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Early intervention in psychotic spectrumdisorders is critical formaximizing key clinical outcomes.While there is
some evidence for the utility of intervention during the prodromal phase of the illness, efficacy of interventions is
difficult to assess without appropriate risk stratification. This will require biomarkers that robustly help to iden-
tify risk level and are also relatively easy to obtain. Recent work highlights the utility of computer-based behav-
ioral tasks for understanding the pathophysiology of psychotic symptoms. Computational modeling of
performance on such tasks may be particularly useful because they explicitly and formally link performance
and symptom expression. Several recent studies have successfully applied principles of Bayesian inference to un-
derstanding the computational underpinnings of hallucinations. Within this framework, hallucinations are seen
as arising from anover-weighting of prior beliefs relative to sensory evidence. This view is supported by recently-
published data from two tasks: the Conditioned Hallucinations (CH) task, which determines the degree to which
participants use expectations in detecting a target tone; and a Sine-Vocoded Speech (SVS) task, in which partic-
ipants can use prior exposure to speech samples to inform their understanding of degraded speech stimuli. We
administered both of these tasks to two samples of participants at clinical high risk for psychosis (CHR; N =
19) and healthy controls (HC; N = 17). CHR participants reported both more conditioned hallucinations and
more pre-training SVS detection. In addition, relationships were found between participants' performance on
both tasks. On computational modeling of behavior on the CH task, CHR participants demonstrate significantly
poorer recognition of task volatility as well as a trend toward higher weighting of priors. A relationship was
found between this latter effect and performance on both tasks. Taken together, these results support the asser-
tion that these two tasksmay be driven by similar latent factors in perceptual inference, and highlight the poten-
tial utility of computationally-based tasks in identifying risk.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Early detection and treatment of psychosis is critical for maintaining
functionality and maximizing clinical outcomes (Kane et al., 2016;
Srihari et al., 2012, 2014). This effort has been made more reliable
.

. This is an open access article under
with the systematization of clinical evaluations for psychosis as it de-
velops from the prodromal phase of the illness (Miller et al., 2002;
Woods et al., 2009, 2014). Evaluation of progression continues to rely
on symptom reports and clinical assessment. However, only a minority
of those at clinical high risk of psychosis (CHR)will convert to frank psy-
chosis (Hartmann et al., 2016) and the use of clinical measures alone,
while promising, is nonetheless limited inpredicting course and trigger-
ing treatment initiation (Cannon et al., 2016; Carrion et al., 2016). De-
velopment of objective measures for psychotic symptoms and disease
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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states will be critical in identifying psychosis emergence, starting treat-
ment early in the disease trajectory, and maximizing functionality in
those affected.

Behavioral measures purporting to assess the cognitive and neu-
ral drivers of symptom expression may be sensitive and convenient
measures of risk. Behavior on a number of tasks has thus far been
linked to severity of specific psychotic symptoms, including halluci-
nations (Alderson-Day et al., 2017; Cassidy et al., 2018; Powers et al.,
2017; Teufel et al., 2015), delusions (Corlett et al., 2007; Corlett and
Fletcher, 2012), and positive, (Roiser et al., 2009, 2013; Schmidt
et al., 2017), disorganization (Silverstein et al., 2013; Silverstein
and Keane, 2011; Uhlhaas et al., 2006), and negative symptoms
(Gold et al., 2012; Heerey et al., 2007; Treadway et al., 2009) more
broadly.

Measures derived from generative computational models linking
behavior and symptom expression may hold particular promise as ob-
jective markers for psychiatric disease, in part because such models
are capable of describing normal and pathological information pro-
cessing within a common framework, capturing biology, behavior,
and their pathology simultaneously (Browning et al., n.d.; Corlett
and Fletcher, n.d.; Friston et al., 2014; Stephan and Mathys, 2014;
Wang and Krystal, 2014). Here we utilize a predictive processing
framework (Friston et al., 2006; K. Friston, 2005; Friston and
Kiebel, 2009), which conceives of perception as the process of un-
conscious inference, in which we actively infer what is around us
by combining our sensory input with our prior beliefs about the
world (Friston, 2009). Within this framework, the brain functions
as a predictive machine, predicting future states of the world using
prior beliefs, which are then integrated with incoming sensory evi-
dence to give rise to conscious perception.

Recent work has highlighted the utility of this predictive processing
framework for understanding how specific alterations in learning and
inference may produce the positive symptoms of psychosis (Adams
et al., 2013b; Corlett et al., 2007, 2010, 2019; K. J. Friston, 2005;
Powers et al., 2016; Sterzer et al., 2018). This has been especially true
of hallucinations,which have been proposed to arise from inappropriate
over-weighting of prior beliefs in perception (Corlett et al., 2019;
Powers et al., 2016). Over several years, using multiple different
methods, hallucinations have been related specifically to behavior sig-
naling overly-precise priors (Alderson-Day et al., 2017; Cassidy et al.,
2018; Powers et al., 2017; Zarkali et al., 2019). This appears to be true
for hallucinations within the context of psychotic illness (Cassidy
et al., 2018; Powers et al., 2017; Teufel et al., 2015) as well as in the gen-
eral population (Alderson-Day et al., 2017; Powers et al., 2017), and for
hallucinations arising from other neuropsychiatric disorders (Zarkali
et al., 2019).

The utility of these behavioral measures as biomarkers may de-
pend upon several as-yet-unknown factors. One such factor is theo-
retical: within the massive processing hierarchy of the brain, to what
degree are these tasks andmeasures actually measuring the same la-
tent construct? If the proposed abnormalities driving hallucinations
(i.e., overly precise priors) are not unitary, the clinical utility of esti-
mating them may be limited. Second, it is unclear whether hyper-
precise priors are present not only in fully-formed hallucinations,
but also in the earliest phases of illness. If not, the use of such mea-
sures to detect abnormalities leading to the expression of frank hal-
lucinations may also be limited.

We present data derived from two tasks purporting to measure
hyper-precise priors in hallucinations, collected in a sample of individ-
uals across two CHR clinic sites, and among age-matched healthy con-
trols. We demonstrate that both methods are sufficiently sensitive to
detect hyper-precise priors in CHR and that their scores are correlated,
supporting the hypothesis that these twomethods reflect the same un-
derlying construct. Lastly, we propose other computational parameters
that may signal the need for care and increased risk for conversion in
this high-risk group.
2. Methods

2.1. Participants

The sample comprised 19 CHR participants and 17 healthy controls
(HC) recruited across two sites: the Georgia Psychiatric Risk Evaluation
Program (G-PREP; directed by author G.P. Strauss) (CHRN=9, HCN=
10) and the Adolescent Development and Preventive Treatment pro-
gram(ADAPT; directed by author VijayMittal) (CHRN=10,HCN=7).

Similar recruitment procedures were followed across both sites,
which involved referrals of youth displaying early signs of psychosis
from local clinicians (e.g., psychiatrists, psychologists, social workers,
school psychiatrists) to receive diagnostic assessment and monitoring
evaluations. CHR youth were also recruited via online and print adver-
tisements, and in-person presentations to community mental health
centers.

2.2. Clinical procedures

The Structured Interview for Psychosis-Risk Syndromes (SIPS)
(Miller et al., 1999) was administered to detect the presence of a
psychosis-risk syndrome in three possible ways: 1) the presence of at-
tenuated positive symptoms or fully psychotic positive symptoms oc-
curring over a very brief time period; and/or 2) decline in global
functioning accompanying the presence of schizotypal personality dis-
order and age b 19; and/or 3) a family history of schizophrenia with de-
cline in functioning. The SIPS contains an instrument, the Scale of
Prodromal Symptoms (SOPS), that rates the severity of relevant symp-
toms along a 7-point scale ranging from absent to severe and psychotic.
Ratings in the range of 3 to 5 are required for designation as at CHR. This
measure gauges several distinct categories of prodromal symptom do-
mains including positive (unusual thoughts, suspiciousness, grandios-
ity, perceptual abnormalities, disorganized communication) and
negative dimensions (social anhedonia, avolition, expression of emo-
tion, experience of emotions and self, ideational richness, occupational
functioning). The Structured Clinical Interview for the Diagnostic and
StatisticalManual (SCID-I) (First et al., 1995)was administered to deter-
mine the presence of psychosis and substance dependence exclusionary
criteria. Clinical interviews were conducted in person by advanced doc-
toral students, trained over a two-month period, and certified to per-
form the SIPS. All interviewers had inter-rater reliability scores that
exceeded the minimum study criterion of Kappa N80.

Social functioning was assessed with the Global Functioning Scale:
Social (GFS-S) (Carrión et al., 2019). This inventory provides ratings of
functioning on a 10-point Likert scalewhere a score of 10 reflects “Supe-
rior Social/Interpersonal Functioning” and 1 indicates “Extreme Social
Isolation”. The scale was designed for adolescents and has been found
to be valid and reliable in assessing at-risk populations.

Healthy control (HC) participants were recruited from the local
community using posted flyers and electronic advertisements. HC par-
ticipants had no current major (former Axis I) DSM-5 diagnoses as
established by the SCID (First, 2016). HC also had no family history of
psychosis and were not taking psychotropic medications. All partici-
pants were free from lifetime neurological disease.

All participants providedwritten informed consent for a protocol ap-
proved by the University of Georgia and Northwestern University Insti-
tutional Review Boards and received monetary compensation for their
participation.

2.3. Task procedures

Tasks were administered on Dell G3 15 gaming Laptops running
Windows 10, MATLAB 2018b (www.mathworks.com), and the third it-
eration of the Psychophysics toolbox (http://psychtoolbox.org/). Re-
sponses were made by key press.

http://www.mathworks.com
http://psychtoolbox.org/


Fig. 1. Behavioral tasks. The Conditioned Hallucinations (CH) task (a, b) and the SineWave Speech task (c, d) were administered. a. In the CH task, participants were asked to detect the
presence of a 1-kHz tone embedded inwhite noise. The tone, whenpresent, was pairedwith awhite checkerboardflash on a black background, causing participants to build an association
between the difficult-to-hear tone and salient checkerboard flash. b. We estimated individual psychometric curves for tone detection (left) and then systematically varied stimulus
intensity over 12 blocks of 30 conditioning trials. Threshold tones were more likely early, and sub-threshold and absent tones were more likely later (right). c. Stimuli for the SVS task
were created, of which some can become intelligible with training (top), and some are fully unintelligible (bottom). d. First participants are naive to the stimuli, and are asked to
report their detection of speech for each trial. After training with the pre-degradation speech stimuli, participants repeat the task and are again asked to report their detection of speech.
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Fig. 1 provides a schematic of the Conditioned Hallucinations
(Fig. 1a, b) and the Sine Wave Speech (Fig. 1c) tasks.
2.4. Conditioned Hallucinations task

The Conditioned Hallucinations task (Powers et al., 2017) is an audi-
tory detection task. Participants work to detect a tone (1 kHz) embed-
ded in 70-dB SPL white noise and presented concurrently with a
flashed gray checkerboard on a black background (Fig. 1a). Participants
completed a short practice session reporting auditory detection, which
was repeated until their responses were at 85% accuracy. Individual
threshold (75% detection rate) is determined prior to the start of the ex-
periment proper using the QUEST maximum likelihood-based proce-
dure for threshold determination (Watson and Pelli, 1983), which is
part of the Psychtoolbox 3.0 package inMATLAB. Thresholdingwas per-
formed using two 40-trial interleaved staircases with step-sizes com-
puted by QUEST during the participant responses. A psychometric
function was fitted to the QUEST-computed 75% likelihood of detection
of target stimulus embedded in noise (reported as dBSNR) (Treutwein
and Strasburger, 1999), computing 50% and 25% detection-likelihood
tone intensities (Fig. 1b, left). Total trial length during thresholding
was 2500 ms.

In the experiment blocks, participants learned the association be-
tween the target auditory stimulus (tone) and a simultaneously pre-
sented visual stimulus (checkerboard). After this association-training,
the participants were tested on this association over 12 blocks, with
30 trials each. The likelihood of tone presentation at threshold was de-
creased non-linearly over the 12 blocks, while increasing the presenta-
tion of subthreshold and no-tone trials (Fig. 1b, right). The trials were
pseudorandomized within each block.

In addition to responding ‘Yes’ or ‘No’ to indicate whether or not
they heard the tone, participants also reported their confidence level
for their answer choice, by holding the response-button down; holding
the button down longer indicated higher confidence in their decision of
‘Yes’ or ‘No’.

Throughout the experiment, a white visual fixation cross was pres-
ent on a black background. The visual stimulus was a 4 × 7 gray-on-
black checkerboard pattern, with gray squares at 25% brightness to
maximize visual stimulation and minimize after-effect. The auditory
stimulus was presented via Sony Professional MDR-7056 headphones,
and consisted of a 1-kHz pure tone with a 100-ms tapered envelope to
prevent transient effects.

For all parts of the experiment, there was a 500- to 1000-ms fixation
from trial start, whichwas followedby the simultaneous presentation of
the visual stimulus, and if present, the target auditory stimulus, for 1 s.
Participant responses were recorded for 1000 to 1500ms after stimulus
offset. For the main part of the experiment, there was an additional
2000-ms period to record confidence-rating response, during which
participants could hold down the response button to indicate their con-
fidence level.

For both detection and confidence responses, if a response couldn't
be reported, the trial was ignored and the stimulus intensity was re-
peated in the next trial. Fig. 1A shows specific stimulus characteristics
described here, as well as the structure of a single trial. See Fig. 1A for
a depiction of stimulus characteristics and trial structure.
2.5. Sine-Vocoded Speech task

Previouswork using SineWave Speech (SWS) indicates that individ-
uals that hallucinate are more likely to identify an ambiguous auditory
stimulus as speech (Alderson-Day et al., 2017). Sine wave speech
(SWS) is typically made by replacing the first three formants (main
bands of energy) in speech with pure tones (Remez et al., 1981). It is
often unintelligible on first exposure and may not even be recognized
as speech-like (often sounding like ‘aliens’ or birdsong). Once the
listener knows that it is potentially intelligible as speech (by training
via exposure to pre-degradation speech templates, which thus serves
as a prior expectation), relatively high levels of comprehension are
achieved. Individuals who hallucinate are able to perceive speech in
SWS even before exposure to the pre-degradation speech template
and without being told speech is present (Alderson-Day et al., 2017),
consistent with the presence of a strong prior for speech in people
who hear voices.

Here, we used a similar signal manipulation, Sine-Vocoded Speech
(SVS) (Souza and Rosen, 2009), that differs only in the respect that
rather than tracking only the first three formants, sine waves are syn-
thesised at the centre frequency of a bank offilters spanning a broad fre-
quency range. With training, SVS sentences can be rendered intelligible



Table 1
Group demographic characteristics.

CHR HC p

n 19 17
Age (mean (SD)) 20.95 (1.93) 20.88 (1.50) 0.911
Gender (portion male) (%) 5 (26.3) 1 (5.9) 0.232
Race (%) 0.065

African American 4 (21.1) 2 (11.8)
Asian American 1 (5.3) 6 (35.3)
Caucasian 12 (63.2) 5 (29.4)
Latinx 2 (10.5) 1 (5.9)
Multiracial 0 (0.0) 2 (11.8)
Native American 0 (0.0) 1 (5.9)

GAF Score (mean (SD))a 60.33 (11.08) 88.60 (5.46) b0.001
WTAR/WRAT Score (mean (SD))a 106.78 (12.39) 112.88 (10.94) 0.14
LSHS Total Score (mean (SD))b 20.78 (8.29) 4.40 (6.02) 0.002
SIPS Positive Symptoms (mean (SD))b 12.11 (3.41) 0.29 (0.76) b0.001
SIPS Negative Symptoms (mean (SD))b 5.33 (5.72) 1.14 (1.46) 0.071

a CHR N = 18; HC N = 5.
b CHR N= 18; HC N = 7.
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and recognized as speech. SVS can also be rendered fully unintelligible
by flipping the frequency mapping of the original sentence – providing
an ideal control stimulus, with equal complexity (for full details on
stimulus production, see Supplementary Materials) (Fig. 1c).

The “naïve” listening procedure can be challenging to reproduce due
to the need to obscure the purpose of the task in advance. Here we
therefore deployed a simpler paradigm assessing the ability of CHR par-
ticipants to discriminate potentially intelligible SVS from unintelligible
control SVS (45 trials/condition) before and after exposure to pre-
degradation speech templates (i.e. updating their prior expectation).
Participants were asked to report whether or not they detected speech
on each trial (Fig. 1d).

In a pre-training phase, participants were presentedwith intelligible
and unintelligible SVS and the number of correctly detected speech tri-
als was recorded (hits) alongwith the number of unintelligible trials in-
correctly classified as speech (false alarms). Following exposure to 90
trials (45 of each stimulus type), participants heard the 45 clear speech
templates of the potentially intelligible SVS speech trials, before being
tested on their SVS classification again.

2.6. Data analysis

2.6.1. Conditioned Hallucinations task
We recorded: 1) participant responses for tone detection, 2) re-

sponse times, 3) confidence rating levels. Trials with no recorded re-
sponses were discarded for the purposes of subsequent analyses.
Detection probability was computed as the ratio of trials during which
participants reported ‘Yes’ for hearing the tone, to those trials during
which they reported ‘No’. No-tone trials where the participants re-
corded a ‘Yes’ response were considered conditioned hallucinations.

The Hierarchical Gaussian Filter (HGF) was fit to the behavioral data
from the CH task. Thismodel has been previously optimized specifically
for use in the CH task, drawing upon evidence from simulations and
Bayesianmodel comparison (Powers et al., 2017). Themodel is included
in a freely-available toolbox (http://www.translationalneuromodeling.
org/hgftoolbox-v4-10/). Details on the model are included in the
Supplement.

2.6.2. Sine Vocoded Speech task
We recorded the participants' responses for speech detection during

both pre-training and post-training blocks. Using signal detection the-
ory (Stanislaw and Todorov, 1999), we calculated participants' discrim-
ination performance (d′), as well as their bias in classifying speech and
non-speech (beta), and how those variables changed following the ex-
perience of template stimuli. One indication of enhanced speech priors
is the detection of speech in unintelligible speech stimuli: a pre-
training bias for speech. Another (following Teufel et al. (2015)) is any
enhanced benefit of top-down information following template expo-
sure, in the CHR relative to controls.

For both tasks, data from this small samplewere not found to be nor-
mally distributed and nonparametric tests were used. Between-group
differences for behavioral, aswell asmodeling variableswere computed
using Wilcoxon rank sum test with continuity correction. Correlations
between measures were computed using Pearson's product-moment
correlation and re-computed using Spearman's rank correlation to de-
termine robustness to outliers. All analyses were done using packages
stats, tidyverse, tableone, and plots were created using the ggplot2 pack-
age, performed with the software RStudio 1.2.5001 (http://www.
rstudio.com/).

3. Results

3.1. Sample characteristics

Table 1 summarizes the demographic features of the full healthy
control (N = 17) and CHR (N = 19) samples. The groups were
well-matched demographically, with the exception of a significant dif-
ference in racial makeup (χ2 = 13.814; p = 0.032). Clinical measures
on the CHR and HC groups differed predictably. The CHR group had sig-
nificantly higher P4 (SIPS Hallucinatory Behavior; T = 9.97, p b 0.001)
and lower GAF scores (T = −7.90; p b 0.001) compared to matched
healthy controls.

Subsets consisting of individuals who performed the CH task
(Table S1), the SVS task (Table S2), and both (Table S3) exhibited similar
patterns of similarities and differences. CHR youth did notmeet lifetime
criteria for a DSM-5 psychotic disorder as determined via SCID inter-
view (First et al., 1995). No CHR participants had been prescribed an
antipsychotic.
3.2. Performance on both tasks differs between groups

As seen in Fig. 2a, CHR participants weremore likely to report condi-
tioned hallucinations (min= 0.04, max= 0.17; IQR= 0.11; median=
0.16; W = 119.5; p = 0.0066) than matched healthy controls (min =
0.01, max = 0.15; IQR = 0.056; median = 0.052).

Groups did not differ in initial threshold estimates (W = 49; p =
0.19; Fig. S1a). This was true only of the conditioned hallucination
(no-tone) condition (Fig. S1b): group means did not differ at the 75%
Detection (CHR median: 0.92; HC median: 0.94; W = 60.5; p = 0.52)
or 50% Detection conditions (CHR median: 0.74; HC median: 0.81;
W = 67; p = 0.79). The group difference in reporting detection at the
25% Detection condition trended toward significance (CHR median:
0.41; HC median: 0.28; W = 99.5; p = 0.12).

CHR participants were alsomore likely to exhibit pre-training detec-
tion of sine-wave speech (min = 0, max = 0.8; IQR = 0.28; median=
0.044; W = 175; p = 0.041; Fig. 2b) than healthy controls (min = 0,
max = 0.13; IQR = 0; median = 0).

The behavioral effects for the SVS task reported above could be
driven by differences between groups in latent variables, estimated
using the Signal Detection Theory approach. During the pre-training
portion of the task, the CHR group showed a higher mean bias for clas-
sifying the stimuli as speech (W= 73.5, p = 0.039). Measures of sensi-
tivity did not change significantly after training (main effect of time:
χ2= 2.81; p= 0.070). Therewas also no significant difference between
the groups post-training (W= 133; p = 0.84). There was a significant
difference between CHR and healthy controls in change in pro-speech
bias after training, with healthy controls exhibiting significantly more
pro-speech bias after training (W= 38, p = 0.018) (Fig. S2).

We conducted an exploratory analysis to determine whether task
performance correlated with symptom expression or performance on
the other task. Both the pre-training speech bias (r = −0.513621,
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Fig. 2. Group-level behavioral effects a. Mean between-group differences in CH task performance. CHR N= 12; HC N= 12. b. Mean between-group differences in SVS task performance.
CHR N = 15; HC N= 19. c. Correlation between SVS task performance and CH task performance. CHR N = 11; HC N = 12. p b 0.001. Asterisk denotes p b 0.05.
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p= 0.017) and the change in speech bias after the training (r=−0.66,
p = 0.0019) were significantly correlated with P4 (SIPS Hallucinatory
Behavior) score. However, only the pre-post change in speech bias
remained significant using an outlier-resistant correlation method
(Spearman's rho = −0.75, p b 0.001).

Lastly, performance on both tasks correlated significantly (Fig. 2c;
Pearson's R= 0.67; T21= 4.1483; p= 4.56 × 10−4) but did not survive
application of an outlier-resistant method (Spearman's rho: 0.19, p =
0.3758).

Interestingly, there was no correlation between P4 score and either
the probability of reporting conditioned hallucinations (R = 0.178;
p = 0.54) or pre-training detection of sine wave speech (R = 0.20;
p = 0.39) within each group, or across the whole sample.

3.3. CHR participants differ in recognition of volatility in stimulus
contingencies

To provide further insight into themechanisms driving themain be-
havioral effects above, we estimated parameters of a three-level Hierar-
chical Gaussian Filter (HGF; Fig. 3a) (Mathys et al., 2011; Stephan and
Mathys, 2014) using behavior from the Conditioned Hallucinations
task (Powers et al., 2017).

No difference in decision noise was seen between groups (Fig. 3f).
CHR participants exhibited a trend toward higher relative precision of
priors compared to healthy controls (Fig. 3e;W=103; p=0.078). Sim-
ilar numerical differenceswere exhibited in terms of group belief trajec-
tories: CHR participants tended to exhibit more tenacious beliefs that
the tone was present when the visual stimulus was on any given trial
(Fig. 3d) (χ2 = 12; p = 0.00053) and across the experiment (Fig. 3c)
(χ2 = 12; p = 0.00053).

By contrast, groups did differ significantly in their ability to recog-
nize the changing probabilistic relationship between the tone and the
visual stimulus (Fig. 3b). While HC participants were likely to recognize
that the visual stimulus became less predictive of the tone over time,
CHR participants did not (χ2 = 8.33; p = 0.0039).

3.4. Prior precision correlates with performance on both tasks

In order to determine whether prior precision drives performance,
we explored whether a correlation existed between HGF-derived prior
precision and performance on both tasks. As expected, estimated prior
precision predicted performance on the Conditioned Hallucinations
task (Fig. 4a; S = 507.74; rho = 0.75; p = 3.557 × 10−5). It also
significantly predicted pre-training detection on the SVS task (Fig. 4b;
R = 0.753; T21 = 5.245; p = 3.364 × 10−5), although this did not sur-
vive on non-parametric Spearman's correlation.

4. Discussion

We have demonstrated that participants at CHR for psychosis per-
form differently on two tasks grounded in predictive processing theory
compared to healthy controls: CHR participants exhibited behavior con-
sistentwith hyper-precise priors on both tasks. Further, we have shown
that performance on the two tasks are correlated, supporting some
commonality of mechanism. Modeling of behavior on the Conditioned
Hallucinations task using the HGF demonstrated group differences in
volatility-related parameter estimates as well as a correlation between
prior weighting and performance on both tasks.

The fact that CHR participants exhibited an increased tendency to-
ward conditioned hallucinations as well as pre-training detection of
sine wave speech indicates a tendency to exhibit hyper-precise priors
even in the earliest phases of the illness. This is consistent with perfor-
mance of at-risk individuals on recognition of previously-viewed visual
scenes (Teufel et al., 2015). Interestingly, modeling of performance in
the CHR group reflected that of individuals with psychosis and halluci-
nations in past work (Powers et al., 2017). Thus, model parameters
demonstrated low change in X1, high relative prior precision, and low
tendency to appropriately recognize volatility in the A-V contingency,
although not all of these differences reached statistical significance in
this small sample. This is consistentwith the idea that the CHRcondition
may be accurately described as both an at-risk state and a syndrome
conferring a need for care (Woods et al., 2001).

In the Conditioned Hallucinations task, participants are progres-
sively exposed to fewer and fewer trials in which the target tone is pre-
dicted by the presence of the light. Thus, the contingency between the
light and tone becomes progressively more volatile over the course of
the experiment.Modeling of behavior using theHGF takes this volatility
into account, explicitly estimating volatility beliefs related to the
inter-stimulus contingency. It is particularly notable that inter-group
differences in volatility estimates were even more significant than
seen in individuals with fully-formed psychosis (Powers et al., 2017).
The behavioral differences between groups in the SVS task shows that
while the CHR group has a higher speech-bias before training, the HC
group shows the ability tomodulate speech-bias after acquiring new in-
formation in thepost-training speechdetection task, suggesting that the
HC participants might have a more robust ability to modulate bias



Fig. 3. HGFmodel analysis. a. Schematic of the computation for the HGF model, mapping experimental stimuli to recorded responses. The first level (X1) represents whether the subject
believes a tone was present or not on trial t. The second level (X2) is their belief that visual cues are associated with tones. The third level (X3) is their belief about the volatility of the
second level. The HGF allows for individual variability in weighting between sensory evidence and perceptual beliefs (parameter ν). b. At X3, there was a significant block-by-group
interaction. c–e. CHR participants also exhibited significantly higher beliefs in trial-wise (c) and experiment-long (d) contingencies between the presence of the tone and the visual
stimulus. f. There were no inter-group effects of decision noise. ***P b 0.001; Error bars represent ±1 SEM. Line shadings represent 95% confidence intervals. Red = CHR; White with
black outline = HC.
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depending on environmental conditions compared to the CHR group.
The results from both tasks are broadly consistent with recent accounts
of volatility beliefs impacting low-level learning of action-outcome con-
tingencies specifically in psychosis-spectrum illness (Deserno et al.,
2020).

If computationally-oriented tasks are meant to assay the same un-
derlying state in the same participants, and if this state is stable over
time, performance on these tasks should be related. The resultswe pres-
ent here support this relationship. For the first time, two tasks that have
been thought to estimate the propensity of participants to rely upon
their priors have been run on the same participants. Results show that
this property appears to be conserved across tasks. Especially promising
is the fact that estimated prior weighting on one task (CH) predicts per-
formance on a separate task meant to assay the same underlying com-
putational parameter, although these results should be interpreted
with caution because of small sample size. Given that these are only
two among several tasks to recently show prior-weighting effects in
psychosis and psychosis-related states (Alderson-Day et al., 2017;
Cassidy et al., 2018; Powers et al., 2017; Zarkali et al., 2019), it prompts
the question as to whether all such measures capture the same latent



Fig. 4. Relationships between prior precision and performance on both tasks. As expected, performance on the CH task (a) was predicted by prior precision. Performance on the separate
Sine Wave Speech task (b) was driven by estimated prior precision on the CH task.
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state. Recentwork has emphasized the need to take into account the hi-
erarchical structure inherent in the systems involved (Corlett et al.,
2019). Additionally, other models take explicit account of systems in-
volved in action as they relate to perceptual inference (Adams et al.,
2013a). Two such recent studies highlight the possibility that inference
about action state (i.e., talking vs listening)may be a critical component
of hallucinogenesis (Benrimoh et al., 2018, 2019). It remains unclear
whether andhow tasks that purport tomeasure these computational al-
terations may themselves relate to the findings here. Future work
should engage participants in a range of tasks meant to assay related
model parameters, as well as subject data to several competing models,
using principled means of comparison to determine the best explana-
tory fit for the data observed (Rosa et al., 2010).

The lack of correlation between symptom measures and perfor-
mance on either tasks stands in stark contrast to the studies this work
was based upon (Alderson-Day et al., 2017; Powers et al., 2017),
which highlight a specific relationship to hallucinatory propensity in
clinical and non-clinical voice-hearers. This lack of observed relation-
ship may be due to several factors. First, there are statistical consider-
ations: sample sizes from this study are approximately half those
employed in the original studies, and only a small subset of individuals
had self-reported hallucination severity measures; the range of symp-
tom scores observed here is markedly low (P4 scores were clustered
around 3 with low variation in the sample); and P4 values fail to take
into account several phenomenological factors like frequency, intensity,
or loudness of voice-hearing, instead focusing on more clinically-
relevant factors such as distress or impairment associated with these
experiences. Furthermore, the P4 measure does not take into account
the sensorymodality of the phenomenological experience, andwhether
the experience is visual or auditory could be important for mediating
the performance on the auditory CH and SVS tasks. However, a second
possibility may hold more promise for explaining pathological states
leading to hallucinations. In this account, a lack of correlation with
symptoms may be related to the phenomenologically semi-developed
nature of the voice-hearing experience in CHR: most individuals with
non-zero P4 scores experience relatively mild hallucinations, and most
are non-verbal (Niles et al., 2019). This relative developmental nascency
may mean that those who exhibit altered performance on these tasks
and hyper-precise priorsmay not be individualswith high hallucination
propensity at themoment, butmay bemore likely to develop frank hal-
lucinations in the future. Longitudinal assessment of the relationship
between prior precision and hallucinogenesis in CHR as well as symp-
tomatic fluctuation in fully-formed psychosis is warranted to under-
stand the clinical utility of the measures employed here. Further,
larger multisite consortiums such as Computerized Assessment for Psy-
chosis Risk (CAPR) and the proposed Psychosis Risk Outcome Network
(PRONET) will be important for providing the statistical power and
long-term clinical visit frequency density, necessary for model confir-
mation and refinement.

Taken as a whole, the findings presented here speak to the potential
clinical utility and sensitivity of well-chosen behavioral measures, and–
in particular–measures that are based solidly in explicit, formalized gen-
erative models for symptom expression. As a field, Computational Psy-
chiatry comprises advocates for data-driven, machine-learning-based
approaches to understanding heterogeneity of psychiatric presentation
aswell as others who espousemodeling as a way to uncover latent pro-
cesses driving psychopathology (Browning et al., n.d.). The results here
represent a way forward that marries the two approaches: employing
measures that can be easily gathered from large, heterogeneous sam-
ples that nonetheless are able to speak to latent computational states
that confer risk for symptom and disease progression. Future attempts
may employ larger samples, with measures tied to other symptom do-
mains, in an attempt to meaningfully parse the diversity of this mark-
edly heterogeneous population. It may also be possible to employ both
inferential and data-driven approaches within a hierarchical Bayesian
framework, as has been done in model-based neuroimaging and elec-
trophysiological approaches (Yao et al., 2018).
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