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Transcriptional mutagenesis (TM) due to misincorporation during
RNA transcription can result in mutant RNAs, or epimutations, that
generate proteins with altered properties. TM has long been hypoth-
esized to play a role in aging, cancer, and viral and bacterial evolution.
However, inadequate methodologies have limited progress in eluci-
dating a causal association. We present a high-throughput, highly
accurate RNA sequencing method to measure epimutations with
single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-
seq) uniquely combines RNA barcoding and generation of multiple
cDNA copies per RNA molecule to eliminate errors introduced during
cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can
be scaled to accommodate the quality of input RNAs. We apply ARC-
seq to directly assess transcriptome-wide epimutations resulting from
RNA polymerase mutants and oxidative stress.

transcriptional mutagenesis | epimutations | RNA mutations |
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Infidelity during RNA transcription, termed transcriptional
mutagenesis (TM), has long been hypothesized to contribute to

aging (1) and age-associated diseases, including cancer (2, 3) and
neurodegeneration (4, 5). RNA mutations resulting from TM,
termed epimutations, have also been implicated in bacterial and
viral evolution and resistance (6–8). Studies on RNA polymer-
ases have revealed the fidelity of in vitro transcription by mul-
tiple RNA polymerases to be on the order of 10−5 epimutations
per nucleotide (9–13). This rate can dramatically increase during
transcription of damaged templates and certain sequence con-
texts, such as repetitive DNA (14). Additionally, in vivo assays
have revealed that TM can result in phenotypic changes in
nondividing (15) and dividing cells (16–19), with the potential for
TM-induced phenotypic changes to be heritable (20, 21), in-
dicating that a single mutant transcript has the potential to have
profound effects on cellular function.
The bulk of the evidence for TM has been generated using in vitro

fidelity assays and highly expressed reporter genes that encompass a
small number of sequence contexts, are limited in the spectrum of
mutations that can be monitored, and are subject to translational
errors convoluting the results (9, 22). Consequently, the results of
these studies cannot be easily extrapolated to understand the extent
of epimutations in cells, where transcription factors, repair enzymes,
chromatin, and gene expression levels modulate transcriptional
fidelity. Thus, to elucidate the roles of TM-induced epimutations in
physiology, disease, and evolution, it is necessary to study individual
RNA molecules transcribed in vivo in a high-throughput manner.
De novo epimutations remain a challenging target for high-

throughput RNA sequencing (RNAseq). While in vitro studies es-
timate RNA polymerase infidelity to be on the order of one in
100,000 epimutations per nucleotide, reverse transcriptase used to
generate cDNA from RNA makes approximately one error per
10,000 bases (23). Additionally, Illumina sequencers misread ap-
proximately one in 1,000 bases (24). Recent methods, such as bar-
coding of RNAs (25) or cDNAs (26, 27), reduce the error frequency
of RNAseq. However, such methods can be of low yield (25), rely
heavily on complicated bioinformatics requiring calibration for each

sample (26), and do not address errors introduced during reverse
transcription (26, 27). Reverse transcriptase errors can be overcome
by generating multiple cDNA copies from each RNA molecule (25,
28). However, these methods can be of low yield (25), may them-
selves introduce errors due to harsh reaction conditions (29), and are
limited by sequence read length (28). To date, these advances have
proven useful for sequencing viral RNA genomes, which are in-
herently more error-prone, but their background errors remain too
high to reliably detect TM-induced epimutations in cells.
To address the limitations of RNAseq and enable the study of

epimutations in any organism, we have developed a highly ac-
curate sequencing method, termed accurate RNA consensus
sequencing (ARC-seq), to measure epimutations with single-
molecule sensitivity. ARC-seq uniquely couples the use of an
adaptor to barcode each RNA molecule and the generation of
multiple cDNA copies per RNA molecule before sequencing.
This combination enables the removal of artifacts due to cDNA
synthesis, PCR errors, and sequencing errors, revealing the epi-
mutations resulting from TM in vivo.

Results
Development of a Highly Accurate Method to Detect Epimutations.
Three obstacles to accurate RNAseq include the following:
(i) RNA must first undergo the highly error-prone process of
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reverse transcription before sequencing, (ii) PCR amplification
of cDNA can introduce errors, and (iii) high-throughput se-
quencing itself is highly error-prone. To overcome these obsta-
cles, we developed ARC-seq, a cDNA library preparation
protocol. We start by ligating barcoded RNA adaptors to the
5′-end of fragmented RNA molecules; this adaptor contains
16 random nucleotides that uniquely identify individual RNA
molecules (Fig. 1A). Each barcoded RNA molecule is then cir-
cularized and reverse-transcribed via rolling-circle reverse tran-
scription. This produces a cDNA multimer containing multiple
cDNA copies of the original RNA molecule. After restricting the
multimeric cDNA molecule into monomers, we uniquely index
each cDNA copy of the original RNA. Each indexed cDNA is
then amplified by high-fidelity PCR and sequenced on an Illu-
mina HiSeq instrument. After sequencing, using bioinformatics,
the cDNA indexes are used to generate a PCR consensus se-
quence, eliminating artifacts due to sequencing and PCR er-
rors (Fig. 1B). Finally, the RNA barcode is used to generate a
cDNA consensus sequence, eliminating reverse transcription
and damage-induced artifacts; thus, we are able to regenerate
the original RNA sequence.
The upper estimate of next-generation sequencing error is one in

100 nucleotides sequenced (30); thus, the theoretical background of
ARC-seq approaches 0.01n, where n is the number of cDNA copies
produced from each RNAmolecule. By increasing the length of the
rolling-circle reverse transcription reaction, we can generate more
cDNA copies per RNA molecule, thus increasing the stringency of
the error correction or ARC-seq. This enables accurate sequencing
of even highly damaged RNA molecules.

ARC-Seq Effectively Corrects Reverse Transcription, PCR, and Sequencing
Artifacts. To validate the power of ARC-seq to eliminate artifacts
due to reverse transcription, PCR, and sequencing errors, we syn-
thesized three types of RNAs by in vitro transcription, using T7
RNA polymerase (Fig. S1): (i) high-fidelity RNA, generated using a
pristine DNA template [expected epimutation frequency of 3 × 10−5

(12)]; (ii) damaged RNA, generated by treating the high-fidelity
RNA with hydrogen peroxide (H2O2) [expected epimutation

frequency is the same as the high-fidelity RNA (3 × 10−5) because
no new mutations are introduced]; and (iii) mutated RNA, which
was generated from a DNA template oxidatively damaged with
H2O2 to induce mistakes during transcription (expected to have an
elevated epimutation frequency). These RNAs were then se-
quenced via ARC-seq. At a cDNA family size of one, which cor-
responds to RNAseq with tag-based error correction (e.g., ref. 27),
the error frequency of the high-fidelity RNA is ∼2 × 10−4, ∼10-fold
higher than the expected epimutation frequency (Fig. 1C); the error
frequency of the damaged RNA template is elevated approximately
threefold greater than the high-fidelity RNA, consistent with the
high error rate of conventional RNAseq, especially on damaged
RNA templates (23).
In contrast, by requiring five unique cDNA copies per RNA

molecule, ARC-seq reveals the true epimutation frequency of
the high-fidelity RNA to be ∼2 × 10−5. Furthermore, by re-
quiring six cDNA copies per RNA molecule to form a consensus
sequence, and therefore increasing the stringency of its error
correction, ARC-seq fully corrects for damage-induced artifacts
and reveals the true epimutation frequency of the damaged RNA
to be equivalent to the undamaged high-fidelity RNA. In con-
trast, even with a high stringency of eight cDNA copies per RNA
molecule, the mutation frequency of the mutated RNA remains
more than 10-fold greater than the high-fidelity RNA, consistent
with ARC-seq eliminating errors without mistakenly removing
true epimutations. Thus, by repeatedly sequencing the same
RNA molecule, ARC-seq eliminates damage-induced and se-
quencing artifacts, revealing the TM-induced epimutations pre-
sent in the original RNA molecule.

ARC-Seq Reveals the Frequency and Spectrum of Epimutations in
Vivo. Several mutants of Saccharomyces cerevisiae (yeast) have
been shown to have reduced in vitro RNA synthesis fidelity. Rpb1
E1103G is a point mutant of the catalytic domain of RNA poly-
merase II and confers dependence on transcription factor S-II (13).
ΔRpb9 is a deletion mutant of a transcription factor that enhances
the fidelity of mRNA transcription in yeast (31). To establish
ARC-seq’s utility for measuring in vivo epimutations, we applied the
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Fig. 1. (A) Overview of the ARC-seq method. (i) Each RNA is ligated to an adaptor containing a unique barcode. Ligated RNAs are then circularized (ii) and
subjected to rolling-circle reverse transcription (iii), generating a multimeric cDNA from each RNA molecule. (iv) cDNA multimers are then restricted into
monomers, which are cDNA copies of the original RNA molecule. Each cDNA is then tagged with a unique index (v), amplified (vi), and sequenced. (B) Error
correction by ARC-seq. (i) Single RNA molecule containing a true epimutation (red); this molecule is barcoded. (ii) Rolling-circle reverse transcription generates
multiple cDNA copies from each ligated RNA molecule, introducing random errors (orange). (iii) Amplification and sequencing amplify the existing errors and
introduce new errors (purple), further obscuring the true epimutation. Artifacts present in standard RNAseq data are illustrated at this level. (iv) After se-
quencing, cDNA tags are bioinformatically matched and a consensus sequence is generated for each cDNA copy, eliminating many amplification and se-
quencing artifacts. (v) Finally, the RNA barcodes are matched, and a consensus sequence is generated from the cDNA copies, which regenerates the original
RNA molecule’s sequence, revealing the true epimutation. (C) ARC-seq eliminates damage-induced, reverse transcription, PCR, and sequencing artifacts,
revealing true epimutations. High-fidelity (blue), damaged (green), and mutated (purple) RNAs were generated by in vitro transcription by T7 RNA poly-
merase and sequenced via ARC-seq. While conventional RNAseq has a high level of artifacts, with increased artifacts observed in the damaged RNA template,
ARC-seq is able to fully correct damage-induced artifacts, revealing the true epimutation frequency to be ∼2 × 10−5, without removing true epimutations.
Error bars represent Wilson scores of 95% confidence.
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method to study TM in these yeast mutants. When we analyze the
epimutation frequencies obtained at increasing cDNA copy number
per RNA molecule, we find that the mRNA and rRNA mutation

frequencies of all three yeast strains plateau with just three cDNA
copies per RNA molecule (Fig. 2A); the mRNA mutation fre-
quency of stationary phase wild-type yeast is 4.21 × 10−5, more than

A

C

D

B

Fig. 2. ARC-seq reveals differences in epimutation frequencies and in the spectrum between yeast RNA polymerase mutants. RNAs from wild-type (WT), E1103G,
and ΔRpb9 yeasts were sequenced via ARC-seq, with the number of cDNA copies per RNA molecule required to generate a consensus sequence varied from one
through five. (A) Epimutation frequency stabilizes at three cDNAs per RNA molecule, revealing epimutation frequency differences between WT and the two
mutants. (B) Comparison of epimutation frequencies observed with one cDNA copy per RNA molecule, corresponding to conventional RNAseq with tag-based
error correction, and three cDNA copies per RNA molecule for mRNA (Left) and rRNA (Right). Differences between the mRNA (C) and rRNA (D) mutation
spectrums of WT and mutant yeasts are shown. Error bars represent Wilson scores of 95% confidence. *P < 0.01, **P < 10−5, ***P < 10−10, ****P < 10−15.
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an order of magnitude lower than the error frequency obtained with
conventional RNAseq (Fig. 2B). Additionally, both RNA poly-
merase mutants have mRNA mutation frequencies elevated over
wild type: 5.94 × 10−5 (P < 2.2 × 10−16) and 7.28 × 10−5 (P < 2.2 ×
10−16) for E1103G and ΔRpb9, respectively. In contrast, consistent
with the yeast mutants having error-prone RNA polymerase II
transcription, the frequency of mutations in both mutants’ rRNAs,
which are transcribed by RNA polymerases I and III, are not sig-
nificantly different from the frequency of mutations in wild-type
yeast. Furthermore, the mutation spectrums reveal differences be-
tween the types of mRNA mutations induced in the three yeast
strains (Fig. 2C and Table S1). While C→U mutations are the most
frequently observed epimutation in all three yeasts, both mutants
show elevated frequencies of U→C, G→A, U→A, and C→A mu-
tations, as well as single-base insertions, in their mRNAs relative to
wild type. Additionally, E1103G has a greater elevation in U→C
mutations than ΔRpb9 in its mRNA, whereas ΔRpb9 has greater
elevations in G→A, U→A, and C→A mutations, relative to
E1103G, in its mRNA. In contrast, in the rRNAs, no mutation
subtype of either mutant differed significantly from wild type
(Fig. 2D and Table S2), consistent with the defects of E1103G and
ΔRpb9 being restricted to RNA polymerase II transcription.

Oxidative Stress Induces TM in Vivo.DNA damage due to oxidative
stress is well known to induce DNA mutations, and in vitro
studies of RNA polymerase activity at DNA lesions indicate
that it behaves similar to DNA polymerases (14). Thus, to de-
termine if oxidative stress induces elevated TM in vivo, we
treated log-phase wild-type yeast with 50 μM H2O2 for 30 min,
extracted the RNAs, and sequenced them via ARC-seq. Fol-
lowing oxidative stress, the mRNA mutation frequency in-
creases from 5.6 × 10−5 to 1.3 × 10−4 (Fig. 3A). While oxidative
stress induces elevations in multiple mutation subtypes, the
most frequent changes observed are G→A and U→G substi-
tutions, induced 80-fold, and C→A substitutions, induced 164-
fold (Fig. 3B and Table S3). In rRNA, nearly all mutation
subtypes increase following oxidative stress, with the most fre-
quent change again being C→A substitutions (Fig. 3C and Table
S4), induced 217-fold. The dramatic increases in C→A muta-
tions are consistent with TM of the 8-oxodG lesion in template
DNA, which is the most common form of oxidative DNA
damage in cells (32–35). Additionally, the large increase in
G→A mutations in mRNA is consistent with TM across from
deaminated cytosines in the DNA template, a common conse-
quence of oxidative stress in cells (34, 36).

A B

C

Fig. 3. ARC-seq reveals differences in TM after oxidative stress between yeast RNA fidelity mutants and between RNA types. Wild-type yeast was exposed to
H2O2, and its RNAs were then sequenced via ARC-seq. (A) Comparison of mRNA mutation frequencies observed with one cDNA copy per RNA molecule,
corresponding to conventional RNAseq with tag-based error correction, and with three cDNA copies per RNA molecule. (B) mRNA frequency and spectrum in
untreated (ctrl) and 50 μM-treated (H2O2) yeasts. (C) Frequency and spectrum of rRNA in ctrl and 50 μM-treated (H2O2) yeasts. Error bars represent Wilson
scores of 95% confidence. *P < 0.05, **P < 10−2, ***P < 10−5, ****P < 10−10, *****P < 10−15.
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Discussion
TM is hypothesized to play roles in aging, cancer, neuro-
degeneration, viral evolution, and drug resistance (14, 37–39).
However, little progress has been made in elucidating the
contribution of TM to human health and disease, because
methods for detecting epimutations in vivo have been limiting.
The requirement to reverse-transcribe RNA before sequenc-
ing, as well as the high error rate of next-generation sequencing
itself, constrains the accuracy of conventional RNAseq. Re-
cent efforts to overcome these limitations have made prog-
ress toward more accurate RNA sequencing (25–29, 40, 41)
but do not adequately remove the artifacts arising from these
sources of error.
In developing ARC-seq, we reasoned that by generating mul-

tiple cDNA copies per RNA molecule, we could markedly reduce
reverse transcription, PCR, and sequencing errors. We used a
molecular barcode strategy to uniquely identify each RNA mole-
cule before generating and sequencing multiple cDNA copies of
each original RNA molecule. Furthermore, to distinguish between
cDNA duplicates of a single RNA molecule and PCR duplicates
of a single cDNA copy, and thereby eliminate PCR errors, we
introduced an additional index sequence to each cDNA molecule.
This unique combination enables the elimination of artifacts due
to cDNA synthesis, PCR errors, and sequencing errors, revealing
the sequence of the original RNA molecule.
Applying ARC-seq to sequencing in vitro-transcribed (IVT)

RNAs demonstrates its unique ability to modulate the stringency
of the method’s error correction. This increased stringency se-
lectively eliminates artifacts and enables even highly damaged
RNAs to be sequenced accurately, which will likely prove crucial
to many in vivo applications, such as analyses of biopsies or
postmortem tissues, where RNAs may be partially degraded and
highly damaged.
Applying ARC-seq to the study of RNAs generated in vivo by

yeast RNA polymerase mutants demonstrates its ability to sen-
sitively detect mutation frequency and spectrum differences.
While several mutation types are elevated in the mRNA of both
mutants, relative to wild type, there are no elevations in rRNA
mutations in either mutant. These results not only confirm the
specificity of the yeast mutants’ defects in the fidelity of RNA
polymerase II transcription but also serve as confirmation that
ARC-seq accurately reveals epimutations. Importantly, we de-
termined the frequency of each mutation type by the number of
mutations observed over the total number of observations of
the wild-type nucleotide; therefore, the differences observed
are not due to differences in nucleotide distribution between
the three strains. Of note, while not differing dramatically be-
tween the three yeast strains, C→U is the most frequent mu-
tation observed; an unknown fraction of these mutations could
be the result of deamination, either spontaneously or due to the
action of cytosine deaminases on RNA rather than transcrip-
tional infidelity. Further cell-based studies altering the expres-
sion of various cytosine deaminases could elucidate the extent
to which TM versus RNA deamination contributes to C→U
mutations in RNA.
Finally, applying ARC-seq to the study of the transcriptional

mutagenic consequences of oxidative stress demonstrates its
utility for addressing important biological questions. We see that
oxidative stress induces high levels of epimutations not only in
mRNA but also in rRNA. These results suggest that oxidative
DNA damage, whether due to exogenous agents or endogenous
perturbations, could have profound yet unappreciated conse-
quences for cells. Of interest, the untreated rRNA mutation
frequency of wild-type yeast was approximately twofold lower
than its mRNA mutation frequency, largely due to decreased
C→U mutations. Two possible explanations may account for this
difference: (i) rDNA may be more readily repaired than protein-
coding gene regions in the genome or (ii) the fidelity of rRNA
synthesis is higher than the fidelity of mRNA synthesis. Given
that rRNA is longer lived and involved in protein translation,
either of these possibilities has merit. While a mutated mRNA

may be translated multiple times, yielding a pool of mutant
proteins, codon redundancy limits the impact of an individual
mutation, and even if a codon change results, there is still only
that one protein species affected by the TM event. In contrast, a
mutated rRNA could disrupt the function or fidelity of the ri-
bosome, potentially creating many more mutant proteins, which
would be a worse consequence for the cell. Therefore, rDNA
genome regions may be more closely protected against the per-
sistence of DNA damage, or RNA polymerases I and III may
have higher fidelity than RNA polymerase II. Further studies
combining measurement of DNA damage distribution coupled
with TM studies of rRNA and mRNA may help distinguish be-
tween these possibilities.
An important consideration in studying TM using ARC-seq is

the scale of study desired. While we herein presented whole-
transcriptome data, such a broad view may not always be desired or
feasible. Two potential modifications to ARC-seq are possible that
enable focusing on specific loci. First, one could enrich transcript
regions of interest after ARC-seq library preparation, before se-
quencing, via either via single (42) or double capture (43). Such
methods have been instrumental in enabling studies of small ge-
nomic regions in mammalian systems and would be an easy addi-
tion to ARC-seq; however, they require gene capture sets and
additional steps after the initial library preparation. The second
option is to use transcript-specific primers (44) during rolling-circle
reverse transcription instead of the primer against the RNA
adaptor. Transcript-specific reverse transcription represents a mi-
nor modification to ARC-seq as presented and would enable tar-
geting of specific transcripts with only a primer, greatly minimizing
the expense of targeting, relative to the capture approach.

Conclusions
We have developed a highly accurate RNA sequencing method
that effectively eliminates artifacts due to reverse transcription,
PCR, and sequencing errors. ARC-seq represents a major advance
over previous methods. First, the method itself uses low tempera-
tures, neutral solutions, and short incubations whenever possible,
thereby minimizing the damage to the RNA template that limits
other methods (28, 29). Next, it reliably generates multiple cDNA
copies from each RNA molecule with high yield, a significant ad-
vance over prior attempts that were significantly limited by low
yields (25). This high-yield cDNA copy generation also accounts for
its scalable stringency, which enables highly accurate detection of
TM-induced epimutations even from highly damaged sources. Fi-
nally, because it is not limited by sequence length, ARC-seq can be
applied to any sample, without limitations on accuracy; with minor
modifications, it could be used to look at transcriptome-wide TM,
as we have demonstrated, or gene-specific TM to drive studies of
the role of epimutations at specific loci in disease processes.
The accuracy, sensitivity, and scalable stringency of ARC-seq

make it advantageous for application to numerous biological
questions that have remained intractable to date. Future studies
of TM in model systems, such as the yeast mutants studied here,
could explore how perturbing or enhancing various aspects of
transcription, including transcription factors or the nucleotide
pool, affects transcriptional fidelity (22). Such studies could
perhaps not only provide greater insight into the basic biology of
transcription but also potentially lead to studies on how perturbing
the transcriptional apparatus may potentially be useful as a ther-
apeutic target in cancer and microbial diseases (2, 6, 45). Applying
ARC-seq to studies of RNA viral populations could provide
greater insight into the nature of quasispecies and how viral
populations evolve and under which conditions, and potentially
provide insight into how to prevent therapeutic resistance or even
directly manipulate viral transcriptional apparati to induce lethal
mutagenesis (7, 8). Additionally, applying ARC-seq to studies of
TM in aging and neurodegeneration could elucidate whether or
not epimutations underlie the pathologies of age-related disease,
such as sporadic Alzheimer’s disease (4, 15) and cancer (6, 20),
and, finally, address the long-standing hypothesis of protein syn-
thesis errors driving aging and disease (37–39).
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Methods
IVT RNAswere generated from a single-strandedm13mp18 DNA template via
an established protocol (46), using T7 RNA polymerase. To generate dam-
aged IVT RNA, following transcription, the high-fidelity RNA was treated
with 100 μM H2O2 and FeCl3 to induce oxidative DNA damage, according to
an established protocol (47). To generate mutated IVT RNA, the m13mp18
DNA template was treated with 1 mM H2O2 before transcription.

Wild-type yeast and E1103G yeast were a gift from Mikhail Kashlev at the
NIH/National Cancer Institute (NCI), Bethesda, and ΔRpb9 yeast was a gift
from Jeffrey Strathern at the NIH/NCI. To measure TM in yeast, log-phase
yeast or stationary-phase yeast was pelleted, washed with cold 1× PBS, and
repelleted. The cell walls were then digested by incubating cells in a buffer
containing sorbitol and 100 units of Zymolyase, according to an established
protocol (48). RNAs were then extracted, enriching for mRNA, using the
Dynabead mRNA Direct Kit from Ambion. Extracted RNAs were stored in
10 mM Tris and 0.1 mM EDTA buffer (pH 8.0) made with diethyl pyrocar-
bonate (DEPC)-treated nuclease-free water, with 100 units of murine RNase
inhibitor from New England Biolabs (NEB) added, at −80 °C.

RNA Library Preparation. RNA librarieswere prepared via theARC-seq protocol,
as detailed in SI Materials and Methods. Briefly, fragmented RNAs were end-
repaired, preadenylated, and ligated to ARC-seq adaptors. Adapted RNAs
were circularized and then subjected to rolling-circle reverse transcription to

generate multimeric cDNAs. The cDNA multimers were restricted into cDNA
monomers, each of which was subsequently indexed via 5′-overhang extension
PCR. Indexed cDNA monomers were amplified and sequenced on an Illumina
HiSeq 2200 instrument, using the dual-indexing protocol.

Data Processing. Reads were filtered for those containing properly located tag
sequences, and the 16-nt RNA barcode and 8-nt cDNA indexwere combined to
create a 24-nt tag for each read. Reads containing identical tag sequenceswere
grouped together to form PCR consensus reads. PCR consensus reads sharing
identical 16-nt RNA barcodes were then grouped together to form cDNA
consensus families. The cDNA consensus for any position is considered un-
defined if the position is represented by fewer than n instances in the family or
if less than 70% of the sequences at that position in the read are in agree-
ment; n represents the number of cDNA copies generated from each RNA
molecule and can be adjusted to increase assay stringency if the RNA template
is damaged. Further details are provided in SI Materials and Methods.
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