Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S,S'-Butane-1,4-diyl bis(benzenecarbothioate)

Daisuke Abe and Yuji Sasanuma*

Department of Applied Chemistry and Biotechnology, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba 263-8522, Japan
Correspondence e-mail: sasanuma@faculty.chiba-u.jp
Received 20 September 2013; accepted 30 September 2013

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.083$; data-to-parameter ratio $=18.5$.

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$, which lies on an inversion center, adopts a gauche ${ }^{+}$-trans-trans-trans-gauche ${ }^{-}\left(g^{+}\right.$tttg $\left.^{-}\right)$ conformation in the $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$ bond sequence. In the crystal, molecules are packed in a herringbone arrangement through intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For crystal structures and conformations of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(=\mathrm{O}) \mathrm{S}$ $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SC}(=\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{5}(n=2,3,5,7,9)$, see: for example, Deguire \& Brisse (1988); Leblanc \& Brisse (1992); Abe \& Sasanuma (2012).

Experimental

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=330.44$
Monoclinic, $P 2_{1} / c$
$a=13.2230(14) \AA$
$b=4.8903$ (5) A
$c=13.2638$ (15) \AA
$\beta=106.897$ (1) ${ }^{\circ}$
$V=820.67(15) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.30 \times 0.30 \times 0.05 \mathrm{~mm}$

Data collection
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.908, T_{\text {max }}=0.984$
4326 measured reflections 1845 independent reflections 1626 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 100$ parameters
$w R\left(F^{2}\right)=0.083 \quad \mathrm{H}$-atom parameters constrained
$S=1.05$
H -atom parameters
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
1845 reflections

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.
Cg 1 is the centroid of the C1-C6 phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots C g 1^{\mathrm{i}}$	0.95	3.09	$3.8810(15)$	141

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

We thank Dr Masu and Dr Yagishita of the Center for Analytical Instrumentation, Chiba University, for helpful advice on X-ray diffraction measurements. This study was partly supported by a Grant-in-Aid for Scientific Research (C) (22550190) from the Japan Society for the Promotion of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5305).

References

Abe, D. \& Sasanuma, Y. (2012). Polym. Chem. 3, 1576-1587.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Deguire, S. \& Brisse, F. (1988). Can. J. Chem. 66, 341-347.
Leblanc, C. \& Brisse, F. (1992). Can. J. Chem. 70, 900-909.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o1612 [doi:10.1107/S1600536813026822]

S, \mathbf{S}^{\prime}-Butane-1,4-diyl bis(benzenecarbothioate)

Daisuke Abe and Yuji Sasanuma

1. Comment

In expectation of superior properties such as chemical and thermal resistance, we have investigated structures and properties of polythioesters $\left(\left[-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SCOC}_{6} \mathrm{H}_{4} \mathrm{CO}-\right]_{x}\right.$, abbreviated as ${\mathrm{P} n \mathrm{TS}_{2}}$), where n denotes the number of methylene units. Instead of the polymer itself, a small model compound corresponding to the repeating unit is often employed to elucidate conformational characteristics of the polymer; therefore, we have adopted oligomethylenedithiobenzoate $\left(n \mathrm{DBS}_{2}\right)$. This paper describes synthesis and X-ray diffraction analysis of $4 \mathrm{DBS}_{2}$, a model compound of $\mathrm{P}_{4} \mathrm{TS}_{2}$.
The crystal structure of $2 \mathrm{DBS}_{2}$ was determined previously (Deguire \& Brisse, 1988). In the $2 \mathrm{DBS}_{2}$ crystal, the $\mathrm{S}-\mathrm{CH}_{2}$ $-\mathrm{CH}_{2}-\mathrm{S}$ bonds lie in the gauche ${ }^{+}$trans - gauche $\left(g^{+} t g\right)$ conformation. Our molecular orbital calculations and NMR experiments (Abe \& Sasanuma, 2012) showed that this conformation is significantly stable even in isolated and liquid states owing to the anti-parallel arrangement of $\mathrm{S}-\mathrm{C}=\mathrm{O}$ dipole moments (the intramolecular dipole-dipole interaction).
Figure 1 shows the molecular structure of $4 \mathrm{DBS}_{2}$. The $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$ part adopts the g^{+}ttg ${ }^{-}$ conformation, and the intramolecular dipole-dipole interaction similar to that of $2 \mathrm{DBS}_{2}$ may be formed; however, $2 \mathrm{DBS}_{2}$ and $4 \mathrm{DBS}_{2}$ have markedly different melting points and densities: $94^{\circ} \mathrm{C}$ and $1.41 \mathrm{~g} \mathrm{~cm}^{-3}\left(2 \mathrm{DBS}_{2}\right) ; 49^{\circ} \mathrm{C}$ and $1.34 \mathrm{~g} \mathrm{~cm}^{-3}$ $\left(4 \mathrm{DBS}_{2}\right)$. These differences may be partly due to strengths of intermolecular interactions. In the $2 \mathrm{DBS}_{2}$ crystal, a number of intermolecular interactions such as $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{C}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$, and $\mathrm{C}-\mathrm{H} \cdots \pi$ can be found. In contrast, the 4DBS ${ }_{2}$ crystal has only a few $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Fig. 2).
Crystal structures of $n \mathrm{DBS}_{2}(n=3,5,7,9)$ were also reported (Leblanc \& Brisse, 1992). The $n \mathrm{DBS}_{2}$ molecules adopt $(t)_{n} g^{+}$conformations in the $\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{S}$ part. Interestingly, the $n \mathrm{DBS}_{2}$ molecules show clear odd-even effects in the alkyl conformation: $g^{+}(t)_{n-1} g^{-}(n=$ even $) ;(t)_{n} g^{+}(n=$ odd $)$.

2. Experimental

Benzoyl chloride ($15.5 \mathrm{~g}, 0.11 \mathrm{~mol}$) was added dropwise into 1,4-butanedithiol ($6.1 \mathrm{~g}, 0.05 \mathrm{~mol}$) and pyridine ($8.7 \mathrm{~g}, 0.11$ mol) kept at $0^{\circ} \mathrm{C}$, and then the mixture was stirred for 2 h . The crude product was diluted with diethyl ether (50 ml) and washed with water, 8% sodium hydrogen carbonate solution, and water. The organic layer was condensed, and white solid remained. The solid was recrystallized from ethanol to yield $4 \mathrm{DBS}_{2}(8.7 \mathrm{~g}, 53 \%)$.

The product was dissolved in chloroform in an open vessel. The vessel was placed in a larger one containing methanol, a poor solvent for $4 \mathrm{DBS}_{2}$, to facilitate precipitation of crystals by vapor diffusion of methanol into the chloroform solution.

3. Refinement

All $\mathrm{C}-\mathrm{H}$ hydrogen atoms were geometrically positioned with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for the aromatic and methylene groups, respectively, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

supplementary materials

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 1

Molecular structure of S, S^{\prime}-butane-1,4-diyl dibenzothioate $\left(4 \mathrm{DBS}_{2}\right)$. Displacement ellipsoids are drawn at the 50% probability level.

(a)

(b)

(c)

Figure 2

Packing diagram of $4 \mathrm{DBS}_{2}$, viewed down the $(a) \mathrm{a},(b) \mathrm{b}$, and $(c) \mathrm{c}$ axes. The dotted lines represent $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

S, S^{\prime}-Butane-1,4-diyl bis(benzenecarbothioate)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=330.44$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.2230(14) \AA$
$b=4.8903$ (5) Å
$c=13.2638(15) \AA$
$\beta=106.897$ (1) ${ }^{\circ}$
$V=820.67(15) \AA^{3}$
$Z=2$
$F(000)=348$
$D_{\mathrm{x}}=1.337 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 323 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2016 reflections
$\theta=3.2-26.8^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, colourless
$0.30 \times 0.30 \times 0.05 \mathrm{~mm}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.908, T_{\text {max }}=0.984$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.05$
1845 reflections
100 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 4326 measured reflections
> 1845 independent reflections
> 1626 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.2^{\circ}$
> $h=-15 \rightarrow 17$
> $k=-6 \rightarrow 6$
> $l=-13 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0413 P)^{2}+0.1965 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.70285(9)$	$0.4894(3)$	$0.15671(9)$	$0.0292(3)$
C2	$0.62320(10)$	$0.6555(3)$	$0.09507(10)$	$0.0350(3)$
H2	0.6032	0.6402	0.0205	0.042^{*}
C3	$0.57314(11)$	$0.8429(3)$	$0.14248(12)$	$0.0422(3)$
H3	0.5188	0.9562	0.1003	0.051^{*}
C4	$0.60192(12)$	$0.8656(3)$	$0.25099(12)$	$0.0414(3)$
H4	0.5688	0.9982	0.2832	0.050^{*}
C5	$0.67851(12)$	$0.6964(3)$	$0.31244(11)$	$0.0427(3)$
H5	0.6968	0.7092	0.3870	0.051^{*}
C6	$0.72895(11)$	$0.5077(3)$	$0.26594(10)$	$0.0376(3)$
H6	0.7814	0.3905	0.3087	0.045^{*}
C7	$0.75788(10)$	$0.2993(3)$	$0.10215(10)$	$0.0311(3)$
C8	$0.91038(11)$	$-0.0700(3)$	$0.08957(11)$	$0.0377(3)$
H8A	0.9495	-0.2334	0.1244	0.045^{*}
H8B	0.8470	-0.1342	0.0344	0.045^{*}
C9	$0.98021(10)$	$0.0896(3)$	$0.03740(11)$	$0.0382(3)$

H9A	1.0415	0.1647	0.0924	0.046^{*}
H9B	0.9397	0.2452	-0.0023	0.046^{*}
O1	$0.73074(8)$	$0.2677(2)$	$0.00745(7)$	$0.0429(3)$
S1	$0.86863(3)$	$0.12549(8)$	$0.18584(3)$	$0.03886(13)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	$0.0297(6)$	$0.0284(6)$	$0.0294(6)$	$-0.0041(5)$	$0.0084(5)$	$0.0010(5)$
C2	$0.0353(7)$	$0.0401(7)$	$0.0308(6)$	$0.0017(5)$	$0.0115(5)$	$0.0074(5)$
C3	$0.0405(7)$	$0.0437(8)$	$0.0455(8)$	$0.0097(6)$	$0.0174(6)$	$0.0129(6)$
C4	$0.0428(8)$	$0.0397(7)$	$0.0477(8)$	$0.0029(6)$	$0.0224(6)$	$-0.0016(6)$
C5	$0.0469(8)$	$0.0496(9)$	$0.0322(7)$	$0.0018(7)$	$0.0123(6)$	$-0.0050(6)$
C6	$0.0392(7)$	$0.0415(8)$	$0.0294(6)$	$0.0040(6)$	$0.0057(5)$	$0.0006(6)$
C7	$0.0315(6)$	$0.0308(6)$	$0.0295(6)$	$-0.0024(5)$	$0.0063(5)$	$0.0014(5)$
C8	$0.0353(7)$	$0.0341(7)$	$0.0414(7)$	$0.0042(5)$	$0.0076(6)$	$-0.0029(6)$
C9	$0.0319(7)$	$0.0347(7)$	$0.0471(8)$	$0.0018(5)$	$0.0099(6)$	$-0.0062(6)$
O1	$0.0479(6)$	$0.0495(6)$	$0.0282(5)$	$0.0103(5)$	$0.0060(4)$	$-0.0027(4)$
S1	$0.0346(2)$	$0.0456(2)$	$0.0328(2)$	$0.00686(14)$	$0.00426(14)$	$-0.00058(14)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-C6	1.3913 (17)	C6-H6	0.9500
C1-C2	1.3916 (17)	C7-O1	1.2117 (15)
C1-C7	1.4912 (17)	C7-S1	1.7761 (13)
C2-C3	1.3841 (19)	C8-C9	1.5204 (19)
C2-H2	0.9500	C8-S1	1.8053 (14)
C3-C4	1.382 (2)	C8-H8A	0.9900
C3-H3	0.9500	C8-H8B	0.9900
C4-C5	1.377 (2)	C9-C9 ${ }^{\text {i }}$	1.526 (3)
C4-H4	0.9500	C9-H9A	0.9900
C5-C6	1.384 (2)	C9-H9B	0.9900
C5-H5	0.9500		
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.39 (12)	C1-C6-H6	120.0
C6-C1-C7	122.48 (11)	O1-C7-C1	122.90 (12)
C2-C1-C7	118.13 (11)	O1-C7-S1	121.94 (10)
C3-C2-C1	119.98 (12)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 1$	115.15 (9)
C3-C2-H2	120.0	C9-C8-S1	113.65 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0	C9-C8-H8A	108.8
C4-C3-C2	120.21 (13)	S1-C8-H8A	108.8
C4-C3-H3	119.9	C9-C8-H8B	108.8
C2-C3-H3	119.9	S1-C8-H8B	108.8
C5-C4-C3	120.04 (13)	H8A-C8-H8B	107.7
C5-C4-H4	120.0	C8-C9-C9 ${ }^{\text {i }}$	111.70 (14)
C3-C4-H4	120.0	C8-C9-H9A	109.3
C4-C5-C6	120.26 (13)	C9--C9-H9A	109.3
C4-C5-H5	119.9	C8-C9-H9B	109.3
C6-C5-H5	119.9	C9 - $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.3
C5-C6-C1	120.06 (13)	H9A-C9-H9B	107.9

supplementary materials

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.0	$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 8$	$100.22(6)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.1(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$174.55(14)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.31(13)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-6.1(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.1(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 1$	$-6.66(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.8(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 1$	$172.72(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.7(2)$	$\mathrm{S} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 9 \mathrm{i}$	$175.95(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.4(2)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 8$	$-0.26(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.07(11)$		
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-2.3(2)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 7$	$83.52(11)$

Symmetry code: (i) $-x+2,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ phenyl ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots C g 1^{\mathrm{ii}}$	0.95	3.09	$3.8810(15)$	141

Symmetry code: (ii) $-x+1, y+1 / 2,-z+1 / 2$.

