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This review describes the pathway a plant pathogenic mycoplasma or spiroplasma takes in its
passage through a leafhopper vector. Reference is made to several strains of spiroplasma and
acholeplasma, but, in particular, data are presented for Spiroplasma citri and the corn stunt
spiroplasma.

Acquisition of the organisms is discussed, together with the different methods of infection
(feeding on plants and through membranes or following injection) and the effect they have on
the inoculum dose. The dose, together with the environmental conditions, are also factors
which effect multiplication in both whole insects and salivary glands. Titers reached by the
organisms in the insect are given. Pathogenic effects on the insects are discussed. The analogy
is given of the insect acting as a chemostat with poor nutrition or high temperature adversely
affecting the balance. Feeding behavior and the number of organisms ejected are two factors
affecting transmission.

INTRODUCTION

The passage of a persistently transmitted propagative plant pathogen through its
insect vector was proposed many decades ago, and has recently been discussed by
Harris [1]. About 130 species of leafhoppers are vectors of plant pathogens, which
includes approximately 100 diseases associated with mycoplasma-like organisms
(MLO) or spiroplasmas. These organisms are assumed to penetrate the gut, pass into
the blood, multiply within the insect, and finally are transmitted via the salivary
glands during feeding.

The discovery of cultivable spiroplasmas in the last ten years [2] has facilitated the
study and elucidation of the vector-pathogen relationship.

THE MYCOPLASMAS AND SPIROPLASMAS

The two plant pathogenic spiroplasmas which have contributed most to our
understanding are Spiroplasma citri and the corn stunt spiroplasma (CSS). S. citri
causes two diseases, citrus stubborn and brittle root of horseradish [3,4] but will also
infect more than 35 species in 19 plant families. Corn stunt is a serious disease of
maize in Central and South America, but CSS will also infect 11 other species in five
plant families. Both S. citri and CSS can infect both monocotyledonous and
dicotyledonous plants; however, S. citri is most commonly found in citrus and many
species of Brassicaceae, together with a few other species such as Catharanthus
roseus G. Don and Plantago ovata L; CSS is important only in maize. This limited
natural host range may be determined to a large extent by the preferred hosts of the
main vectors. S. citri is transmitted by six leafhopper species, but the main vector is
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Circulifer tenellus (Baker). However, another seven species of leafhopper and one
planthopper species have been shown, either by ELISA or by cultivation of the
pathogen, to contain S. citri when collected in the field. Dalbulus maidis (DeLong
and Walcott) is the main vector of CSS but D. elimatus (Ball) may also contribute to
the spread in the field; experimentally seven other species are vectors [5,6].

Many other MLO and spiroplasmas have been associated with plants and insects
over the years; these and some newer isolates have been discussed recently [7].
Among these isolates are two which are found on the surface of flowers; one, S.
floricola, may be spread by the beetle Melolontha melolontha (L), in which it in-
duces “lethargie” disease, and the other is “honeybee spiroplasma” (BC-3) [also in
Apis mellifera (L)]. About 30 acholeplasma isolates and three (“cocos”)
spiroplasmas have been recovered from rotting tissue associated with coconut palms
[8,9]. BC-3 is related to CSS and S. citri but these are distinct from S. floricola or
cocos spiroplasmas.

THE CYCLE IN THE INSECT

Some of the spiroplasmas and MLO, especially plant pathogens, have a complex
pathway though insects. Others may exist as contaminants of the gut, as pathogens
acquired through feeding, or may have such specific relationships with the insect
that the only method of transmission is via the egg to the next generation.

Feeding and Acquisition

Clark [7] describes spiroplasmas that exist in the gut of several species of insect,
and which probably invade the hemolymph following injury to the gut. These may
be passed from insect to insect during feeding on plant surfaces contaminated by
feces or following regurgitation.

Other spiroplasmas, such as the phloem-restricted plant pathogens, must use the
insect to ensure their survival. Recent (unpublished) results using the leafhopper
Euscelidius variegatus (Kirsch) have shown that when the insect is given an acquisi-
tion access period (AAP) on cultures of spiroplasmas or MLO, then S. citri and
related isolates (CSS, BC-3) could penetrate the gut and enter the hemolymph, while
others such as S. floricola and several acholeplasma isolates were unable to pass the
gut wall. After a 16-hour AAP there was a high proportion of “infected” individuals
when insects were assayed for colony forming units (CFU) by homogenizing and
plating onto solidified media (Table 1). However after 21 days on plants no insects
contained acholeplasma or S. floricola, but 50-60 percent of those insects which had
fed on S. citri, BC-3, or CSS, were still infected. These insects represented potential
vectors.

TABLE 1
Percentage of Euscelidius variegatus from Which Mycoplasmas Were Reisolated,
Following a 16-Hour Feed on Suspensions Between Membranes

Organism After 16-Hour Feed After 3 Weeks®
Spiroplasma citri 90-100® 50-60
BC-3 spiroplasma 90 50-60
Corn stunt spiroplasmas 90-100 50-60

S. floricola 30 0
Acholeplasma sp. 40-50 0

216-hour feed, followed by three weeks on plants
®Percentages are the results of three experiments.
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The concentration of organisms in the feeding solution and in the “honeydew”
(undigested feeding solution) was about the same (i.e., 10’-10®* CFU per ml). The
amount each adult E. variegatus ingested during a 16-hour AAP varied from zero to
15-18 pl but was usually between 1-5 ul (for the smaller species D. maidis the mean
volume was 3.7 ul and the range 1-6 ul), and the titer of organisms varied from zero
to 10* CFU. The titer in the insects which had been fed on S. citri, CSS, and BC-3
was consistently higher the more the insects ingested, while the number of viable
acholeplasmas showed no such trend. This suggested an accumulation in the insect,
or penetration and multiplication in those insects exposed to S. citri-related isolates.
A similar effect of strong cytadsorption for BC-3, CSS, and S. citri in Drosophila
cell lines has been reported, but S. floricola cytadsorbed poorly [10]. The better (and
longer) an insect feeds on an infected plant, the greater are the chances of acquisi-
tion.

A recent electron microscopic study of infected C. tenellus by Liu [11] showed S.
citri located in the wall of gut epithelial cells and within “vesicles” between the
epithelial cells and the basement membrane. Liu also suggested that the pathway of
spiroplasmas from hemocoel to hemolymph was via the endoplasmic reticulum.
However, it is more likely that the organisms pass between the cells rather than
through them.

An earlier study showed that in insect cells, grown in monolayer culture, the
spiroplasmas could be seen in vesicles within the cells but neither the vesicles nor the
appearance of the spiroplasmas (which were more filamentous) were similar to those
seen in tissue in vivo [Townsend R: personal communication].

Some leafhoppers may acquire MLO and spiroplasmas after an AAP of only a
few minutes. D. maidis acquired cultured CSS contained in membranes after AAP
of 2, 5, and 10 minutes, and from infected plants in 15 minutes [12]. In contrast, C.
tenellus acquired S. citri from plants in only 6 hours [11], compared to 20 minutes
from cultures [13]. In general, the longer the AAP (e.g., 7-14 days) the more likely
are the leafhoppers to acquire the pathogen. All D. maidis and Cicadulina mbila in-
dividuals will acquire CSS from infected plants given AAP of 7-10 days.

Many other aspects of a leafhopper’s feeding behavior also have an effect on its
potential as a vector. Adaptation to the plant and long feeding periods increase
transmission efficiency.

Multiplication in Insects

MLO, spiroplasmas, and acholeplasmas all multiply readily in insects following
injection [14]. In recent studies [unpublished data] BC-3, S. citri, CSS, and S.
floricola all multiplied to titers of 108-10° CFU per ml and remained at these titers.
Many acholeplasma isolates also multiplied well, reaching maximum titers of 102
CFU/ml in some individuals. However, some isolates only persisted while other
isolates declined and did not survive. On investigation it was found that survival of
many strains was dose-dependent, and that if sufficient organisms were injected
multiplication took place. No biochemical or serological differences could be
detected between the isolates that varied in their ability to multiply in leafhoppers.

Multiplication of CSS in both E. variegatus and D. maidis occurred from an ini-
tial dose of approximately 10° CFU per insect, reaching a maximum titer of 3 x 10®
CFU per ml and 7 x 10® CFU per ml, respectively, by day 6 [6]. Multiplication in
the salivary glands also occurred. Spiroplasmas were firmly absorbed onto the sur-
face of the salivary glands within two hours of injection, the organisms then
multiplied (18-hour cell division time) and reached a titer of 3 x 10® (in E.
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variegatus) and 7 X 10® (D. maidis) CFU per ml at days 7 and 10, respectively [12].
The maximun titer of CSS cultures in SMK medium for these experiments was
always about 5-7 x 10® CFU per ml. Improved media for enumeration of colonies
of CSS, which are now available, may show that the true titers could reach 10° CFU.

In insects infected with S. citri titers reached 1.3 x 10° CFU per ml in E.
variegatus and 1.4 x 10° CFU per ml in Macrosteles sexnotatus (Fallén). In E.
variegatus, S. citri multiplied in the salivary glands from an initial titer of 3.6 x 10¢
CFU per ml (2.6 x 10* CFU per gland) (two hours after injection) to a titer of 5 x
107 CFU per ml (or 7 x 10* CFU per gland) (at seven days) and reached a maximum
titer of 5.5 x 10° CFU per ml (or 3.4 x 10°* CFU per gland) (days 14-25).

Passage through the Salivary Gland

The salivary gland has always been considered to play an important role in the
transmission of MLO and spiroplasmas. We know that if leafhoppers are injected
with CSS or S. citri (and two hours later the salivary glands are removed, washed
several times, and macerated for enumeration of CFU), the pathogens are adsorbed
onto the salivary glands and the higher the titer injected the greater the number of
organisms which are adsorbed.

Examination of infected salivary glands by electron microscopy revealed that
spiroplasmas (S. citri and CSS) were usually found “within” the membrane. Large
numbers could accumulate in “colonies” on the periphery of the acini of the salivary
glands. However, these “colonies” were always bounded on the cell side by a layered
“membrane” and on the “exterior” by an ill-defined single layer, which is probably
the basal membrane. When infected salivary glands were stained with the DNA
stain, Hoechst 33258, and then examined by fluorescence microscopy the
spiroplasma “colonies” could be seen as fluorescent areas [12]. There appeared to be
considerable fluorescence in areas where acini were compressed together. Examina-
tion of the areas between the cells of the acini showed accumulations of organisms.
It appears that the most likely pathway through the salivary glands to the ducts is be-
tween the cells, along the cell junction. Liu [11] also found similar accumulations of
S. citri in the salivary glands of infected C. tenellus. Raine and Forbes [15] have
shown MLO in the afferent and efferent ducts of the salivary syringe, and since the
MLO were also proximal to the valve the conclusion was that they came from the
salivary glands.

INCUBATION PERIODS AND TRANSMISSION

Transmission of MLO and spiroplasmas requires an incubation (latent) period
(IP) [16]. The length of the IP is probably determined by a combination of factors
such as the disease agent and vector species, together with the inoculum which the
insect receives and the environmental conditions (particularly temperature), which
will determine the rate of multiplication of the agent. In C. tenellus the minimum IP
of S. citri was 10, 16, and 24 days following infection by injection, feeding on in-
fected plants, and feeding on cultures through a membrane, respectively [11]. The
different times probably reflect differences in the inoculum dose received by the
three methods.

Studies with S. citri and CSS showed that inoculum doses from < 10? up to about
10®* CFU per insect, whether obtained by injection, feeding on plants, or on cultures
within membranes, will result in approximately the same maximum titer in the insect
when they are maintained at optimum temperatures (29-32°C) for the pathogens.

CSS can be transmitted to maize by D. maidis three days after injection and by E.
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variegatus after 12 days to broad beans. The minimum IP of 8. citri in E. variegatus
may be as short as nine days but is usually 14-16 days, when assayed on broad
beans. Following AAP by D. maidis on cultures of CSS, the IP varied from 8-22
days. The shortest IP followed AAPs of seven days [12]. In these and other ex-
periments it was shown that the IP decreased with increasing AAP. The same princi-
ple applied to the transmission of CSS; the longer the transmission access period
(TAP) the shorter the IP in the plant, and the higher the percentage transmission to
plants. For example, one hour TAP was sufficient for 22 percent of the insects to
transmit, but the mean IP in the plants was 26 days; a six-day TAP gave mean IP of
16 days [12].

An interesting feature of in vitro feeding (i.e., through membranes) is that,
following injection, transmission occurs after two to three days with D. maidis in-
fected with CSS, or with E. variegatus infected with CSS or S. citri. Thereafter
transmission to membranes increased with time until 60 percent of the D. maidis
were transmitting in vitro (identical insects feeding on maize were transmitting at 70
percent) and E. variegatus at 45-60 percent (S. citri) and 30 percent (CSS). But for
S. citri it is six to nine days before transmission occurs to plants.

During most of the period of maximum transmission (plateau: day 10-12 onward)
in vitro only between 20-80 CFU were being ejected in a 16-hour TAP. It is possible
that CSS is so well adapted to transmission by D. maidis to maize that fewer
organisms are required for infection than if E. variegatus or some other vector was
feeding on a dicotyledon. Alivizatos [12] found that, when E. variegatus was feeding
in vitro, occasionally more than 600 CFU of CSS were ejected in a 16-hour TAP. It
is possible that when a non-specific association is encountered, i.e., a “generalist”
leafhopper feeder transmits to a non-preferred host plant, then a larger dose of
spiroplasmas is needed. There is no evidence that plants have any active defense
mechanisms against MLO or spiroplasmas, although it has been suggested that
phytoalexins may play a defensive role.

PATHOGENICITY

Many aspects of the effects of MLO and spiroplasmas on arthropods have been
discussed [14]. One of the classical criteria for assessment of pathogenicity is the
relative longevity of healthy and infected insects. Using that parameter a preliminary
study [unpublished results] comparing CSS, several isolates of S. citri, flower and
plant surface spiroplasmas, and acholeplasmas in E. variegatus, M. sexnotatus, and
D. maidis have resulted in some tentative conclusions. Several strains of S. citri
(BR6, BR1, SPV3, ASP1, SCVM, SPV12, S1) were not pathogenic to E. variegatus;
S. citri strain MC2041 from California was slightly pathogenic, but S. floricola and
cocos isolates were pathogenic. CSS was mildly pathogenic (10 percent difference) to
D. maidis, when infection was from injection, natural acquisition from plants, or
from cultures in membranes. CSS was also mildly pathogenic to C. mbila. The plant
host species also played a role in survival of both healthy and spiroplasma-infected
insects.

When pathogenicity occurred it was apparent at or just before the time when peak
titers were reached (e.g., between 5-10 days after infection, or 12-16 days after nor-
mal feeding). For “pathogenic strains” a difference between “controls” and “in-
fected” insects became increasingly apparent with time as infected insects died
prematurely, but for “non-pathogenic” isolates the population decreased as normal.

No direct evidence has yet been obtained that leafhoppers have any specific
defense mechanism against spiroplasmas. Many workers have reported that when S.
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citri is injected into leafhoppers there is an initial fall in titer. If the initial dose is suf-
ficiently high (e.g., 10* CFU per insect) then no decrease is observed. But this decline
could be due to the death of organisms unsuited for survival within the insect.
However, the results from the acholeplasma studies are better evidence for some in-
sect defense mechanism, possibly hemocyte action.

CONCLUSIONS

Spiroplasmas have been shown to have remarkable adaptability so it would be im-
possible to devise general conclusions regarding a biological relationship as complex
as the vector-pathogen-plant cycle through leafhoppers. Although each complex
needs careful assessment, the following model may serve as a guide to events.

The plant pathogenic spiroplasmas can be present in the phloem in concentrations
up to 10** CFU per ml of sap. Insects which ingest large quantities of infected sap
are more likely to become infected. A few (perhaps 0.1 percent) of the ingested
organisms penetrate the basal membrane, passing via cell junctions into the
hemolymph. When spiroplasmas are injected into the hemolymph the titer may
decrease initially due to the loss of those cells not adapted to insect survival, and
possibly to phagocytosis by hemocytes; organisms acquired by normal feeding are
those adapted to survival in insects. Once in the hemolymph a prime target for the
organisms is the salivary glands, where the same process of penetration takes place.
Multiplication occurs between any basal membrane and its cell, between cells and in
the hemolymph. The organisms may reach titers of between 10%-10° CFU per ml,
with the insect acting as a kind of chemostat. A good nutritional intake, i.e., the in-
sect feeding on a preferred host plant, will ensure the nutrient requirement for the
chemostat; when numbers of organisms rise above the normal tolerance level
(108-10° CFU per ml) pathogenicity occurs. The exponential phase of multiplication
requires 6-12 days (or longer) depending on environmental conditions and original
inoculum dose (e.g., time spent feeding). Whereas most insects will tolerate the
threshold limit, in some, numbers continue to rise beyond this point, after which the
insect may die. Factors such as poor nutrition or fluctuations in temperature may
cause further losses. Cytopathogenicity may arise with certain spiroplasmas not
necessarily because of cytadsorption but due to depletion of nutrients or membrane
components (e.g., cholesterol), multiplication in the hemolymph, and depletion of its
constituents. It could also be due to the effect of metabolites on vital organs.

Organisms such as acholeplasmas which cannot penetrate tissue may survive if a
sufficient dose is applied into the hemolymph. Although numbers may be much
higher than the threshold for spiroplasmas, they can be tolerated because there is no
cytadsorption and no depletion of cell constituents such as cholesterol.

Transmission occurs when sufficient organisms are injected during prolonged
feeding in sieve cells of the plant. This again will be a function of feeding behavior
of the insect and suitable nutritional status of the sap. Feeding behavior and criteria
such as the type of saliva or salivary glands may be extremely significant, which
would account for the large numbers of insects which the pathogens can infect but
which are not, or are only poor, vectors.

Comparative studies using the relatively few cultivable spiroplasmas and
mycoplasmas in a wide variety of different plant and insect hosts will continue to
provide us with model systems with which to study the interaction of these
organisms with their hosts, and perhaps lead to an understanding of the many
known, but non-cultivable, spiroplasmas and mycoplasmas.



10.

11.

12.

13.

14.

15.

16.

SPIROPLASMAS IN LEAFHOPPERS 751

REFERENCES

. Harris KF: Leafhoppers and aphids as biological vectors: Vector-virus relationships. In Leafhopper

Vectors and Plant Disease Agents. Edited by K Maramorasch, KF Harris. New York, Academic
Press, 1979, pp 217-308

. Freundt EA: Isolation, characterization and identification of spiroplasmas and MLO’s. In

Mycoplasma Diseases of Trees and Shrubs. Edited by K Maramorasch, SP Raychaudhuri. New
York, Academic Press, 1981, pp 1-34

. Gumpf DJ, Calavan EC: Stubborn disease of citrus. In Mycoplasma Diseases of Trees and Shrubs.

Edited by K Maramorasch, SP Raychaudhuri. New York, Academic Press, 1981, pp 97-134

. Fletcher J, Schultz GA, Davis RE, et al: Brittle root disease of horseradish: Evidence for an

etiological role of Spiroplasma citri. Phytopathology 71:1073-1080, 1981

. Nault LR, Knoke JK: Maize vectors. Southern Co-operative Series Bulletin 247:77-84, 1981
. Markham PG, Alivizatos AS: The transmission of corn stunt by natural and experimental vectors.

Proc Int Maize Virus Dis Colloq and Workshop, 1-6 August 1982. Wooster, Ohio, ARDC, in press

. Clark TB: Spiroplasmas: Diversity of arthropod reservoirs and host-parasite relationships. Science

217:57-59, 1982

. Eden-Green SJ, Tully JG: Isolation of Acholeplasma spp. from coconut palms affected by lethal

yellowing disease in Jamaica. Curr Microbiol 2:311-316, 1979

. Eden-Green SJ, Waters H: Isolation of corn stunt spiroplasma in Jamaica, and probable dual infec-

tion with maize mosaic virus. Ann Appl Biol 99:129-134, 1981

Steiner T, McGarrity GJ, Phillips DM: Cultivation and partial characterization of spiroplasmas in
cell cultures. Infection and Immunity 35:296-304, 1982

Lui H-Y: The transmission, multiplication and electron-microscopic examination of Spiroplasma
citri in its vector, Circulifer tenellus. Ph.D. Thesis. University of California, Riverside, 1981
Alivizatos AS: Studies on two plant pathogenic spiroplasmas. Ph.D. Thesis. University of East
Anglia, Norwich, UK, 1981

Rana GL, Kaloostian GM, Oldfield GN, et al: Stubborn disease of citrus. Phytopathology
65:1143-1145, 1975

Whitcomb RF, Williamson DL: Pathogenicity of mycoplasmas for arthropods. Znl Bakt Hyg I Abt
Orig A 245:200-221, 1979

Raine J, Forbes AR: The salivary syringe of the leafhopper Macrosteles fascifrons (Homoptera:
Cicadellidae) and the occurrence of mycoplasma-like organism in its ducts. Can Entomol
103:110-116, 1971

Tsai JH: Vector transmission of mycoplasma agents of plant diseases. In The Mycoplasmas, Vol 3.
Edited by MF Barile, S Razin. New York, Academic Press, 1979, pp 266-309



