA-seq datasets.
BatchBench is implemented in Nextflow (20) and it is freely
available at https://github.com/cellgeni/batchbench under
the MIT Licence.
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Figure 1. Overview of the BatchBench pipeline workflow and schematic representation of the conventional scRNA-seq data analysis pipeline from the
expression matrix. (A) Batchbench first carries out QC on the input dataset prior to performing batch correction with the eight methods selected. After
this, a series of downstream analyses are computed, including: UMAP coordinates, Shannon entropies, clustering and marker gene analysis, and resource
consumption metrics of each of the processes. (B) Central and lower panels depict the conventional scRNA-seq data analysis pipeline and the analyses
that can be carried out with the output of each step. Upper panel represents the space over which each of the batch correction methods operate. The
initial expression matrix typically undergoes feature selection, being then source for gene based analyses, as marker gene and pseudotime analysis or gene
networks. Methods mnnCorrect, Limma, ComBat, Seurat and Scanorama operate in the expression matrix space. Next, a dimensionality reduction step is
performed. Methods Harmony and fastMNN operate in this space. The low dimensional embedding is then converted into a matrix of cell-cell distances
which in turn can be converted to a graph. These are inputs for cell based analysis as clustering, visualization and trajectory inference of cells. BBKNN
method operates in this graph space.
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Table 1. Summary of the eight batch correction methods considered in this study. Programming language of the method, type of output object, tool’s
batch correction principle as well as installation source and license type are listed

By default, BatchBench evaluates batch correction meth-
ods based on two different entropy metrics. The normal-
ized Shannon entropy is used to quantify how well batches
are aligned while preserving the separation of different cell
populations. However, the entropy measures do not pro-
vide a complete picture of how the batch correction impacts
downstream analyses. Therefore, BatchBench has a modu-
lar design to allow users to incorporate additional metrics,
and we provide two examples of such metrics - unsupervised
clustering and identification of marker genes. Five different
unsupervised clustering methods are applied to the merged
cells to afford the user a better understanding of how the dif-
ferent methods affect this step which is often central to the
analysis. We also compare cell-type specific marker genes to
understand how different batch correction methods affect
the expression levels.

METHODS

Datasets

Pancreas dataset. We consider three published pancreas
datasets: Baron (GSE84133) (39), Muraro (GSE85241)
(27) and Segerstolpe (E-MTAB-5061) (28) generated using
inDrop, CEL-Seq2 and Smart-Seq2 technologies, respec-
tively. Initially, quality control was performed on each of
the datasets to remove cells with <200 counts and genes
that were present in <3 cells along with spike-ins and anti-
sense transcripts. Furthermore, we only retained cells that

had been assigned a biologically meaningful cell type (e.g.
removing cells from the ‘unclassified’ category).

For Figure 3, we wanted to represent the pancreas results
as a boxplot similar to the other datasets. To ensure that we
got a distribution we considered three additional versions of
the data. One of these versions contained all of the genes ex-
pressed across the three batches rather than just the highly
variable ones. The second contained 1000 cells selected ran-
domly from each batch using the highly variable genes. The
third version contained only six cell types (acinar, alpha,
beta, gamma, delta and ductal) from each batch downsam-
pled to 50% of the original number of cells and information
from the highly variable genes.

Mouse cell atlas datasets. Individual MCA datasets were
downloaded from the paper’s Figshare site and merged by
tissue, generating 37 organ datasets. From these, 18 datasets
containing more than one batch and with a reasonable pro-
portion of cells across batches were selected. Through fur-
ther preprocessing we removed cells expressing <250 genes,
genes expressed in <50 cells, cell types representing <1%
of total cell population in a tissue, and batches containing
<5% of the total number of cells in a tissue (Supplementary
Table S2).

Tabula muris datasets. The data was downloaded from the
paper’s Figshare site. For all analyses except Figure 4, indi-
vidual datasets representing the same tissue across the two
platforms were merged into 11 organ datasets (Supplemen-

https://figshare.com/s/865e694ad06d5857db4b
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tary Table S1). We set workflow quality control parame-
ters to remove cells expressing <1000 genes, genes expressed
in <50 cells. Again, cell types representing <1% of total
cell population in a tissue, and batches containing <5% of
the total number of cells in a tissue were excluded from
further analyses. For the scaling analysis in Figure 4, the
previous tissues were merged into an atlas Tabula Muris
dataset which was filtered to retain cells with >200 genes
expressed, genes expressed in >3 cells. Cells assigned to NA
or unknown cell types were excluded. Cell types represent-
ing <1% of total cell population in a tissue, and batches
containing <5% of the total number of cells in a tissue were
excluded from further analyses. This resulted in an object
of 4168 genes and 60 828 cells (40 058 from 10X and 20 770
from Smart-Seq2).

Batch and cell type entropy

The output of each tool is transformed into a K Near-
est Neighbour graph with each node i representing a cell
(BuildKNNGraph, scran package). Each cell is connected
to its k = 30 nearest neighbors as defined by the similarity of
expression profiles calculated using the Euclidean distance.
Using the graph, we calculate for each cell i the probability
that a neighbor has cell type c, Pic, as well as the probability
that a neighbor comes from batch b, Pib. From these joint
probabilities we can calculate cell type and batch entropies.
We report the average value across all cells divided by the
theoretical maximum to ensure a value in the interval [0, 1].
For the datasets considered in this study, the results are ro-
bust with respect to the choice of k (Supplementary Figure
S16).

UMAP

Uniform Manifold Approximation and Pro-
jection (UMAP) is computed through the
scanpy.api.tl.umap function, which uses the im-
plementation of umap-learn (38). For the batch removal
methods implemented in R, the rds objects are first con-
verted into h5ad objects using the sce2anndata from the
sceasy package (https://github.com/cellgeni/sceasy/).

Downsampling

The filtered Tabula Muris dataset was sampled using uni-
form selection and no replacement to 1, 2, 5, 10, 20 and
50% of its cells. Resulting in objects of: 4168 genes and 608,
1217, 3041, 6083, 12 166 and 30 414 cells. The initial pro-
portion of the batches (0.64, 0.36) was maintained through
the different subsets.

Artificial batches

We work with a reduced version of the Tabula Muris atlas
object. We first removed all the Smart-seq2 cells and then re-
tained only the 10 largest cell types. From this 1001 cells are
randomly sampled to serve as input to the artificial batch
generation. All 4168 initial genes are considered. We base
our simulation of batch effects on a normal distribution.
For each batch to be simulated, we define: (i) a fraction f of

cells sampled with uniform probability from the sequence
[0.05, 0.1, 0.15, . . . 1.0]; (ii) a value d representing the dis-
persion of the effect to be simulated sampled with uniform
probability from the sequence [0.5, 1.0, 1.5, . . . n], where n
is the number of batches to simulate. For each of the 10 cell
types in the input data we add count values by drawing val-
ues from a normal distribution with a standard deviation
d. The artificial batch effect is only applied to those genes
expressed in >f of the cells. If a gene is assigned a negative
value, then it is replaced by 0. The result is a simulated data
set of 1001 cells and 4168 genes which is appended to the
input data set. We followed this approach to simulate data
sets with 2, 3, 5, 10, 20 and 50 equally sized batches.

Feature selection

We rank genes in descending order by their coefficient of
variation establishing five fractions of features: 0.05, 0.1,
0.2, 0.5 and 1.0 (all of the features). Feature selection is
performed as a first step in each clustering algorithm script
prior to any processing of the input data.

Clustering analysis

The merged samples were clustered using five different clus-
tering algorithms: SC3 (35) from the homonim Bioconduc-
tor package, Louvain and Leiden as implemented in Seurat
(23), RaceID (2) and standard hierarchical clustering using
Ward’s agglomeration method. SC3 and Race ID require a
count matrix as input. For SC3 we set k to the number of
cell populations of each dataset. If the dataset had >5000
cells we enable sc3 run svm to speed up the processing.
RaceID uses Euclidean distances based on the Pearson cor-
relation distance. All three RaceID clustering options (k-
means, k-medoids and hclust) are implemented in our clus-
tering step. The other clustering algorithms can be applied
to all batch correction methods in our study. Louvain and
Leiden methods were implemented with the Seurat func-
tion FindClusters, with other parameters set to their
default values. We also implemented standard hierarchi-
cal clustering using Ward’s agglomeration method with the
hclust function from the stats package.

As a pre-processing step after feature selection and prior
to SC3, RaceID and hierarchical clustering, all cells and fea-
tures with zero variance are removed. Moreover, in the case
of RaceID clustering, negative values in the expression ma-
trix that may result from the batch effect removal step are
set to to zero.

To assess the similarity of each corrected output cluster-
ing annotation with the provided ground truth Adjusted
Rand Index and Variation of Information are computed
with the arandi and the vi.dist functions from the mclust
package respectively.

To compare the results across datasets we select the best
similarity metric value across all feature selection fractions
considered (Figure 5, Supplementary Figure S12). Since
variation of information is a distance metric, we perform
a min–max normalization to scale the data across datasets
(Supplementary Figure S12). For both metrics the feature
fraction matching the best value is stored (Supplementary
Figures S10 and S13). Additionally, we examine the corre-
lation (as Pearson’s � ) between the similarity values and the

https://github.com/cellgeni/sceasy/
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feature range for which they were obtained (Supplementary
Figures S11 and S14).

Marker gene analysis

To obtain marker genes we use the FindMarkers func-
tion from the Seurat package which restricts the compari-
son to methods that output a normalised count matrix. For
a gene to be considered as a marker, we require that the ab-
solute value of the log fold-change >2, and that the gene
is expressed in at least half of the cells in each population.
We use the default Wilcoxon Rank Sum test to find genes
that are significantly different (adjusted P-value < 0.05) be-
tween the merged dataset, and in each of the individual
batches.

To compare the overlap of the sets of marker genes identi-
fied across batches and the merged data we used the multiple
site generalized Jaccard index (36). We restricted the com-
parison to the cell populations that are common to all in-
dividual batches. We also investigate the proportion of cell
populations of the dataset for which marker genes can be
found.

BatchBench pipeline

As an input, BatchBench (https://github.com/cellgeni/
batchbench) requires a SingleCellExperiment (R
based) or AnnData object (python based). The input ob-
ject is then converted into its counterpart in the other lan-
guage. This object must contain: log-normalized counts,
and the batch and cell type annotation of their cells as
Batch and cell type1 respectively, in the object meta-
data. The workflow performs an initial QC step where cells,
genes, batches or cell types can be filtered according to user-
defined parameters. Cells not assigned to any batch or cell
type are excluded in this step also. Each dataset is then sent
in parallel as input to each of the batch effect correction
tools, after which rds and h5ad objects containing the out-
put are saved and made available for the user. Each of the
batch corrected outputs serves as input for a series of down-
stream analyses: (i) UMAP coordinates are computed and
saved as a csv file for visualization of the different batch cor-
rections, (ii) entropy computation and saved as csv file, (iii)
clustering analysis, (iv) marker gene analysis and any mod-
ule optionally added by the user.

RESULTS

Entropy measures quantify integration of batches and sepa-
ration of cell types

To illustrate the use of BatchBench we first considered three
scRNA-seq studies of the human pancreas (27–29). Even
though the samples were collected, processed and anno-
tated independently, several comparisons have shown that
batch effects can be overcome (19,30). Visualization of the
uncorrected data using UMAP reveals a clear separation
of the major cell types across batches (Figure 2A). As ex-
pected, all of the methods in our study were able to merge
equivalent cell populations from different batches while en-
suring their separation from other cell types. Visual inspec-
tion suggests that Seurat and Harmony achieve groupings

mainly driven by the cell types, whereas the other methods
tend to aggregate the different batches. It is notable that
BBKNN brings cell populations closer but is unable to su-
perimpose the batches.

To evaluate how well the batch correction methods mix
cells from different batches while keeping cell types sepa-
rate, we computed the normalized Shannon entropy (16,29)
based on the batch and cell type annotations provided by
the original authors (Methods). The desired outcome is a
high batch entropy, indicating a homogeneous mixture of
the batches, and a low cell type entropy, suggesting that
cell populations remain distinct. While all the methods were
able to keep the distinct cell populations separate, we ob-
served greater differences for the batch entropy (Figure 3).
Based on this metric we consider Seurat and Harmony as
the best methods. As intermediate performers Scanorama
and fastMNN show a wider distribution of batch entropy
values. Finally, mnnCorrect, Limma and ComBat can be
considered the poorer performers in aligning the different
batches.

We carried out similar investigations for the Mouse Cell
Atlas (MCA) (31) and Tabula Muris (32) datasets. In the
MCA the batches correspond to the eight different animals
(31), and as the mice all come from the same genetic back-
ground and were raised in the same environment we expect
the batch effects to be smaller than for the pancreas data.
The batch entropy for the uncorrected data is indeed higher
than for the pancreas data (Figure 3), and most methods are
able to mix the batches of the MCA better, as confirmed by
visual inspection. The cell type entropies are higher than for
the pancreas data, and we hypothesize that this is a conse-
quence of the fine-grained annotation which makes it dif-
ficult to separate cell types. For example, the bone marrow
contains six different types of neutrophils and the testes five
types of spermatocytes. Overall across MCA data, Seurat
and Harmony show the best batch mixing, although at the
cost of slightly increasing cell type mixing compared to the
uncorrected counts and the other methods. Scanorama can
also be considered a good performer followed by fastMNN.

Next, we investigated another mouse cell atlas, Tabula
Muris (32) and our analysis shows a greater sample effect as
evidenced by a very low batch entropy for the uncorrected
data (Figure 3). Since the batches correspond to two dif-
ferent experimental platforms (32), it is not surprising that
there are larger differences than for the MCA. Furthermore,
all methods perform better with regards to the cell type en-
tropy, potentially due to a more coherent annotation. For
all three datasets, we note that for most methods there is
greater variation in batch entropy than cell type entropy.
Closer inspection reveals that the batch entropies vary sub-
stantially across tissues (Supplementary Table S1). Interest-
ingly, all methods, except for Seurat and BBKNN, are un-
able to achieve high batch entropy for datasets with a small
number of cell types. Closer inspection reveals that all meth-
ods except Seurat and BBKNN show a significant correla-
tion between cell type entropy and number of cell types, sug-
gesting poorer performance with more fine-grained anno-
tation (Supplementary Figure S1). Taken together, Seurat
consistently succeeds in mixing the batches, again at the cost
of a slightly distinct cell population mixing. Scanorama per-
forms well although with higher variation across datasets.

https://github.com/cellgeni/batchbench
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Figure 2. UMAP visualization of the human pancreas dataset prior and after batch correction with the eight different methods considered. (A) Original
uncorrected data. (B–H) Corrected data. Each pair of panels shows the cells labeled either by dataset of origin (left) or cell type (right). A good batch
correction should ensure that cells from different batches are grouped together while cells from distinct cell populations are retained separate.
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Figure 3. Batch and cell type entropies prior and after batch correction with the eight different methods considered. The boxplots show the Shannon
entropy over batch (black) and cell type (gray) of the different batch effect correction methods for pancreas data (red), Mouse Cell Atlas (green) and
Tabula Muris (blue). The black line represents the mean across the cells, the box the upper and lower quartiles, the whiskers 95th percentiles and the dots
show outliers.

Surprisingly, Harmony is unable to properly align the Tab-
ula Muris batches.

Batch correction becomes harder as the number of cells and
the number of batches increase

To determine how the number of cells in each sample influ-
ences batch correction performance and running times we
considered the Tabula Muris dataset, and downsampled it
to 1, 5, 10, 20 and 50% of the original 60 828 cells (Meth-
ods). Across all subsets, the input objects contain 64% of
10X cells and 36% of FACS-sorted Smart-Seq2 cells. Note
that this batch correction task is more challenging than the
one in Figure 3 as we now merge cells from different tissues.

The number of cells has a strong impact on performance
and it becomes more difficult to align the two batches with
increasing cell numbers. All methods except Scanorama,
Harmony and Seurat reduce the batch entropy by >50%
as the number of cells increases from 608 to 60 828 (Figure
4A). Unfortunately, Scanorama mixes the cell types as well
as batches, and surprisingly none of the entropies change as
the number of cells increases. Harmony is the only method
that, after an initial drop, increases the batch entropy with
the number of cells. For all methods except Scanorama, the
cell type entropy is also reduced, suggesting that it becomes
easier to group cells from the same origin for larger datasets.
With the exception of Scanorama, the majority of the meth-
ods do not significantly increase the cell type entropy above
the value of the uncorrected counts, even decreasing it for
the smaller subsets.

The main goal of the investigation involving different
numbers of cells is to learn how the computational resource
requirements change as this is an important factor when
choosing a method. Considering the time required to per-
form the integration, we found substantial differences as
ComBat, Limma, Harmony and BBKNN have more or less
constant run times as the number of cells grow. By con-
trast, mnnCorrect and fastMNN grow exponentially, with
the former being the slowest method in our study. Seurat ini-
tially has a stable runtime before it starts to grow exponen-
tially (Figure 4B). For all methods we found that memory
usage increases exponentially with the number of cells. The
differences are smaller than for the run-time, with Seurat,
mnnCorrect, ComBat and fastMNN consuming the most
resources, while Harmony, Scanorama and BBKNN have
the lowest requirements (Figure 4C). The memory require-
ments and runtimes observed in the scaling experiments are
similar to what we found for the previous section (Supple-
mentary Figure S2).

As sequencing costs decrease, the number of different
samples that can be processed will increase. Thus, we also
evaluated how well each method handles an increasing
number of batches. For this study we considered subsets
of the Tabula Muris 10X dataset with 4168 genes and 18
347 cells. As the batches created by subsampling this dataset
are entirely artificial, we added small batch-specific random
counts to each gene to ensure that there are differences that
require correction (Methods). In our simulations, cell types
are well separated whereas the batches are more overlap-
ping.
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Figure 4. Entropy measures and resource consumption of methods as a function of the number of cells and simulated batches. (A) Batch and cell type
entropies, (B) running time and (C) RAM usage over different subsets of the Tabula Muris atlas object with ∼61 000 cells in total. (D) Batch and cell type
entropies, (E) running time and (F) RAM usage over an increasing number of simulated batches of 1001 cells each, generated from Tabula Muris atlas 10X
cells.

We fixed the batch size to 1001 cells and we created
datasets including 2, 3, 5, 10, 20 and 50 and batches, intro-
ducing small artificial batch effects. Cell type entropies are
maintained low with the number of batches for all methods,
highlighting the capacity of our batch simulating procedure
to not mix distinct cell populations as batches are included.
Regarding batch entropy (Figure 4D), BBKNN, Seurat and
Harmony show the most stable performance as the number
of batches increases. Although all methods have an expo-
nential increase in both memory use and runtime, mnnCor-
rect stands out again as the slowest method. As before, we
find that Seurat consumes the most memory, and along with
mnnCorrect it fails to integrate 50 batches.

Impact of batch correction on unsupervised clustering and
identification of marker genes

A key advantage of the entropy measures is that they can
easily be calculated for any dataset containing discrete cell
state clusters and that they are easy to interpret. However,
they only evaluate the mixing of the cells as represented by
the nearest neighbor graph, and they do not directly assess
how the batch correction will impact downstream analyses
based on the corrected data. To understand how specific as-
pects of the analysis are affected, tailored benchmarks are

required. BatchBench allows users to add customized mod-
ules to evaluate the aspect they find most relevant. Here, we
consider two common types of analyses, unsupervised clus-
tering and identification of marker genes.

To evaluate the effect on unsupervised clustering, we ap-
ply four published methods, Leiden (33), Louvain (34), SC3
(35), RaceID (2) and hierarchical clustering, to the cor-
rected data, and we then compare the merged cluster labels
to the ones that were assigned prior to merging. To assess
the proximity between clusterings we used a distance metric,
variation of information, and a similarity metric, Adjusted
Rand Index (ARI). The two measurements are by definition
inversely correlated, and because they are consistent (Spear-
man’s rho = –0.87) we will mainly refer to the ARI results. A
common question regarding clustering refers to the choice
of which features to include. To determine the effect of fea-
ture selection in clustering performance after batch correc-
tion we establish five fractions of features: 0.05, 0.1, 0.2,
0.5 and 1.0 (all of the features) by ranking genes descend-
ingly by their coefficient of variation. Note that the feature
selection could not be applied to BBKNN, Harmony and
FastMNN since they do not operate in the gene space.

Our analysis of the MCA suggested small differences
in cell type entropy, but large differences in how well the
batches were mixed (Figure 3). By contrast, when run-
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ning unsupervised clustering the batch correction methods
achieve similar ARI values, except Race-ID kmeans and
kmedoids, which perform worse. Closer inspection reveals
large differences between tissues, something that is not evi-
dent from the entropy measures (Supplementary Table S1).
In general a greater clustering similarity for this dataset is
achieved by clustering with all genes (Supplementary Fig-
ure S10). Except for RaceID-kmeans, which in turn shows
a very poor clustering similarity. Note RaceID clustering
for Bone Marrow was interrupted after running for a week,
and hence is not displayed.

For the Tabula Muris we observe a similar pattern with
large differences in ARI between tissues and relatively small
differences across methods. Compared to MCA, we ob-
serve an improvement in similarity values for RaceID, SC3
and hierarchical clustering algorithms, whereas Leiden and
Louvain algorithms show worse performance. Closer in-
spection reveals that the Leiden and Louvain methods per-
form poorly for datasets with a small number of clusters
(Supplementary Figures S3–S9). Surprisingly for heart and
mammary glands, the best results are achieved by hierarchi-
cal clustering, RaceID and SC3 applied to the uncorrected
data. There is a higher diversity in the feature fraction dis-
playing the best similarity (Supplementary Figure S10). For
TM datasets, the usage of a smaller fraction of features with
a higher coefficient of variation results in an enhanced clus-
tering.

For the pancreas dataset, hierarchical clustering together
with RaceID and SC3 algorithms tend to have a higher
ARI. Inclusion of all features in the clustering tend to
yield better similarity results (Supplementary Figure S10).
We also highlight that hierarchical clustering applied to
BBKNN distance matrix is not a good approach. Addition-
ally, Scanorama shows highly variable performance across
the clustering algorithms and datasets considered.

The main objective of batch correction methods is to en-
sure that cells with similar expression profiles end up near
each other. The most widely used metrics, e.g. mixing en-
tropies or inverse Simpson index (16,19,29), are designed to
evaluate this aspect. However, if a researcher is interested in
analyzing the expression values for other purposes then it is
important to make sure that the corrected values are close to
the original ones. To investigate how much expression ma-
trices are distorted by the different methods, we compared
the marker genes identified before and after batch correc-
tion for the five methods that modify the expression ma-
trix (Table 1). We identified marker genes for each batch
individually as well as for the merged datasets from each
method that outputs a modified expression matrix. Unlike
the entropy and clustering analyses, we observed stark dif-
ferences between batch correction methods. Remarkably,
after merging using Scanorama or mnnCorrect, not a sin-
gle marker gene is identified. Only ComBat and Limma are
able to identify marker genes for most cell types, while Seu-
rat only reports markers for a minority of cell types in most
tissues (Figure 5B). Comparing the similarity between the
marker genes identified in the individual batches and the
merged dataset using a generalized Jaccard index (36), we
find that Seurat provides the highest degree of consistency
(Figure 5C). However, it is important to keep in mind that
Seurat’s good performance is biased by the fact that it re-

ports marker genes for fewer cell types than the other meth-
ods. A similar problem stems from the fact that sometimes
the individual batches do not share any or only few marker
genes prior to merging, e.g. the neonatal calvaria from the
MCA, which explains the grey boxes in Figure 5c.

DISCUSSION

We have developed BatchBench, a customizable pipeline for
comparing scRNA-seq batch correction methods. We have
assessed the performance of eight popular batch correc-
tion methods based on entropy measurements across three
datasets, suffering from donor and platform effects. Our re-
sults highlight Seurat as the top performer as it correctly
merges batches while maintaining the separation of distinct
cell populations. Harmony also shows very good results
in pancreas and MCA but surprisingly fails in correcting
the Tabula Muris batch effects. Scanorama and fastMNN
can be considered consistent good performers. Regarding
BBKNN, we note that the entropies are not suitable for
evaluating its performance as the method operates by iden-
tifying nearest neighbours in each of the provided batches
(26) and adjusting neighbors to maximize the batch entropy.
Hence, a different metric should be established to evalu-
ate the performance of BBKNN. We also evaluated how
the methods perform as the number of cells and the num-
ber of batches are varied. Here, we highlight Harmony as
a method that provides good performance while being eco-
nomical in its use of computational resources. However, our
analyses suggest that all methods, with the possible excep-
tions of BBKNN and Harmony, will struggle to integrate
hundreds of batches even if each batch is relatively small.
Thus, improving scalability is a central requirement for fu-
ture methods.

A key insight from our study is that the entropy mea-
sures do not fully reflect how the choice of batch correc-
tion method will impact downstream computational analy-
ses. We applied five different unsupervised clustering meth-
ods to the merged datasets, and the results are not as clear
as for the entropy analyses. No single method emerges as
the best performer, and in some cases the best results were
obtained using the uncorrected data. This result highlights
the importance of using benchmarks that are more closely
linked to the analysis that will be carried out for the merged
dataset.

Our attempt to identify marker genes from the corrected
dataset demonstrates the difficulty of using the merged ex-
pression matrix for downstream analyses. As none of the
methods considered in our study performed adequately in
this benchmark, we highlight this as an area where improve-
ments are required. Since marker genes are not preserved,
we stress the importance for users to monitor how expres-
sion levels change. Any analysis based on the expression
levels, e.g. identification of marker genes or differentially
expressed genes, will need to be verified to ensure that the
result was not distorted due to the alterations introduced
by the batch correction method. An important limitation
of our marker gene analysis is that it only quantifies con-
sistency as there is not yet an established ground truth for
what marker genes are represented for the cell types in our
study. We tried to use marker gene lists from the literature as
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Figure 5. Evaluation of the impact of batch correction on unsupervised clustering and marker gene identification. (A) Clustering similarity of batch
corrected output to cell labels as evaluated by the Adjusted Rand Index. The highest ARI value from the five fractions of features considered for the
clustering is displayed. MCA: Mouse Cell Atlas, P: Pancreas, TM: Tabula Muris. (B) Fraction of total cell types over which marker genes are detected. (C)
Similarity of marker genes between merged dataset and individual batches as evaluated by the generalized Jaccard Index.
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represented by the CellMarker database (37), but we found
that all pancrease datasets provided poor overlap, even be-
fore batch correction (Supplementary Figure S15).

Benchmark studies are important as they help guide re-
searchers in their choice of methods. They are also help-
ful for developers as they can highlight limitations of ex-
isting methods and provide guidance as to where improve-
ments are needed. One shortcoming of traditional bench-
marks, however, is that they are static in nature and that they
only consider the datasets that the authors of the bench-
mark study had chosen to include. A related issue is that
the metrics used to evaluate methods may not be relevant
to all datasets and research questions. Along with a similar
study by Leucken et al. (40), BatchBench will serve as a use-
ful platform to the community as it enables benchmarks to
be tailored to specific needs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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5. Haghverdi,L., Büttner,M., Wolf,F.A., Buettner,F. and Theis,F.J.
(2016) Diffusion pseudotime robustly reconstructs lineage branching.
Nat. Methods, 13, 845–848.
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