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Abstract

Background: Recent reports indicate that in vitro drug screens combined with gene expression profiles (GEP) of cancer cell
lines may generate informative signatures predicting the clinical outcome of chemotherapy. In multiple myeloma (MM) a
range of new drugs have been introduced and now challenge conventional therapy including high dose melphalan.
Consequently, the generation of predictive signatures for response to melphalan may have a clinical impact. The hypothesis
is that melphalan screens and GEPs of B-cell cancer cell lines combined with multivariate statistics may provide predictive
clinical information.

Materials and Methods: Microarray based GEPs and a melphalan growth inhibition screen of 59 cancer cell lines were
downloaded from the National Cancer Institute database. Equivalent data were generated for 18 B-cell cancer cell lines.
Linear discriminant analyses (LDA), sparse partial least squares (SPLS) and pairwise comparisons of cell line data were used
to build resistance signatures from both cell line panels. A melphalan resistance index was defined and estimated for each
MM patient in a publicly available clinical data set and evaluated retrospectively by Cox proportional hazards and Kaplan-
Meier survival analysis.

Principal Findings: Both cell line panels performed well with respect to internal validation of the SPLS approach but only
the B-cell panel was able to predict a significantly higher risk of relapse and death with increasing resistance index in the
clinical data sets. The most sensitive and resistant cell lines, MOLP-2 and RPMI-8226 LR5, respectively, had high leverage,
which suggests their differentially expressed genes to possess important predictive value.

Conclusion: The present study presents a melphalan resistance index generated by analysis of a B-cell panel of cancer cell
lines. However, the resistance index needs to be functionally validated and correlated to known MM biomarkers in
independent data sets in order to better understand the mechanism underlying the preparedness to melphalan resistance.
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Introduction

The alkylating agent, melphalan, is the backbone of current

therapy in MM. Since the 1990s, melphalan has been used in high

dose therapy (HDT) followed by autologous stem cell transplan-

tation (ASCT) [1] and has as such improved the response rate, as

well as prolonged event free survival (EFS) and overall survival

(OS) [2]. Even though the last years have seen considerable

improvements, the overall survival remains dismal and the disease

is considered incurable – mainly due to an initial refractory disease

or induced resistance resulting in disease relapse. Refractory

disease and early relapse is considered associated with the

development of melphalan resistance which is a complex

phenomenon not completely understood [3]. One possible strategy

for improving the knowledge about drug resistance is the

combined use of novel technologies including GEP and drug

screen in a preclinical malignant B-cell cancer cell line model [4].

The fundamental idea of recent studies on drug resistance has

been to categorize cell lines into sensitive, resistant and

intermediate groups based on drug dose response experiments

and subsequently to generate a genetic classifier or signature based

on microarray analysis. Publicly available data from the NCI60

cell line panel generated by the National Cancer Institute (NCI)

have been used extensively in such studies for various cancer types

and treatment regimes. However, the approach remains contro-

versial [5,6]. Several authors have argued that the performance

could be improved by a specific cell line panel. Such an approach

was used by Lee et al. [7] and Liedtke et al. [8] for bladder and

breast cancer tumors, respectively. The successful approach of Lee

et al. [7] was based on the selection of gene expressions for the
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organ specific cell lines which correlate with gene expressions in

patient material before developing their classifier by a misclassi-

fication-penalized posterior algorithm. However, Liedtke et al. [8]

were unable to predict the outcome of chemotherapy response

with an approach based on diagonal linear discriminant analysis

(DLDA) for classification.

The concept of the present study is that melphalan resistance in

MM can be studied in a preclinical model of malignant B-cell

cancer cell lines by combining drug screens and GEPs and

generate a gene signature for resistance, which clinically can be

validated by predicting the outcome for tumors analysed before

high dose melphalan and ASCT. Such a strategy involves intensive

data generation in the laboratory and is succeeded by use of data

management and advanced statistical analysis [5,6]. In the present

study, we have implemented reproducibility by scripting the entire

data analysis flow in R and Bioconductor.

In summary, the specific aims of this study were to develop a

melphalan resistance gene index by use of 1) the publicly available

cell line panel NCI60 or 2) a panel of B-cell cancer cell lines and 3)

to support the concept though available ‘‘on-line’’ microarrays and

clinical data set from MM patients treated with double high dose

melphalan [9].

Materials and Methods

The NCI60 Cell Line Panel
The NCI60 cell line screen method is developed by NCI and

serves to screen a large number of substances for cytotoxic activity.

The panel consists of 59 cell lines derived from distinct cancer

types [10,11]. The gene expression data and chemotherapy

sensitivity data are publicly available. For more information, see

the Online Information Section below. In the present study we

used the GI50 value as defined by NCI [12].

B-Cell Cancer Cell Lines and Culturing Conditions
The BCell panel consisted of 13 MM cell lines, 1 plasmacytoma

(PC) cell line and 4 diffuse large B-cell lymphoma (DLBCL) cell

lines. The cell lines were cultured under standard conditions at

37uC; in a humidified atmosphere of 95% air/5% CO2 with the

appropriate medium, fetal bovine serum (FBS) and 1% penicillin/

streptomycin addition. See Table S1. The cell lines were

maintained for a maximum of 20 passages to minimize any

long-term culturing effects. Penicillin/streptomycin 1%,

RPMI1640, IMDM and FBS were purchased from Invitrogen.

The cell lines KMM-1 and KMS-11 were obtained from JCRB

(Japanese Collection of Research Bioresources), and KMS-12-PE,

KMS-12-BM, LP-1, MM1S, MOLP-2, MOLP-8, NCI-H929,

OPM-2, RPMI-8226, U-266, AMO-1, DB, HT and SU-DHL-4

from DSMZ (Deutsche Sammlung von Mikroorganismen und

Zellkulturen). The cell line MM1S was provided by Steven T.

Rosen [13], RPMI-8226 LR5 by William S. Dalton [14] and

OCI-Ly7 by Hans Messner [15].

Melphalan Dose Response Experiments
The cell number in the culture was determined by absorbance

measurements (CellTiter 96 Aqueous One Solution Reagent,

Promega) as described by the manufacturer. The linear relation-

ship between absorbance and cell number was obtained by seeding

cells in 96-well plates with the appropriate medium at concentra-

tions ranging between 15–60000 cells/well. The 18 cell lines were

incubated for 24 hours before the addition of 18 increasing

concentrations of melphalan in triplicates. All wells were seeded

with cells but border effects were circumvented by including only

non-border wells for analysis. The melphalan was resolved in

ethanol resulting in a final ethanol concentration of 0.06% in the

medium. The relative cell number was measured 48 hours after

the addition of melphalan using the CellTiter reagent and the

Optima-Fluostar (BMG LABTECH) at 492 nm. To achieve high

reproducibility, the whole experiment was repeated at least twice

utilizing new freeze stocks of the individual cell lines.

RNA Microarray Analysis
All GEPs were performed using the Affymetrix microarray

platform and standard procedures. Total RNA was extracted

using Invitrogen TRIzol Reagent combined with Qiagen RNeasy

Mini kit. The quality was checked by Agilent 2100 Bioanalyzer.

The samples were prepared for hybridization to Affymetrix

GeneChip HG-U133 Plus 2.0 arrays after the manufacturer’s

instruction and .CEL-files were generated by Affymetrix Gene-

Chip Command Console Software (AGCC) and deposited at the

NCBI Gene Expression Omnibus (GEO) repository. The data

fulfil the requirements of being MIAME compliant. For more

information, see the Online Information Section.

Arkansas and Hummel Cohorts of MM and DLBCL
Patients

Gene expression data, EFS, and OS data for 565 patients

diagnosed with progressive or symptomatic MM are publicly

available. For more information, see the Online Information

Section. The data set is known as the ‘‘Arkansas data’’ [16]. The

patients were enrolled by The Myeloma Institute for Research and

Therapy, University of Arkansas, School of Medical Sciences, and

they were part of a larger study with the purpose to investigate

whether thalidomide in combination with HDT can prolong

survival among patients with MM [9]. The 565 patients were

treated according to the total therapy two (TT2) or total therapy

three (TT3) protocol including double high dose melphalan and

ASCT.

The data set known as the ‘‘Hummel data’’ [17] was used in the

present study to test the specificity of the identified resistance

index. The 87 patients were diagnosed with DLBCL and received

a CHOP-like (cyclophosphamide, doxorubicin, vincristine, and

prednisone) induction treatment. Gene expression and OS data

are publicly available as well (for more information, see the Online

Information Section).

Statistical Analysis
Full documentation of the statistical analysis is provided by a

Sweave document, see Text S1. Sweave is a feature in the

statistical programming language R that enables the integration of

R code into LaTex and thereby it provides reproducible data

analysis and research [18]. All statistical analyses were done with

R [19] version 2.12.1 and a number of Bioconductor [20]

packages. Detailed session information is contained in Text S1.

Melphalan Dose Response Analysis. The absorbance

values originating from the dose response experiments were

background corrected and averaged over replicates. Eventual

outliers among the triplicated cell concentrations were removed

by Grubbs’ test [21] (approximately 0.5%, see Text S1). Relative

growth inhibition curves were calculated for each concentration

relative to the untreated control, whereafter a piecewise linear

growth curve was modelled. Through visual inspection, five

extreme values were removed (Figure S1). The GI50 values of the

cell lines in the BCell panel were defined as the first point at

which the growth curve drops below the 50% level. Data were

averaged over the replicated cell line measurements to perform

this analysis. The uncertainty of the GI50 values was assessed by

Melphalane Resistance Index
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sub-sampling the replicated wells with replacement and a re-

calculation of all the GI50 values 200 times. The 10-fold

logarithm of the GI50 values was transformed to the log10 mM-

scale for both cell line panels and used as a melphalan resistance

index – in the following denoted the NCI60 index and BCell

index, respectively. As a means to distinguish between sensitive,

intermediate and resistant subjects (cell lines or individuals) in a

population, we chose the criterion of Havaleshko et al. [22],

where a subject is resistant if its resistance index exceeds the 75

percentile of the population. Similarly, we defined a subject to be

sensitive if its resistance index was less than the 25 percentile of

the population. The remaining subjects were characterized as

having intermediate resistance.

Microarray Pre-processing. The BCell .CEL-files and the

downloaded NCI60 .CEL-files were background corrected and

normalized by the just.rma function from the affy package. All

RMA-normalized arrays passed the statistical quality control

provided by the function arrayQualityMetrics in the R-package

arrayQualityMetrics [23]. As the NCI60 panel was analyzed on

the HG-U133a array and BCell on the HG-U133 Plus 2.0 array,

focus was on probes only present on the HG-U133A array. The

Arkansas data were also background corrected and normalized

with just.rma.

Differential Expressions. Following the unspecific filtering

of the gene expression data, the cell lines were ranked as resistant,

intermediate or sensitive according to their GI50 values.

Transcripts that expressed significant differences between the

groups of the most sensitive and most resistant cell lines were

determined using moderated F-tests as implemented in the

Bioconductor package limma [24]. Genes with a P-value below

0.05 were considered to have predictive value. The P-values were

deliberately chosen instead of false discovery rates as the purpose

was to construct a resistance classifier and not to detect

differentially expressed genes. The differentially expressed genes

were scaled to have zero mean and standard deviation one. A

classifier was built by the scaled genes and linear discriminant

analysis (LDA) as implemented in the R-package sda [25]. To

avoid difficulties inverting large covariance matrices, a maximum

of 400 genes in sda was chosen.

Multivariate Regression. The genes were filtered according

to sure independence screening (SIS), i.e. all genes were ranked

according to the Pearson correlation coefficient between its gene

expression and resistance index. All genes, for which the P-value of

the test for zero correlation was above 0.05, were considered for

dimensionality reduction by SPLS [26]. To obtain sparsity, SPLS

penalizes the transformed input vectors by forcing small

coefficients to be zero. The pure SPLS formulation contains four

tuning parameters, however, according to Chun et al. [26], a

simple SPLS regression formulation, which only depends on one

parameter g, is controlling the sparsity of the solution and the

number of hidden components K. For particular choices of the

regularization parameter g and the hidden components K the

performance was evaluated by leave-one-out cross-validations.

The optimal configuration of the parameters was chosen to be the

set minimizing the mean squared prediction error (MSPE). Once

the optimal parameters have been chosen internally from the cell

lines, the resistance index can be predicted for the subjects through

a linear combination of the scaled gene expressions with the

coefficients estimated by SPLS [27]. The SPLS analysis and

predictions are performed with the R-package spls provided by

Chun et al. [26].

Independent Filtering. It is well-known that independent

filtering increases detection power for high-throughput

experiments [28]. To investigate whether independent filtering

would increase accuracy and prediction error, an unspecific

filtering, leaving out genes with low variation over the NCI60 and

BCell gene expressions, were carried out with the function nsFilter

from the Bioconductor package genefilter. The cut-off values

varied between 0% and 100% and we chose the cut-off value

which performed best with respect to cross-validated accuracy for

the LDA and MSPE for SPLS. In order to investigate whether any

predictive power remained after filtering, cross-validation was

performed for the chosen parameters.

Survival Analysis. Kaplan-Meier survival analysis, logrank

test and Cox proportional hazards models were calculated with

functions from the R-package survfit. A nonlinear relationship

between the predicted response to treatment and the resistance

index was noticed and the relationship was estimated by restricted

cubic splines (RCS) by means of the R-package Design [29]. The

significance level is set to 0.05 and the hazard ratios (HR) are given

with 95% confidence intervals.

Online Information
Details on the required and deposited on-line information are

described below.

The BCell Gene Expression Data. .CEL files for the 18 cell

line microarrays have been deposited at http://www.ncbi.nlm.nih.

gov/geo/ under GEO accession number GSE22759. The data

fulfil the requirements to be MIAME compliant.

The NCI60 Gene Expression Data. .CEL-files for the

NCI60 cell line microarrays were downloaded from http://

www.ncbi.nlm.nih.gov/geo/ under GEO accession number

GSE5720 by selecting the subset of data originating from the HG-

U133A array. The cell line IGROV1 is provided in dublicates – in

the present study replicate A21 is used. The data fulfil the

requirements to be MIAME compliant. Notice that we have

renormalized the .CEL files as described in the Materials and

Methods Section.

The NCI60 DTP Data. The DTP human tumor cell line

screening data (August 2008 release) were obtained by

downloading the file cancer60gi50.lis from the website: http://

dtp.nci.nih.gov/docs/cancer/cancer data.html. Parts of the script

for extracting NCI60 drug response have been developed by

Kevin Coombes and Keith Baggerly and can be downloaded from

the website http://bioinformatics.mdanderson.org/Supplements/

ReproRsch-Chemo/.

The Arkansas Gene Expression and Clinical Data. .CEL

files for the gene expression data and clinical information are

available at http://www.ncbi.nlm.nih.gov/geo/ under GEO

accession number GSE24080. The data fulfil the requirements

to be MIAME compliant. The .CEL files are renormalized as

described in the Materials and Methods Section.

The Hummel Gene Expression and Clinical Data. .CEL

files and clinical information are available at http://www.ncbi.

nlm.nih.gov/geo/ under GEO accession number GSE4475. The

data fulfil the requirements to be MIAME compliant. The .CEL

files are renormalized as described in the Materials and Methods

Section.

Results

The NCI60 Panel Resistance Index
In brief summary, dose response data for melphalan were

downloaded. A plot of the data is seen in Figure S2. The 59 cell

lines showed GI50 values ranging from 25.77 to 23.99 on the

log10 mM/ml scale - the most sensitive cell line being SR and the

most resistant cell line being A498.

Melphalane Resistance Index
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Developing the B-Cell Resistance Index
Dose response experiments were carried out, and plots of the

data as well as fitted curves are illustrated in Figure 1A. The 18 cell

lines showed GI50 values ranging from 26.02 to 24.13 on the

log10 mM/ml scale - the most sensitive cell line being MOLP-2 and

the most resistant cell line being RPMI-8226 LR5. Figure 1B

shows box plots of the mean GI50 value from re-sampled dose-

response curves for all 18 B-cell cancer cell lines. As no clear

distinction between a resistant and sensitive group of cell lines was

detected, the 25%/50%/25% split described in the Materials and

Methods Section was chosen, i.e. the five cell lines with the lowest

GI50 values were denoted sensitive and the five cell lines with the

highest GI50 values were denoted resistant.

Classifier Based on LDA
For the NCI60 panel, an LDA based classifier was built as

outlined in the Materials and Methods section, for details see Text

S1. The LDA based classifier showed poor internal validation

(Figure S3). The optimal accuracy (determined by leave-one-out

cross-validation) of 0.6 was obtained for the BCell panel at a

filtering rate of 0.95, in which case the moderated F-test gave 159

genes (Table S2). LDA was used to combine the 159 genes to

develop a classifier. The classifier showed 60% overall leave-one-

out-cross-validation accuracy for the cell lines from which it was

developed.

Cross-Validating the SPLS Model
After the unspecific filtering steps were attained, SPLS was used

to achieve specific filtering. In order to avoid over-fitting and noise

contributing genes, the number of hidden components and

probesets were chosen by leave-one-out cross-validation. The

optimal number of probesets and components were found at the

values where the minimal MSPE was attained. For the NCI60

panel, a reasonable internal validation was observed (Figure S4).

For the BCell panel, two hidden components and 19 probesets

provided the best MSPE (Figure S5). The leverage of a single cell

line on the prediction model was investigated by plotting the

predicted resistance value originating from the leave-one-out-

cross-validation versus the measured resistance index (Figure S6).

The most sensitive and resistant cell lines MOLP-2 and RPMI-

8226 LR5, respectively, turned out to be high leverage points.

Stability Evaluation
To see how SPLS regression copes with noise, the BCell panel

was used to select 20 probesets randomly among the 100 probesets

with the highest marginal association (absolute value of the

Pearson correlation coefficient) with the resistance index. In order

to keep the dependence structure between the probesets intact,

these were all randomly perturbed, except for the 20 probesets.

The coefficients of the probesets are shown as a function of the

regularization parameter g in Figure S7. For this example, the

optimal number of sparse partial least squares components was

K = 3 and the optimal regularization parameter was g = 0.83.

Eleven probesets were chosen, which demonstrates an average

sensitivity of 55%, a specificity of 99% and a false discovery rate of

63%. The experiment was repeated 100 times and gave in average

a sensitivity of 54%, a specificity of 99% and a false discovery rate

of 67%.

Comparison of the most Sensitive and Resistant Cell
Lines

Due to the high influence of the most sensitive cell line, MOLP-

2, and the most resistant cell line, RPMI-8226 LR5, a direct

comparison of these two cell lines was made. This was done by

sorting the genes according to their absolute difference in gene

expression and choosing (quite arbitrarily) the 100 genes with the

highest absolute differential expressions. A predictive resistance

index was constructed by taking the difference in gene expressions

as weight. The genes and their weights are shown in the

supporting information (Table S3).

External Validation on Clinical Samples
EFS and OS were chosen as end points with the hypothesis that

melphalan resistance is correlated to these end points. For the

Figure 1. Melphalan dose-response summary. A) Averaged dose-response curves for each cell line. B) Box plot of 200 resampled GI50 values for
each cell line. The cell lines are ranked according to their estimated GI50 value.
doi:10.1371/journal.pone.0019322.g001
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NCI60 and BCell panels, the LDA and SPLS models as well as the

model consisting of the two influential cell lines in the BCell panel

were used to estimate the melphalan resistance index for each of

the Arkansas patients.

For the LDA based predictions based on the NCI60 panel no

significant difference was observed with respect to OS and EFS for

the predicted sensitive, intermediate and resistant groups of

patients (Figure S8 and S9). For the NCI60 and SPLS based

predictions no significant difference was found for the predicted

sensitive, intermediate and resistant groups as well as the predicted

log relative hazard of OS and EFS for the Arkansas patient data.

See Figure 2A and C and Figure 3A and C, respectively.

For the BCell panel based SPLS model, the Kaplan-Meier

survival analysis is shown in Figure 2B and Figure 3B to illustrate

the distinction between the predicted resistant, intermediate and

sensitive groups for the Arkansas data. We detected a significant

difference in OS (P-value,0.001) and EFS (P-value,0.001) for

the three groups of patients. A Cox proportional hazards model

was used to detect that patients predicted melphalan sensitive have

significantly superior survival (HR = 2.9 [2.41: 3.35]) and longer

Figure 2. OS analysis for the Arkansas data. A) Kaplan Meier survival curves based on NCI60. B) Kaplan Meier survival curves based on BCell. The
samples are categorized into a 25% most sensitive risk group, an intermediate risk group of 50% and a 25% high risk group, based on the melphalan
resistance index. The P-value is the logrank test for no difference in survival curves. C) Log relative hazard as function of the NCI60 resistance index. D)
Log relative hazard as a function of the BCell resistance index. The P-value is the maximum likelihood test for no RCS-association between log relative
hazard and resistance index and the dashed lines represent 95% confidence intervals.
doi:10.1371/journal.pone.0019322.g002
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time to relapse (HR = 2.2 [1.75: 2.67]) compared to resistant

patients for the BCell panel. The log relative hazards versus a

RCS-model for the resistance index are depicted in Figure 2D and

Figure 3D for the Arkansas OS and EFS data, respectively. There

is a significant tendency of shorter time to death (P-value,0.001)

and relapse (P-value,0.001) with increasing resistance index for

the BCell panel.

The LDA-classifier was used to predict whether the patients

in the Arkansas cohort of patients were sensitive or resistant

towards melphalan. A significant difference for both the OS (P-

value = 0.006) and EFS (P-value,.001), with respect to the

BCell panel derived LDA classifier, was detected (Figure S10

and S11).

A significant difference in OS (P-value = 0.004) and EFS (P-

value,0.001) between the patients categorized with respect to the

two influential cell lines were also shown (Figures S12 and S13).

Potential Marker Transcripts
SPLS with the optimal choices g = 0.82 and K = 2 identified 19

probesets with non-zero coefficients. Probesets, gene symbols and

names, biological function as well as chromosome locations and

regression weights are listed in Table 1.

Figure 3. EFS analysis for the Arkansas data. A) Kaplan Meier survival curves based on NCI60. B) Kaplan Meier survival curves based on BCell.
The samples are categorized into a 25% most sensitive risk group, an intermediate risk group of 50% and a 25% high risk group, based on the
melphalan resistance index. The P-value is the logrank test for no difference in survival curves. C) Log relative hazard as function of the NCI60
resistance index. D) Log relative hazard as a function of the BCell resistance index. The P-value is the maximum likelihood test for no RCS-association
between log relative hazard and resistance index and the dashed lines represent 95% confidence intervals.
doi:10.1371/journal.pone.0019322.g003

Melphalane Resistance Index
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Melphalan Resistance Index in DLBCL
For the BCell panel, no significant association between the

SPLS based resistance index and OS was found for the Hummel

data set (Figure S14 and S15).

Discussion

Motivated by the clinical importance of melphalan therapy, we

have combined in vitro drug screens and microarray data of B-cell

cancer cell lines and identified a melphalan resistance index

comprised of 19 genes which may be related to tumor biology. In

order to validate the resistance index it was tested in a publicly

available retrospective data set consisting of GEP data from the

myeloma tumor of MM patients receiving treatment including

high dose melphalan and a DLBCL trial, where patients never

received melphalan treatment.

Several reports have used publicly available GEPs and in vitro

drug response information from the NCI to develop drug-specific

pharmacogenomics response predictors. However, the idea of cell

line derived predictors is controversial and has been criticized.

Despite methodologically and conceptually difficult factors

involved in this strategy, it has not discouraged us to explore

similar avenues for molecular predictor discovery in MM and

multivariate bioinformatics tools. During the implementation of

the present strategy, we have identified several of such factors

related to the drug screen assay, the statistical approach, the

function of the identified genes, and most importantly, the clinical

validation as discussed below.

Firstly, the use of other toxicity measures than GI50 might as well

be relevant and reflect other biological mechanisms. Moreover, the

drug screen assay depends on the inhibition of cell proliferation

which is a central player in the efficacy of the selected drug.

However, other biological functions like apoptosis, cell differenti-

ation and DNA repair may also be involved in the drug effects.

Secondly, in high dimensional classification and regression

techniques it is unavoidable that some of the genes contribute with

noise to the clinical predictions. The noise was expected to be

minimized using a sparse version of PLS where the number of hidden

components and transcripts were selected by leave-one-out cross-

validation. A reasonable sensitivity and specificity were attained by

stability evaluation. However, also a high false discovery rate was

achieved, but one should notice that the simulation example was

designed for marginal association and not for optimal performance

with respect to SPLS. An important by-product of the multivariate

statistical analysis was the emphasizing of influential observations.

As described below, further elimination of false positive genes

may be pursued by gene enrichments and functional studies. It is

important to note that during the development of the resistance

index signature, we made several selections with regards to the

employed statistical methods and other decisions may have

resulted in similar or better results for the cell lines in general

and NCI60 in particular.

Thirdly, melphalan is an alkylating agent that introduces inter-

strand cross-links in DNA, and it could therefore be expected that

some of the genes involved in the melphalan resistance index

would be linked to DNA damage response by the Fanconi

anaemia (FA)/BRCA pathway as described by e.g. Yarde et al. [3]

and Chen et al. [30], or by other DNA damage repair pathways.

The resistance index, however, was based upon gene expression

levels prior to drug treatment, and a drug-induced activation of the

DNA repair response would therefore not be detected. In general,

the genes in Table 1 encode a functionally diverse group of genes

coding for proteins which are involved in numerous key pathways.

This indicates that several factors are involved in determining the

level of preparedness of a malignant cell to resist melphalan.

Interestingly, however, three of the genes in Table 1 (FBXW7,

USP6, and UBE2J1) are involved in ubiquitin regulated pathways

[31–33] and DNA damage responses have been shown to be

Table 1. The generated probesets predicting melphalan resistance.

U133 ID Gene Symbol Name Location Weight

205990_s_at WNT5A Wingless-type MMTV integration site family, member 5A 3p21-p14 20.065

203708_at PDE4B Phosphodiesterase 4B, cAMP-specific 1p31 20.053

201990_a_at CREBL2 cAMP responsive element binding protein-like 2 12p13 20.046

218751_s_at FBXW7 F-box and WD repeat domain containing 7 4q31.3 20.044

201889_at FAM3C family with sequence similarity 3, member C 7q31 20.039

206405_x_at USP6 USP6 N-terminal like 17p13 20.038

219049_at CSGALNACT1 Chondroitin sulfate N- acetylgalactosaminyltransferase 1 8p21.3 20.037

205862_at CREB1 cAMP responsive element binding protein 1 2p25.1 20.034

219748_at TREML2 Triggering receptor expressed on myeloid cells-like 2 6p21.1 20.033

204786_s_at IFNAR2 Interferon (alpha, beta and omega) receptor 2 21q22.1,21q22.11 20.033

204204_at SLC31A2 Solute carrier family 31 (copper transporters), member 2 9q31-q32 20.025

217825_s_at UBE2J1 Ubiquitin-conjugating enzyme E2, J1 (UBC6 homolog, yeast) 6q15 20.020

213555_at RWDD2A RWD domain-containing protein 2A-like 6q14.2 20.019

212122_at RHOQ Ras homolog gene family, member Q 2p21 20.016

203895_at PLCB4 Phospholipase C, beta 4 20p12 20.015

202043_s_at SMS Spermine synthase Xp22.1 0.011

217104_at ST20 Suppressor of tumorigenicity 20 15q25.1 0.012

212055_at C18orf10 Chromosome 18 open reading frame 10 18q12.2 0.025

221210_s_at NPL N-acetylneuraminate pyruvate lyase 1q25 0.032

doi:10.1371/journal.pone.0019322.t001
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highly dependent on ubiquitin signalling (reviewed by Messick and

Greenberg [34]). Kimura et al. [35] have shown that DNA

damage can induce FBXW7 expression via a p53-dependent

pathway, wherefore it would be interesting to investigate if

FBXW7 expression is linked to melphalan sensitivity through a

DNA damage response pathway. In addition, the function of Wnt-

5a is highly dependent upon ubiquitin proteasome pathways [36]

and the gene is significant in cancer development and is active

during embryogenesis, hematopoietic stem cell growth, cell

differentiation and tissue development and has been documented

to be of biological relevance in MM [37].

Other of the genes in Table 1 represent interesting candidates

for further investigation, including CSGALNACT1 which at high

expression levels previously has been shown to be associated with

improved prognosis for MM patients treated with melphalan [38].

CSGALNACT1 encodes for a protein involved in the synthesis of

chondroitin sulphate [39] – a component of Syndecan-1 (CD138)

[40] which is known to have a major impact in MM pathogenesis.

Finally, this study introduces a melphalan resistance index

predicting EFS and OS of MM patients treated with the double

high dose melphalan in the transplantation strategies described as

TT2 and TT3. A number of endpoints define the response to

melphalan treatment, e.g. immediate response, EFS or OS [41] –

each of these reflecting an effect on the biology of the malignant

clone. In the study of melphalan it is important to recognize that the

remission status is a difficult end point for evaluation as it is also

influenced by an effect of the induction therapy and maintenance.

In summary, a gene expression signature capable of predicting

response to melphalan therapy in a focused cell line panel has been

established by use of SPLS. The utility of the predictor was

retrospectively validated on data sets from patients diagnosed with

MM and treated with high dose melphalan as well as on a control

study of patients with DLBCL never treated with melphalan. The

lack of association between predicted melphalan resistance and

OS in the DLBCL study suggests that the resistance index is

melphalan specific and our future studies will address this for MM

patients in specific European clinical trial data sets.
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