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Since the discovery of the C9orf72 repeat expansion mutation as causative
for chromosome 9-linked amyotrophic lateral sclerosis (ALS) and frontotemporal
dementia (FTD) in 2011, a multitude of cellular pathways have been implicated.
However, evidence has also been accumulating for a key mechanism of cellular
compartmentalization—phase separation. Liquid-liquid phase separation (LLPS) is
fundamental for the formation of membraneless organelles including stress granules,
the nucleolus, Cajal bodies, nuclear speckles and the central channel of the nuclear
pore. Evidence has now accumulated showing that the formation and function of these
membraneless organelles is impaired by both the toxic arginine rich dipeptide repeat
proteins (DPRs), translated from the C9orf72 repeat RNA transcript, and the repeat RNA
itself. Both the arginine rich DPRs and repeat RNA themselves undergo phase separation
and disrupt the physiological phase separation of proteins involved in the formation of
these liquid-like organelles. Hence abnormal phase separation may explain a number
of pathological cellular phenomena associated with C9orf72-ALS/FTD. In this review
article, we will discuss the principles of phase separation, phase separation of the DPRs
and repeat RNA themselves and how they perturb LLPS associated with membraneless
organelles and the functional consequences of this. We will then discuss how phase
separation may impact the major pathological feature of C9orf72-ALS/FTD, TDP-43
proteinopathy, and how LLPS may be targeted therapeutically in disease.

Keywords: phase separation, C9orf72, membraneless organelles, TDP-43, therapeutics

INTRODUCTION

The C9orf72 mutation is an expansion of a GGGGCC (G4C2) repeat in intron 1 of the gene.
In unaffected individuals the G4C2 is repeated 2 to 23 times, whereas in those with the
mutation, the sequence is expanded to contain hundreds to thousands of repeats (DeJesus-
Hernandez et al., 2011; Renton et al., 2011). Due to its location upstream of the coding region,
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the mutation can lead to a reduction in the levels of the
protein that it encodes (Xiao et al., 2015; Sivadasan et al.,
2016), which is involved in the regulation of endo-lysosomal
trafficking and autophagy (Farg et al., 2014; Sellier et al., 2016;
Webster et al., 2016). However, a common finding from murine
C9orf72 knockout models is the lack of neurodegeneration
or TDP-43 pathology—a key pathological feature of C9orf72-
ALS/FTD (O’Rourke et al., 2015; Atanasio et al., 2016; Burberry
et al., 2016; Jiang et al., 2016; Sudria-Lopez et al., 2016; Sullivan
et al., 2016). These findings indicate that loss of protein function
is not sufficient to cause the disease. However, effects of reduced
C9orf72 in autophagy, immune dysregulation (O’Rourke et al.,
2015; Atanasio et al., 2016; Burberry et al., 2016; Jiang et al.,
2016; Sellier et al., 2016; Sudria-Lopez et al., 2016; Sullivan et al.,
2016; Ugolino et al., 2016; Webster et al., 2016; Shi et al., 2018;
Zhu et al., 2020), axon growth (Sivadasan et al., 2016) and stress
granule dynamics (Maharjan et al., 2017) propose a modulatory
role in disease pathogenesis.

However, similar to other non-coding repeat expansion
mutations, the G4C2 repeat produces repetitive RNA which is
translated into repetitive polypeptides, which have both been
proposed to cause pathogenesis (Mizielinska and Isaacs, 2014).
The G4C2 repeat is transcribed in both directions generating
G4C2 (sense) and C4G2 (antisense) repeat RNA. These RNA
species both form small RNA aggregates called RNA foci in
patient brain (DeJesus-Hernandez et al., 2011; Gendron et al.,
2013; Lagier-Tourenne et al., 2013; Mizielinska et al., 2013;
Mackenzie et al., 2014; DeJesus-Hernandez et al., 2017), which
may cause dysfunction by sequestering RNA-binding proteins
(Almeida et al., 2013; Donnelly et al., 2013; Lee et al., 2013;
Sareen et al., 2013; Cooper-Knock et al., 2014, 2015; Haeusler
et al., 2014; Rossi et al., 2015; Mori et al., 2016; Celona et al.,
2017). Both sense and antisense repeat RNA also undergo non
ATG-dependent translation into repetitive polypeptides. The
polypeptides produced consist of two alternating amino acids
(due to the repetitive RNA code) and are thus termed dipeptide
repeat proteins (DPRs). Translation occurs in all six possible
frames, three sense and three antisense, producing five different
DPRs as one sense and antisense frame are the same. These are
polypeptides of glycine-proline (poly-GP), glycine-alanine (poly-
GA), glycine-arginine (poly-GR), proline-arginine (poly-PR) and
proline-alanine (poly-PA). These DPRs are also all found to form
inclusions in patient brain (Ash et al., 2013; Mori et al., 2013a),
but seem largely distinct from the classic TDP-43 pathology.
In vitro and in vivo models show that the arginine rich DPRs
poly-GR and poly-PR and the most aggregation prone DPR
poly-GA can induce significant toxicity (Kwon et al., 2014; May
et al., 2014; Mizielinska et al., 2014; Wen et al., 2014; Zhang et al.,
2014, 2019a; Tao et al., 2015; Lee et al., 2016; Schludi et al., 2017;
Choi et al., 2019; Hao et al., 2019; Cook et al., 2020; LaClair
et al., 2020; Zhou et al., 2020). In vivo studies have also suggested
a direct role for the repeat RNA, albeit with associations with
cytoplasmic RNA rather than the classic nuclear foci (Burguete
et al., 2015; Swinnen et al., 2018).

A number of cellular processes have been shown to be
impaired by the repeat RNA and/or the arginine rich DPRs
including the regulation of transcription, ribosomal biogenesis

and translation, nucleocytoplasmic transport and RNA granules
(Balendra and Isaacs, 2018; Mandrioli et al., 2020). All of
these cellular processes are associated with membraneless
organelles—multicomponent, viscous liquid-like structures that
lack a lipid bilayer. These membraneless assemblies are found
in both the nucleus and cytoplasm and typically contain both
RNA and protein molecules. Examples of such membraneless
organelles include the nucleolus, nuclear pore complex, stress
granules, nuclear speckles, paraspeckles, p-bodies and Cajal
bodies (Brangwynne et al., 2015; Freibaum and Taylor, 2017).
The altered assembly, dynamics, and function of membraneless
organelles may account for many of the widespread cellular
abnormalities observed in C9orf72-ALS/FTD and can explain
several of the mechanisms associated with both G4C2 repeat RNA
and arginine rich DPR toxicity.

PROTEIN PHASE SEPARATION

In cell biology liquid-liquid phase separation (LLPS) is a
process in which a homogenous liquid solution consisting
of RNA and/or protein separates into two different phases;
with one of these separated phases containing an increased
concentration of RNA and protein—the dense phase, and the
other phase—known as the dilute phase—now depleted of them
(Alberti and Dormann, 2019; Figures 1A,B). The dense phase
usually resembles liquid droplets and indeed shows liquid-like
properties including fusion, coalescence, dripping and a rapid
exchange of molecules (Alberti and Dormann, 2019; Alberti
et al., 2019). This phase separation of organic molecules into
droplets through LLPS is known as coacervation and the resulting
droplets can also be referred to as coacervates (Deshpande
et al., 2019). Membraneless organelle formation most frequently
occurs through spontaneous LLPS in which protein laden RNAs
separate themselves from the surrounding aqueous nucleoplasm
or cytoplasm forming a reversible state which can equally quickly
dissolve (Brangwynne et al., 2015; Taylor et al., 2016).

The formation of membraneless organelles has been described
as a dynamic liquid demixing process in which cells actively
generate phase boundaries to confine functional entities for a
temporary period (Aguzzi and Altmeyer, 2016). Once LLPS
has occurred it is thought the proteins within the dense phase
compartment find themselves in a different solvent environment
compared to their surroundings, which may promote specific
biochemical interactions and thus functionalities (Aguzzi and
Altmeyer, 2016). Most of the proteins that drive intracellular
phase separation and the formation of membraneless organelles
show strong conformational heterogeneity and are referred
to together as intrinsically disordered proteins (Brangwynne
et al., 2015; Boeynaems et al., 2018). These proteins do not
have well defined protein folding and are highly flexible due
to significantly reduced numbers of aliphatic and aromatic
residues (Alberti and Dormann, 2019). However, many of these
proteins still contain structured regions and only segments
that do not form a well-defined tertiary three-dimensional
structure; these disordered regions of the protein are referred
to as intrinsically disordered regions. The structural plasticity
of these disordered proteins and regions allows them to
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dynamically adopt different confirmations such as energetically
favorable higher-order protein assemblies and undergo a
multitude of promiscuous multivalent interactions (Aguzzi
and Altmeyer, 2016). Such factors dictate the behavior of
disordered proteins within complex liquids like the intracellular
milieu and facilitate phase separation (Hyman et al., 2014;
Brangwynne et al., 2015; Aguzzi and Altmeyer, 2016; Boeynaems
et al., 2018). Thus, these multivalent interactions are important
for the formation of dynamic heterogeneous assembles, such
as membraneless organelles (Mitrea and Kriwacki, 2016;
Freibaum and Taylor, 2017).

Intrinsically disordered regions typically contain repetitive
sequence strings biased towards specific amino acids (Boeynaems
et al., 2018) and are categorized based upon the composition
of their sequence and motifs (Alberti and Dormann, 2019).
One important example is low complexity sequence domains
(LCD)—amino acid sequences between 75 and 300 amino acids
in length with a high evolutionary conservation, present in
one-third of the human proteome (Freibaum and Taylor, 2017).
These domains often consist of a high number of uncharged polar
amino acids such as glycine, asparagine and serine interspersed
with aromatic and charged residues (Wang et al., 2018b).
The low sequence diversity generates multiple short motifs
and repeats such as, glycine/serine-phenylalanine/tyrosine-
glycine/serine, arginine-glycine, phenylalanine-glycine, poly-
glutamine, poly-asparagine, and blocks of positive or negative
charges important for the formation of ribonucleoprotein
granules and other biomolecular condensates (Banani et al.,
2017; Feng et al., 2019). Specific LCDs such as prion-like
domains and glycine-arginine rich (RGG) domains found in
RNA-binding proteins are also named for their composition
patterns with prion-like domains enriched in glutamine-
asparagine and aromatic residues, similar to yeast prion
sequences. The residues within these domains mediate several
important interactions that mediate phase separation including
charge-charge, cation–pi, pi–pi, and polar (dipole-dipole)
in addition to hydrophobic and pi/sp2 interactions, and
hydrogen bonding (Murthy et al., 2019; Peran and Mittag,
2020; Figure 1E). Pi (π)-stacking interactions occur between
delocalized pi electrons in aromatic rings but also between
planar non-aromatic residues, such as arginine, glutamine,
asparagine, aspartic acid and glutamic acid (Vernon et al.,
2018). Positively charged residues, most commonly arginine,
can also form cation-pi interactions with electron-rich aromatic
residues. Oppositely charged residues arranged in like-charged
clusters also undergo charge neutralization by electrostatic
charge-charge interactions. These side-chain interactions have
been shown to mediate LCD phase separation in a number
of condensate biomolecules (Feng et al., 2019; Spannl et al.,
2019) and post-translational modifications, missense mutations
or scrambling charge clustering inhibits droplet formation by
disrupting relevant weak interactions (Feng et al., 2019). These
multivalent, low affinity associations mediate interactions that
can be rapidly rearranged, including both protein-protein and
protein-nucleic acid interactions (Aguzzi and Altmeyer, 2016;
Boeynaems et al., 2018; Alberti and Dormann, 2019). Indeed,
RNA plays a key role in the formation of the majority of

cellular membraneless organelles via phase separation acting as
a scaffold for LCD interactions and thus RNA concentration
can determine the phase separation behavior of LCD proteins
depending on their subcellular location (Langdon and Gladfelter,
2018; Maharana et al., 2018; Garcia-Jove Navarro et al., 2019;
Rhine et al., 2020). It is suggested that the ability of RNA
to undergo numerous multivalent interactions along with its
flexible structure means that RNA essentially imitates the LCD
of proteins (Rhine et al., 2020). Further RNA itself has been
shown to phase separate via RNA-RNA interactions mediated by
electrostatic forces (Jain and Vale, 2017).

Some dense protein solutions have the potential to further
phase transition into structures with properties resembling
a solid—a process that has been referred to as gelation
(Alberti and Dormann, 2019; Figure 1C). Indeed, whilst many
ribonucleoprotein granules are liquid like, other membraneless
organelles feature solid-like properties, such as the central
channel of the nuclear pore (Frey et al., 2006; Schmidt
and Görlich, 2015). Indeed, numerous RNA binding proteins,
including FUS and hnRNPA1, transition into reversable
hydrogels composed of amyloid-like cross-β fibrils (Kato et al.,
2012; Molliex et al., 2015; Murray et al., 2017; Gui et al., 2019).
These fibrils however differ from the highly stable amyloid fibrils
seen in pathological aggregates formed by proteins associated
with neurodegenerative disease (Figure 1D) as the amyloid
formation associated with hydrogel formation of LCDs is
reversable (Murray et al., 2017; Gui et al., 2019). This reversibility
is associated with short motifs that allow amyloid-like β-strand
interactions known as kinked β sheets, termed LARKs (low-
complexity aromatic-rich kinked sequences). LARKs form
weakly stabilizing fibrils (Gomes and Shorter, 2019) unlike cross-
β sheets of amyloid fibrils which form stable pathogenic steric
‘‘zippers’’ due to interdigitated side chain amino acids. LCDs of
RNA binding proteins that undergo LLPS to form membraneless
organelles are enriched in LARKs, suggesting a possible role
in LLPS (Hughes et al., 2018). Further the hydrogel forming
phenylalanine-glycine domain of nuclear pore proteins is also
thought to form LARKs (Hughes et al., 2018). Other motifs
that form reversible amyloid fibrils have also been identified
in the LCDs of FUS, hnRNPA1 and hnRNPA2 (Luo et al.,
2018; Gui et al., 2019; Lu et al., 2020; Sun et al., 2020b).
Hence amyloid formation may have a practical function in
membraneless organelle formation, for more stable, less transient
structures. However, this acquisition of solid-like properties has
also been associated with the formation of protein aggregates
in neurodegenerative disease (Elbaum-Garfinkle, 2019). Disease
mutations in the LCD of proteins have been shown to alter phase
separation behavior, generally promoting phase separation and
reducing droplet dynamics: ALS associated mutations in FUS
lead to the formation of more solid-like droplets and irreversible
fibrillar hydrogels which can trap other RNA binding proteins
(Murakami et al., 2015; Patel et al., 2015). Similarly, phase
separation of hnRNPA1 with the disease mutation D262V causes
enhanced amyloid fibril formation (Lin et al., 2015). ALS causing
mutations in TIA1 lead to phase separated droplets with reduced
mobility and faster fibrilization (Mackenzie et al., 2017). Finally,
mutations in the C-terminal domain of TDP-43 enhance its
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FIGURE 1 | Protein phase transition states and interactions with C9orf72 arginine rich dipeptide repeat proteins (DPRs) and GGGGCC (G4C2) repeat RNA that lead
to aberrant phase separation. (A) Dispersed—soluble proteins are freely dispersed in a dilute phase. (B) Proteins with intrinsically disordered regions such as low
complexity domains (LCDs) can de-mix from a dilute phase often in the presence of RNA through liquid-liquid phase separation (LLPS) to form dynamic liquid
droplets in which molecules can still diffuse in and out and disperse rapidly. (C) Liquid droplets can transition into more solid-like hydrogels which consist of
amyloid-like fibrils, which are less dynamic but still reversable. (D) Aberrant phase separation facilitates the formation of pathological permanent amyloid fibrils which
are the constituents of aggregates found in neurodegenerative disease brain. (E) Physiological interactions that mediate LLPS include pi (π)–π, cation–π, polar
(dipole-dipole), charge-charge interactions in addition to hydrophobic and π-sp2 interactions, and hydrogen bonding (not shown). (F) The arginine-rich DPRs mimic
physiological interactions driving aberrant phase separation with the arginine residues acting as the cation in electrostatic interactions, both charge-charge and with
aromatic side chains within LCDs (cation-π). The G4C2 repeat RNA can also undergo charge-charge interactions with LCDs; further G4C2 G-quadruplexes may
enhance RNA-RNA and RNA-LCD interactions and nucleate droplet formation by cellular RNA.

phase separation and show reduced droplet fluidity (Conicella
et al., 2020). Thus, phase separation underlies the localization
and function of many LCD containing proteins, and disruption
in the physiological equilibrium of this process can lead to
pathological behavior of the membraneless organelles they are
associated with.

C9orf72 DPR Phase Separation
In relation to phase separation, there is particular interest in the
arginine rich C9orf72 DPRs due to the well-established role of
intrinsically disordered arginine rich regions as promoters of
phase separation. Arginine and glycine rich motifs (RGG/RG)
are an important class of LCD sequence found within numerous

RNA binding proteins that undergo LLPS, including those
associated with neurodegenerative diseases such as FUS,
hnRNPA1, and FMRP (Thandapani et al., 2013; Chong et al.,
2018). Proteins with these motifs contain varying numbers of
RGG/RG repeats interspaced typically with aromatic residues
(Thandapani et al., 2013), with repeat length influencing
multivalency and phase separation (Chong et al., 2018); phase
separation of these domains also correlates with the number
of arginine residues present (Chong et al., 2018; Wang et al.,
2018b). Within FUS, interactions between aromatic residues in
the prion-like domain and positively charged residues in the
RNA binding domain determine the saturation concentration,
which appeared specific to tyrosine-arginine interactions
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(Wang et al., 2018b). Increasing the negative charge of the
prion-like domain increased phase separation mediated by
interaction with the RNA binding domain, but reduced phase
separation in isolation. Hence electrostatic attractions between
arginine residues and negatively charged residues in the
prion-like domain additionally regulate phase separation by
bolstering the interaction between aromatic tyrosine residues
and positively charged arginines in the RNA binding domain,
whereas electrostatic repulsions within the prion-like domain
help prevent unfruitful self-interactions. This is reflected
in the toxicity of FUS in HeLa cells, where the severity of
FUS toxicity correlates with the strength of the interaction
between the prion-like domain and RNA binding domain,
modulated by arginine residues in the RNA binding domain
(Wang et al., 2018b). Functionally, the arginine residues in the
C-terminal RNA binding domain of FUS are crucial for the
maturation of the protein in stress granules, recruitment to
sites of DNA damage and also regulate its toxicity in Drosophila
(Bogaert et al., 2018).

The C9orf72 arginine rich DPRs poly-GR and poly-PR,
translated from the G4C2 repeat expansion, undergo phase
separation (in the presence of a crowding agent) in vitro
similarly to RGG/RG domains (Boeynaems et al., 2017). Further
analysis of the phase separation of poly-PR revealed that the
droplets formed have liquid-like properties—with the droplets
being circular in shape, showing recovery upon photobleaching
(due to fast internal rearrangement) and deformation under
stress, fusing together and being reversible upon dilution or
changes in temperature or solute. Poly-PR phase separation
was also impaired by elevating salt concentration, indicating
that arginine-driven electrostatic forces modulate poly-PR LLPS.
Normally, the coacervation of molecules into droplets is inhibited
when proteins consist primarily of a single charge due to charge
repulsion and require the presence of counter ions (Pak et al.,
2016; Boeynaems et al., 2017). Indeed, phase separation of
poly-GR and poly-PR does not result from electrostatic repulsion
between the arginine residues of the dipeptide, but rather due
to anions in the buffer, with anions with more valence driving
droplet formation whereas monovalent anions which exist in
a single charge state being inhibitory (Boeynaems et al., 2017;
Jafarinia et al., 2020). Biological polyvalent anions such as
poly-uracil RNA can even overcome the need for crowding
agents in poly-PR LLPS (Boeynaems et al., 2017). Furthermore,
like arginine residues in the RNA binding domain of FUS,
poly-PR also engages in cation-pi interactions with tyrosine.
Therefore, the phase separation of the arginine rich DPRs
poly-GR and poly-PR and likely their interactions with other
molecules that contain LCDs are similar to that of arginine rich
RNA binding proteins like FUS: complex coacervation driven
by electrostatic interactions, both charge-charge and charge-pi,
with the arginine residues providing the cation for these weak,
multivalent interactions (Nedelsky and Taylor, 2019; Figure 1F).

Further analysis of poly-PR phase separation via complex
coacervation revealed that the process is also governed by the
chemistry of associated polyanions (Boeynaems et al., 2019).
Negatively charged protein assemblies such as microtubules
provide a scaffold for poly-PR recruitment whereas flexible

polyanions such as RNA caused spherical droplet formation.
The latter is in line with LLPS via complex coacervation
with the dynamics of droplets varying depending on the
polyanion used. Poly-PR-RNA LLPS is dependent on the
structure of the RNA; all homopolymeric RNAs, except for
poly-rGuanine lead to poly-PR liquid droplet formation. The
properties of these droplets, such as viscosity, are dependent on
the specific RNA molecules involved in RNA-PR and RNA-RNA
interactions. The lack of coacervation of poly-PR in presence
of poly-rGuanine is connected to higher-order RNA structures
formed by poly-rGuanine. Poly-rGuanine unlike the other RNA
bases can form a highly stable secondary structure known as a
G-quadruplex, which appears to kinetically stall poly-PR phase
separation. Boeynaems et al. (2019) interpret this as poly-PR
being unable to outcompete base stacking interactions within
G-quadruplexes. The length of the DPR in addition to the
length of its interacting polyanion also influences droplet size
due to increased multivalency; with modeling showing that
larger PR molecules and larger polyanions produce smaller
droplets of a higher concentration (Jafarinia et al., 2020). Hence
variations in the size of droplets owe to variations in the
robustness of poly-PR interactions and the molecules it is phase
separating with. Similar findings have been observed for poly-
GR post-translational modifications; poly-GR aggregates have
been found to be methylated in patient brain and synthetic
dimethylated poly-GR peptides form larger but reduced numbers
of droplets compared to unmethylated poly-GR, indicative of
reduced LLPS (Gittings et al., 2020). Arginine methylation
does not disrupt charge but may affect cation-pi interactions,
as it does when disrupting the LLPS of several RNA-binding
proteins (Qamar et al., 2018; Ryan et al., 2018; Hofweber and
Dormann, 2019), and thereby would be expected to weaken
pathological interactions of the arginine rich DPRs and LCD
containing proteins.

One question that arises from these studies is, whether the
ability to undergo phase separation is what causes the severe
toxicity of poly-PR and poly-GR. When peptides of different
composition were studied, expression of a poly-arginine only
peptide located to the cytoplasm and showed no toxicity (Meloni
et al., 2013, 2015, 2017) whereas PR12 with the same number
of arginine residues was highly toxic and localized to the
nucleus (Kanekura et al., 2018). Indeed poly-PR peptides and
constructs in model systems typically show higher toxicity than
poly-GR of similar lengths and number of arginine residues
(Wen et al., 2014). Hence arginine content and the ability to
undergo LLPS are not the only determining factors in the toxicity
of these DPRs. One theory of FUS separation proposed by
Wang et al. (2018b) uses the concept of stickers and spacers,
in which the stickers (such as arginine) determine the phase
separation properties of the protein; and the spacers (such
as glycine or proline) which separate the stickers determine
the flexibility of the peptide. The different spacers found in
poly-GR (glycine) and poly-PR (proline) may influence the
interactions undergone by the peptides thereby influencing their
relative toxicities. Additionally, the methylation of poly-GR
reduces its propensity for LLPS and decreases toxicity in
neurons, and symmetric dimethylation of poly-GR inclusions in
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C9orf72-FTD/ALS patient brain positively correlates with disease
duration, suggesting methylation of poly-GR and reduced LLPS
could be protective (Gittings et al., 2020).

C9orf72 Repeat RNA Phase Separation
As already mentioned, RNA plays an important regulatory
role in driving phase separation of intrinsically disordered
proteins and the physical properties of resultant droplets,
dependent on concentration, secondary structure and sequence
of RNA (Langdon and Gladfelter, 2018; Zhang et al., 2019b).
The guanine (G)-rich DNA and RNA of the C9orf72 repeat
expansion forms highly complex secondary structures including
unimolecular and multimolecular G-quadruplexes (Fratta et al.,
2012; Reddy et al., 2013; Haeusler et al., 2014; Zhou et al.,
2015; Conlon et al., 2016). G-quadruplexes are stable four
strand structures formed of planar guanine tetramers stacked
on top of one another (Zhou et al., 2015). G-quadruplex
containing RNA has been reported to itself undergo phase
separation (Zhang et al., 2019b), as has triplet repeat RNAs
of CAG and CUG (Jain and Vale, 2017). Indeed, similarly to
CAG and CUG repeat RNA, C9orf72 G4C2, but not antisense
C4G2, repeat RNA directly formed gels in vitro in a repeat-
length dependent manner and was disrupted by monovalent
cations and antisense oligonucleotides (ASOs), indicating both
electrostatic interactions and base-pairing interactions (Jain and
Vale, 2017; Figure 1F). Interestingly, the authors speculate
that the increased valency that comes with repeat length may
explain the length-dependent threshold that exists in disease
(Langbehn et al., 2010; Rohrer et al., 2015). In cells, CAG
repeat RNA formed nuclear foci that had liquid properties,
which was proposed to be due to the presence of RNA-binding
proteins such as helicases which remodel RNA-base pairing.
Whereas, G4C2 RNA foci showed only partial recovery after
photobleaching, indicating that they are less dynamic than CAG
foci. In another study, G4C2 repeat RNA LLPS only occurred
in the presence of cell lysate and required cellular RNA but was
equally dependent on repeat-length and electrostatic interactions
(Fay et al., 2017). In this study, G4C2 RNA precipitated stress
granule proteins, and thus will be discussed in the relevant
section below.

DISRUPTED PHASE SEPARATION OF
MEMBRANELESS ORGANELLES

As already mentioned, phase separation is key to the formation
of membraneless organelles, including stress granules, the
nucleolus, Cajal bodies, nuclear speckles, and the central
channel of the nuclear pore. These liquid organelles regulate
several important cellular functions, include splicing, protein
translation, nucleocytoplasmic transport and the cellular stress
response. A disruption in any one of these molecular functions
is likely to be catastrophic for a cell. In the following
sections, we review the evidence that the C9orf72 arginine rich
DPRs and G4C2 RNA disrupt the phase separation of these
membraneless organelles and the cellular pathways associated
with them (Figure 2).

Nuclear Structures
In the nucleus, there are a variety of different membraneless
structures formed by LLPS including nuclear speckles,
paraspeckles, Cajal bodies and Gems. These are
multiprotein-RNA organelles that play an essential role in
transcriptional regulation and the formation and function of
the spliceosome, a large ribonucleoprotein complex where
pre-mRNA splicing is catalyzed (Lamond and Spector, 2003;
Will and Lührmann, 2011). Cajal bodies are organelles whose
major function is the modification and assembly of uridine-
rich small nuclear ribonucleoproteins (U snRNPs; Morris,
2008), and Gems (Gemini of Cajal bodies) localize adjacent
to Cajal bodies and are characterized by the presence of the
SMN (survival of motor neuron) protein (Liu and Dreyfuss,
1996). Mature U snRNPs accumulate in nuclear speckles, also
known as splicing speckles, which function as the site for the
storage and modification of pre-mRNA splicing factors and
pre-mRNA splicing itself (Spector and Lamond, 2011; Galganski
et al., 2017; Gruss et al., 2017). Paraspeckles primarily regulate
gene expression through sequestration of RNAs and proteins
(Fox et al., 2018).

DPRs
Nuclear speckles and Cajal body proteins have been shown
to interact with the arginine rich DPRs poly-PR and poly-
GR, and speckle proteins can modify their toxicity (Lee et al.,
2016; Boeynaems et al., 2017; Yin et al., 2017; Hartmann
et al., 2018; Moens et al., 2019). The nuclear speckle protein
SRSF7 is specifically affected by overexpression of poly-PR
but not GR, displaying reduced recovery after photobleaching
(Lee et al., 2016), an indication of perturbed LLPS. Poly-PR
can also increase the levels of nuclear paraspeckles by direct
interaction with paraspeckle proteins and RNA (Suzuki et al.,
2018, 2019). In cells, expression of poly-PR, GR or GA leads
to a dramatic reduction in Cajal bodies and Gems (Lee
et al., 2016; Rossi et al., 2020); a few poly-GR expressing
cells displayed increased numbers but were noticeably smaller
than controls, indicating that the phase separation properties
of Cajal bodies may also be perturbed. Functionally, these
changes may explain the changes in gene expression and
splicing-associated with expression of both poly-PR and poly-GR
(Kwon et al., 2014; Yin et al., 2017; Kramer et al., 2018;
Sun et al., 2020a). Relating to Cajal body function, in a
proteomic interaction study of poly-GR and poly-PR all known
U2 snRNP proteins were found, with six of these as top
interactors (Yin et al., 2017). Interestingly, this was specific
to the U2 snRNP complex, as only three of eight U5 snRNP
components were identified. Poly-GR was further found to
inhibit assembly of the spliceosome, a key function of the
U2 snRNP complex, and lead to downstream mis-splicing.
Perturbation in the U2 snRNP has also been observed in
patient cells. Using C9orf72 iPSC-derived motor neurons which
have been shown to produce detectable levels of poly-GR
(Lopez-Gonzalez et al., 2016) the U2 snRNP associated proteins
SNRPB2 and S3Fa were mislocalized to the cytoplasm, with
SNRPB2 mislocalization in around 40–60% of neurons, whereas
it was completely nuclear in controls (Yin et al., 2017).
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FIGURE 2 | Membraneless organelles and associated functions that are impaired by the C9orf72 arginine rich DPRs and G4C2 repeat RNA. (1) Nuclear pore
complex—Phenylalanine-glycine low complexity domains (LCDs) of nuclear pore proteins (nucleoporins) phase separate into a selective hydrogel in the central
channel of the nuclear pore. Both the arginine rich DPRs and G4C2 RNA have been shown to interact with these nucleoporins, thus their altered phase separation
may underlie the nucleocytoplasmic transport dysfunction seen in C9orf72-ALS/FTD. (2) Stress granules—both the arginine rich DPRs and repeat RNA bind and
cause the aberrant phase separation of LCD containing stress granule proteins inducing formation of poorly dynamic stress granules, which likely contributes to the
translational repression seen in C9orf72-ALS/FTD models. (3) Nucleolus—Poly-PR disrupts the phase separation of the nucleolar protein nucleophosmin with
ribosomal RNA leading to its mislocalization from nucleoli to the nucleoplasm, and an impairment in ribosomal biogenesis; this nucleolar stress may also lead to the
observed aberrant activation of the p53 pathway. The G-quadruplex forming G4C2 RNA has also been shown to associate with the nucleolar protein nucleolin (NCL)
and cause nucleolar dysfunction. (4) Heterochromatin—poly-PR perturbs phase separation of heterochromatin protein 1α (HP1α) displacing it from heterochromatin
and resulting in its degradation and an upregulation of repetitive RNA elements which form double-stranded RNA and initiate pathological interferon signaling. (5)
Nuclear structures—proteins associated with nuclear speckles, paraspeckles, Cajal bodies and Gems interact with both the arginine rich DPRs and G4C2 RNA. The
arginine rich DPRs have specifically been shown alter the liquid-like properties of these organelles and binding to LCD containing U2 snRNP proteins results in their
mislocalization from nuclear speckles to the cytosol and reduced splicing activity.

This was also recapitulated in cell lines exposed to poly-PR
peptide, confirming the link to the DPR. Furthermore, in
patient cells with cytoplasmic accumulation of SNRPB2, levels
of the protein in nuclear speckles and the nucleoplasm were
decreased. Again, this was a specific effect as U1 snRNP
proteins were unaffected. This was also associated with a
preferential mis-splicing of U2 snRNP dependent exons in
patient lines, which is also dominant in patient tissue. The
disassembly of Cajal bodies by poly-GR and PR in cells could
be rescued by co-expression of the nuclear transport receptor
importin β1 (Rossi et al., 2020). As importin β1 mediates,
nucleocytoplasmic transport of snRNPs and nucleocytoplasmic
transport is impaired during stress (Boeynaems et al., 2016b),
the arginine rich DPRs may also impair Cajal body assembly

indirectly by disrupting the transport of U2 snRNPs into
the nucleus.

G4C2 Repeat RNA
A number of the LCD containing RNA binding proteins
that bind to the repeat RNA have important functions in
RNA splicing, including the nuclear speckle protein SRSF1
(Hautbergue et al., 2017). SRSF1 is a nuclear speckle protein
that facilities pre-mRNA splicing factor assembly and plays
a role in nuclear export (Huang et al., 2003; Tripathi et al.,
2012). SRSF1 could also be found to colocalize with G4C2
RNA foci in motor neurons of patient spinal cord sections.
Knockdown of SRSF1 can also rescue neurodegeneration in
G4C2 repeat Drosophila and reduce toxicity from C9orf72
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patient-derived astrocytes on control motor neurons.
Importantly, this rescue was specific to the SRSF1-G4C2
RNA interaction as SRSF1 knockdown in arginine rich DPR
flies resulted in no rescue. Mechanistically, SRSF1 depletion
reduced nuclear export of G4C2 mRNA via its interaction
with nuclear export receptor NXF1, and subsequent DPR
production. Thus, it is proposed that the sequestration of
SRSF1 into RNA foci leads to increased nuclear export
of G4C2 RNA and thereby increasing RAN translation,
enhancing DPR toxicity in C9orf72-ALS/FTD. The effect
on the properties of nuclear speckles, however, has not yet
been investigated.

Nucleolus
The nucleolus is a nuclear organelle whose primary function is
ribosome biogenesis, including both the synthesis and processing
of ribosomal RNA via RNA polymerase I and the assembly
of ribosomes (Boisvert et al., 2007; Iarovaia et al., 2019).
The nucleolus consists of three defined liquid-like phases: the
fibrillary centre(s) surrounded by a dense fibrillar component
rich in fibrillarin, all encompassed by a granule component
enriched in nucleophosmin; the latter is an LCD-containing
protein known to undergo phase separation (Mitrea et al., 2018;
Frottin et al., 2019).

DPRs
An early observation in cell models of the C9orf72 DPRs
poly-GR and poly-PR was a strong nucleolar localization
with nucleolar swelling and the displacement of nucleolar
proteins to the nucleoplasm (Haeusler et al., 2014; Kwon
et al., 2014; May et al., 2014; Wen et al., 2014; Zhang
et al., 2014; Tao et al., 2015; Callister et al., 2016; Lee
et al., 2016). They have also been shown to directly interact
in vitro (Lee et al., 2016; Boeynaems et al., 2017; Hartmann
et al., 2018). Both poly-GR and poly-PR are recruited to
the liquid-like granular component of the nucleolus, and
poly-GR could additionally interact with the dense fibrillar
components (Lee et al., 2016). Poly-GR and poly-PR peptides
facilitate phase separation of nucleophosmin in vitro, which is
accompanied by a reduction in the mobility of the nucleolar
proteins nucleophosmin and nucleolin in the nucleolus of
cells expressing either poly-GR or poly-PR (Lee et al., 2016).
However, when in molar excess the arginine rich DPRs can
inhibit LLPS (Lee et al., 2016; White et al., 2019). They
can also outcompete SURF6, an arginine-tract containing
protein and native binding partner of nucleophosmin (Lee
et al., 2016) and have been found to specifically bind via
the third acidic tract (A3) within its intrinsically disordered
region (White et al., 2019). In this latter study, by disturbing
the nucleophosmin-SURF6 interaction which is required for
physiological phase separation and causing a dissolution of
nucleophosmin particles, poly-PR leads to the sequestration of
nucleophosmin into soluble nucleophosmin/poly-PR complexes
(White et al., 2019). Poly-PR was also able to outcompete
nucleophosmin for ribosomal RNA (rRNA) binding leading
to the accumulation of rRNA in rRNA/poly-PR puncta which
persisted even at high concentrations of the DPR. These

findings were recapitulated in cells where increasing poly-PR
concentration caused the delocalization of nucleophosmin from
nucleoli into the nucleoplasm and a sequestration of rRNA
with poly-PR in the nucleolus; increasing poly-PR peptide
length displayed a similar increase in dissolution effect. Hence
a disruption of the phase separation of nucleophosmin explains
the nucleolar dysfunction observed in cellular and animal models
of DPR toxicity.

Functionally, studies have shown that numerous nucleolar
functions are perturbed by the arginine rich DPRs such as
ribosomal protein transport, the processing of rRNA and the
assembly of ribosomes (Kwon et al., 2014; Jovǐcić et al.,
2015; Tao et al., 2015; Kanekura et al., 2018; Suzuki et al.,
2018). Co-expression of nucleophosmin can rescue arginine
rich DPR toxicity in cells (Farg et al., 2017), and knockout
or overexpression of genes encoding proteins in ribosomal
rRNA processing can modify poly-PR toxicity in yeast (Jovǐcić
et al., 2015; Chai and Gitler, 2018) and Drosophila (Boeynaems
et al., 2016a). Notably, homologs of the nucleolar protein
nucleolin (NCL), identified in multiple studies, could suppress
PR-toxicity upon deletion. In C9orf72-ALS/FTD brain tissue,
the majority of neuronal nucleoli were smaller in comparison
to age-matched controls, however neurons which contained
a cytoplasmic poly-GR inclusion had a significantly increased
nucleolar volume (Mizielinska et al., 2017). Overexpression of
poly-GR (and poly-GA but to a much lesser extent) could also
cause nucleolar enlargement in Drosophila neurons (Mizielinska
et al., 2017), however this has not been recapitulated in mouse
models of the arginine rich DPRs (Zhang et al., 2018b, 2019a);
these differences have been proposed to differ depending on
whether the DPRs expressed can enter the nucleus.

G4C2 Repeat RNA
Although to a lesser extent, nucleolar dysfunction has also
been associated with C9orf72 repeat RNA toxicity. G4C2 repeat
RNA can bind several nucleolar proteins, predominantly in its
G-quadruplex form; indeed, NCL could be found in association
with RNA foci in the motor cortex of expansion carriers
(Haeusler et al., 2014; Cooper-Knock et al., 2015). In cells, this
caused a deficit in the production of mature ribosomes and a
build-up of untranslated mRNAs in the cytoplasm (Haeusler
et al., 2014). A subtle increase in nucleolar volume has also
been observed in frontal cortex neurons containing sense RNA
foci in C9orf72-FTD patient brain (Mizielinska et al., 2017).
Interestingly, although in vitro the C4G2 antisense RNA does
not bind nucleolar proteins (Haeusler et al., 2014), they are
found to more frequently associate and surround the nucleolus
in patient tissue (Mizielinska et al., 2013; Vatsavayai et al., 2016;
Aladesuyi Arogundade et al., 2019); note, nucleolar proteins
do not however associate with antisense RNA foci outside the
nucleolus (Cooper-Knock et al., 2015).

Stress Granules
Stress granules are transient, dynamic, cytoplasmic assemblies
which form reversibly under conditions of acute cellular stress,
such as heat shock, oxidative stress or nutrient depletion,
to sequester non-translating mRNA, translation initiation
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complexes and related RNA binding proteins. By protecting
and temporarily storing stalled translation complexes until
stress dissipates, stress granules effectively regulate translation
of housekeeping mRNA, while promoting translation of
cytoprotective proteins such as chaperones (Baradaran-Heravi
et al., 2020). Similarities in the dynamic behavior and
liquid-like properties of in vivo cellular ribonucleoprotein
granules and in vitro granule components support the assertion
that these compartments form via LLPS and interactions
between proteins with LCDs and RNA (Hyman et al., 2014;
Kroschwald et al., 2015).

DPRs
The arginine rich C9orf72 DPR interactomes are enriched in
LCD-containing proteins including RNA-binding proteins and
components of stress granules, such as TDP-43, FUS, hnRNPA1,
TIA1 and G3BP1 (Lee et al., 2016; Lin et al., 2016; Moens et al.,
2019), highlighting a role for disrupted stress granule function
in DPR toxicity. In vitro poly-PR and GR selectively associate
with and decrease the saturation concentration at which droplets
form with hnRNPA1, TIA1 and FUS, unlike the non-arginine
rich DPRs which have no effect (Lee et al., 2016; Boeynaems
et al., 2017). Upon overexpression in cells, poly-GR and PR
also increase the formation of stress granules (Lee et al., 2016;
Boeynaems et al., 2017). However, the cellular systems vary in
their DPR localization with one showing colocalization of stress
granules with PR100 (Boeynaems et al., 2017) and the other with
GR50 but not PR50 (Lee et al., 2016); this is likely due to the length
difference in the PR polypeptides with the shorter version being
limited to the nucleus.

Interestingly, numerous disease-linked mutations have been
found to enhance LCD polymer stability (Kato and McKnight,
2017; Boeynaems et al., 2018) and a hnRNAP1 variant harboring
a mutation which diminishes LCD polymerization (F291S)
prevents immunoprecipitation by a PR20 peptide (Lin et al.,
2016), suggesting that poly-PR interacts with LCDs in a
polymeric conformation. PR30 treatment also increases the
β-sheet content of FUS LCD droplets, as shown by the increase in
thioflavin-T fluorescence with increasing poly-PR concentration
(Boeynaems et al., 2017). Therefore, DPR interactions with stress
granule proteins may increase β-sheet content and enhance
stability of stress granule protein LCD polymers, rendering stress
granules less dynamic. Indeed, liquid droplets of hnRNPA1,
TIA1 or FUS display reduced liquid-like properties when treated
with arginine rich DPR peptides, including fewer wetting and
fusion events, and reduced recovery from photobleaching (Lee
et al., 2016; Boeynaems et al., 2017). This is also recapitulated
in cells where arginine rich DPRs induce formation of poorly
dynamic stress granules. Live imaging of HeLa cells showed that
DPR-induced stress granule G3BP1 puncta increase in number
over time and do not appear to disassemble. Photobleaching
analysis further confirms that the recovery rate of G3BP1 in
DPR-induced stress granules is significantly reduced, compared
to arsenite-induced stress granules (Lee et al., 2016; Boeynaems
et al., 2017). Poly-PR induced stress granules are also enriched
in disease-linked proteins, including ataxin-2 and TDP-43
(Boeynaems et al., 2017), which may reflect their entrapment

due to reduced diffusivity or their recruitment may contribute to
this process. In mice, the stress granule marker TIA1 remained
nuclear and diffuse upon GFP-GR100 expression but formed
cytoplasmic puncta which colocalized with poly-GR in (G4C2)149
mice using postnatal adenovirus expression (Zhang et al., 2018b).
This correlates with the formation of cytoplasmic poly-GR
inclusions but not diffuse poly-GR, suggesting that inclusions
specifically induce stress granules. Similarly, diffuse GFP-GR100
expression in cells did not change the number of stress granules
upon heat shock but more stress granules were retained upon
recovery, corroborating previous findings in the impairment
of disassembly (Zhang et al., 2018b). Thus, arginine rich DPRs
nucleate phase separation of LCD-containing stress granule
proteins and promote assembly of poorly dynamic stress
granules with reduced disassembly compared to adaptive stress
granules, highlighting a pathological outcome. The contribution
of arginine residues in this process demonstrates that expression
of DPRs does not only trigger the stress response, but actively
mediates phase separating interactions with stress granule
components through high multivalency.

G4C2 Repeat RNA
When G4C2 RNA is incubated with cellular lysates in vitro
phase separated particles are formed which are enriched in
stress granule components (Fay et al., 2017). Constituents
such as G3BP1 and FUS precipitated with all repeat lengths
studied, but others including TIA1 only condensed with
longer lengths. Particles exhibited classical features of LLPS,
including dependence on concentration, temperature, molecular
crowding and salt; the latter indicating a role for electrostatic
interactions. Phase separation was repeat length dependent
and associated with the presence of G-quadruplex forming
sequences. Notably, when assays were performed with equal
weight of different length G4C2 repeat RNAs rather than
equimolar (where the number of repeat units should be
equal) similar condensation was observed, suggesting that
repeat number is important, but these can be in cis or trans.
It also required the presence of cellular RNA, suggesting
that G-quadruplex G4C2 RNA enhances intermolecular RNA
interactions and thereby promotes the nucleation behavior of
RNA that causes protein condensation. Indeed, transfection of
G4C2 RNA in cells leads to the formation of stress granules
(Fay et al., 2017). In granules containing both mCherry-
tagged G3BP1 and FAM-labeled G4C2 RNA, photobleaching
results in recovery of the G3BP1 signal whereas G4C2 RNA
signal does not. This indicates that within these granules the
stress granule protein can rapidly internally rearrange, but the
RNA forms a stable component which cannot be replaced.
In another study transfection of G4C2 DNA in cells also
induced formation of stress granules, although in this system
they did not contain G4C2 RNA and thus may be induced
by the DPRs translated from repeat RNA as detailed above
(Rossi et al., 2015).

An important consideration for assessing the relevance of
DPRs and RNA to aberrant stress granule phase separation
in the wider context of C9orf72-ALS/FTD will be evaluating
the contribution of each proposed mechanism. Interestingly,
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the C9orf72 protein has additionally been implicated in stress
granule formation (Maharjan et al., 2017). Thus it is likely that
there may be interplay amongst mechanisms. Perhaps, loss of
C9orf72 protein inhibits the appropriate physiological stress
response, then arginine rich DPRs and repeat RNA promote
stress granule assembly by nucleating phase separation, and
the DPRs subsequently interact with stress granules to reduce
dynamics and inhibit disassembly, promoting a state of chronic
stress and eventual neurodegeneration.

The Nuclear Pore
The nuclear pore is a large multiprotein complex comprised
of transmembrane nucleoporins that anchor the pore to the
nuclear envelope, structural nucleoporins that act as a scaffold
and nucleoporins which make up the central channel of the
nuclear pore (Cautain et al., 2015). Notably for this review,
several nucleoporins contain low complexity phenylalanine-
glycine (FG) repeats. These domains primarily localize to the
central channel where they form a permeability barrier via LLPS
critical for nuclear pore selectivity (Frey et al., 2006). In vitro
these domains spontaneously phase separate into hydrogels that
exclude inert macromolecules but allow the entry of nuclear
transport receptors, mimicking the selectivity of the nuclear pore
in cells (Schmidt and Görlich, 2016).

DPRs
DPRs have been associated with defective nucleocytoplasmic
transport by the ability of transport factors to modify their
toxicity or via resultant mislocalization of transport factors in
cultured neurons, yeast and Drosophila (Jovǐcić et al., 2015;
Boeynaems et al., 2016a; Chai and Gitler, 2018; Solomon et al.,
2018). The arginine rich DPRs can also directly interact in vitro
with different types of transport factors (Lee et al., 2016; Lin
et al., 2016; Boeynaems et al., 2017). The arginine rich DPRs
bind the low complexity FG domains of some nucleoporins
(Lin et al., 2016), being specifically bound when the FG
domains are in a polymeric state (Shi et al., 2017). The
authors of the latter finding suggest that FG domains of
nucleoporins in the nuclear pore exist in equilibrium between
polymerized and unpolymerized states, and upon binding
poly-PR shifts this equilibrium by stabilizing the polymeric
state leading to a less permeable nuclear pore barrier and
disruption of transport. The relation of this equilibrium to
phase separation has not yet been investigated. Of note, the
interaction of the arginine rich DPRs with nucleoporins may
not be specific to FG domains, as another study found that
binding was only partially reduced when phenylalanines in
the FG domain were substituted for alanines (Hayes et al.,
2020). Indeed, it has been noted that other low complexity
sequences found within the FG domains of nucleoporins
(repetitions of the tripeptide sequence glycine/serine-tyrosine-
glycine/serine) are similar to the LCDs found in RNA
binding proteins (Shi et al., 2017), and thus binding may
occur here. Poly-PR (PR20) was shown to accumulate in the
central channel of the nuclear pore in isolated nuclei from
Xenopus oocytes (Shi et al., 2017). However, when GR200 was
overexpressed using an adenovirus in mice, FG-nucleoporins

were found to co-aggregate with poly-GR in the cytoplasm
of cortical neurons (Cook et al., 2020). This occurred with
concomitant loss of nuclear and cytoplasmic aggregation
of TDP-43, indicating that the arginine rich DPR-induced
defects of FG-nucleoporins can lead to TDP-43 mislocalization,
a key marker of nucleocytoplasmic transport dysfunction
and neurodegeneration.

G4C2 Repeat RNA
A recent study has provided evidence that C9orf72 G4C2 RNA
specifically disrupts the function of the nuclear pore via by
inducing loss of a specific subset of eight nucleoporins driven
by loss of one key nucleoporin POM121 (Coyne et al., 2020).
Notably, changes were specifically attributed to G4C2 RNA
and not DPRs as overexpression of either poly-GR or poly-PR
were insufficient to induce similar changes, but expression of
RNA-only G4C2 repeats with stop codons inserted to prevent
RAN translation were. POM121 is an FG-domain containing
nucleoporin that can phase separate into a hydrogel that mimics
active and passive nucleocytoplasmic transport (Labokha et al.,
2013). Given the ability of the G4C2 RNA itself to phase separate
and promote the phase separation of other LCD containing
proteins (Fay et al., 2017; Jain and Vale, 2017), it will be
important to study whether G4C2 RNA can disrupt the phase
separation of POM121.

DISCUSSION

Since the discovery of the C9orf72 repeat expansion mutation
in 2011, major progress has been made in elucidating the
underlying pathogenic mechanisms. Both the G4C2 repeat RNA
and DPRs have been shown to be neurotoxic and disrupt
a number of cellular processes including nucleocytoplasmic
transport, the stress response, nucleolar dysfunction and
RNA processing. All these processes require the correct
assembly, dynamics, and function of membraneless organelles
formed by physiological phase separation of LCD-containing
proteins or domains. Both the repeat RNA and arginine
rich DPRs themselves undergo phase separation and can
disrupt the phase separation of other LCD proteins required
for membraneless organelle formation and function. These
disturbed phase transitions account for widespread cellular
abnormalities observed in C9orf72-ALS/FTD and may be a target
for therapeutic intervention.

Phase Separation Underlies Shared
Pathomechanisms
In repeat expansion disorders a unique circumstance is
produced whereby repetitive RNA and repetitive polypeptides
are produced, which due to their repetitive nature are domains
of low complexity. This is the most overt in disorders where
the expansion is large, as is the case for C9orf72-ALS/FTD.
Intriguingly, in the evidence highlighted above both the C9orf72
DPRs and G4C2 repeat RNA affect many of the same pathways
although the RNA and polypeptides have dramatically different
structures and thus you would anticipate different interaction
partners. It is likely that the arginine rich DPRs result in
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the convergence of these molecules as the strong positive
charge from their arginine content lends them to interact with
nucleic acids and their binding partners. The combination
of low complexity proteins and RNA is also a key driver
of the multivalent interactions that lead to phase separation,
present in the majority of the membraneless organelles discussed
above. Both the DPRs and repeat RNA may act as molecular
seeds initiating aberrant phase transitions by binding to the
LCD of intrinsically disordered proteins and causing liquid
demixing. Furthermore, for the DPRs, due to the strength of
their interactions with LCDs, proteins will no longer interact
with their normal binding partners thus disrupting the assembly
of membraneless organelles and their physiological function.
Hence the majority of observed pathological phenomena and
perturbed pathways associated with C9orf72-ALS/FTD converge
on a disruption of LLPS of membraneless organelles.

RNA Splicing
One of these convergences is on RNA splicing. As detailed above,
the arginine rich DPRs can bind the LCD containing U2 snRNP
proteins leading to their mislocalization from nuclear speckles
to the cytosol, an alteration in the liquid-like properties of the
nuclear speckles and reduced splicing activity (Lee et al., 2016;
Freibaum and Taylor, 2017; Yin et al., 2017). Poly-PR can also
increase the levels of nuclear paraspeckles by direct interaction
with paraspeckle proteins and RNA (Suzuki et al., 2018, 2019).
G4C2 repeat RNA also binds to the nuclear speckle protein
SRSF1, sequestering it into RNA foci and this interaction leads
to increased nuclear export of G4C2 RNA, thereby increasing
RAN translation and enhancing DPR toxicity (Hautbergue et al.,
2017). The transcriptional regulators Pur-α, a binding partner of
SRSF1, and Matrin-3 can also bind G4C2 repeat RNA and modify
toxicity; both are also mislocalized to the cytoplasm upon G4C2
RNA expression (Xu et al., 2013; Ramesh et al., 2020), with Pur-α
being recruited to stress granules (Rossi et al., 2015). Similarly, to
SRSF1, Matrin-3 also reduced levels of RAN-translation products
(Ramesh et al., 2020). HnRNP H is also a strong interactor of
G4C2 repeat RNA and is sequestered into RNA foci in patients
where its depletion results in the reduction in alternative splicing
of its targets (Lee et al., 2013; Conlon et al., 2016). The interaction
of these DPR and RNA gain of function mechanisms has not yet
been studied.

Translation
Translation is also targeted. As detailed above, nucleolar function
can be impacted by both DPRs and G4C2 repeat RNA.
The arginine rich DPRs bind nucleolar proteins, particularly
nucleophosmin, and can both facilitate and inhibit their phase
separation depending on DPR concentration; this results in
consequent reduced mobility of proteins in the nucleolus,
displacement of proteins and ribosomal RNA away from the
nucleolus and functional impairment of ribosome biogenesis
(Lee et al., 2016; White et al., 2019). Both poly-GR and PR
have also been shown to directly bind both cytoplasmic and
mitochondrial ribosomal proteins and translation initiation and
elongations factors (Kanekura et al., 2016; Lee et al., 2016; Lin
et al., 2016; Lopez-Gonzalez et al., 2016; Boeynaems et al., 2017;
Yin et al., 2017; Hartmann et al., 2018; Moens et al., 2019;

Radwan et al., 2020); the translation initiation factor eIF1A was
able to rescue neuronal toxicity by enhancing translation in
Drosophila (Moens et al., 2019). Ribosomal proteins are also
found in a poly-GR mouse model and in cytoplasmic poly-GR
and PR aggregates in patient tissue (Hartmann et al., 2018; Zhang
et al., 2018b), suggesting that they may also sequester ribosomal
proteins or assembled ribosomes as well. The arginine rich
DPRs could also bind cellular RNAs rendering them insoluble
and inaccessible to translation factors (Kanekura et al., 2016).
An accumulation of nuclear mRNA has also been observed
from expression of G4C2 repeats and proposed to be due to
G4C2 repeat RNA sequestration of the nuclear export factor
Aly/REF or the poly(A) binding protein PABPC (Cooper-Knock
et al., 2014; Rossi et al., 2015). Both the arginine rich DPRs
and G4C2 repeat RNA also facilitate the phase separation of
stress granules, whose role is to temporarily stall translation
of sequestered mRNAs when required by the cell. Poly-GR
and PR increase β-sheet content and enhance stability of stress
granule protein LCD polymers, increasing the number of stress
granules in a cell by reducing their dynamics and preventing
disassembly (Lee et al., 2016; Lin et al., 2016; Boeynaems
et al., 2017). Within G4C2 RNA-induced stress granules, the
protein component G3BP1 maintained mobility whereas the
repeat RNA did not (Fay et al., 2017), showing that alterations
in phase separation can have varying impact on different
constituents. Additionally, the C9orf72 protein, which is reduced
in C9orf72-FTD/ALS, has been implicated in physiological stress
granule formation (Maharjan et al., 2017), showing co-operative
pathology from the C9orf72 mutation. In addition, G4C2 repeat
RNA has been identified in neuritic transport granules in
murine and patient-derived neurons and in Drosophila where
it colocalized with translational regulators and resulted in
branching defects (Burguete et al., 2015). Thus, both DPR and
G4C2 repeat RNA effects on the nucleolus, stress granules and
other processes involved in translation can contribute to the
translation repression seen in C9orf72-ALS/FTD.

Nucleocytoplasmic Transport
We have detailed above, how both the arginine rich DPRs and
G4C2 repeat RNA can disrupt the nuclear pore. Poly-GR and
poly-PR bind FG-domain containing nucleoporins, stabilizing
their polymeric form, and thus may change the biophysical
properties of the central channel (Shi et al., 2017). G4C2 repeat
RNA can also lead to a loss of a selective group of nucleoporins
with dysfunction of the FG-nucleoporin POM121 central
to its pathogenic effect (Coyne et al., 2020), however the
mechanism is yet unknown. In addition to nucleoporins,
nucleocytoplasmic transport involves nuclear transport
receptors and proteins involved in the Ran cycle. Further studies
have provided evidence that the impact of the arginine rich
DPRs on nucleocytoplasmic transport can also occur via
transport receptor (also known as karyopherins) interaction.
Poorly dynamic stress granules induced by expression of the
arginine rich DPRs can sequester both nucleoporins and the
transport receptors and thereby disrupt nucleocytoplasmic
transport (Zhang et al., 2018a); indeed, transport receptors
are known components of physiological stress granules
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(Chang and Tarn, 2009; Fujimura et al., 2010; Mahboubi
et al., 2013). Transport receptor-mediated nuclear import is
also impaired by the arginine rich DPRs (Jovǐcić et al., 2015;
Solomon et al., 2018; Hayes et al., 2020; Cook et al., 2020;
Hutten et al., 2020). The arginine rich DPRs bind several
transport receptors in vitro (Lee et al., 2016; Hutten et al.,
2020). Interaction with importin-β occurs via competition
with the binding of arginine rich nuclear localization signals
on cargo and thus inhibits their transport (Hayes et al., 2020),
whereas polyPR-transportin-1 binding has recently been
pinpointed to the nuclear localization recognition domain of
transportin-1 (Nanaura et al., 2019, preprint). Arginine rich DPR
binding reduces transport receptor solubility and drives their
oligomerization and LLPS with transportin-1, importin-α or an
importin-α/β complex (as occurs for physiological transport)
being more susceptible than importin-β alone to these effects;
exportin-1 remained unaffected in solubility and biophysical
assays (Hutten et al., 2020). Condensates formed by poly-GR and
transportin-1 showed no recovery after photobleaching showing
that proteins are immobile in these structures. DPR binding was
generally stronger for poly-GR than PR, which was reflected in
the selective impairment of a classic NLS reporter or TDP-43
import by poly-GR. Disruption of transport receptor-dependent
nucleocytoplasmic transport is however not observed in all
studies, likely due to differences in assay sensitivities, transport
factors or cell lines studied (Khosravi et al., 2017; Vanneste et al.,
2019). Nucleocytoplasmic transport factors are also found with
poly-GR, GA and GP aggregates in patient tissue (Khosravi
et al., 2017; Solomon et al., 2018). Transport factors seem to be
non-specifically prone to be sequestered into inclusions, as even
those formed by artificial β-sheet containing proteins can induce
this, and this process is specific to cytoplasmic and not nuclear
accumulations (Woerner et al., 2016).

C9orf72 G4C2 repeat RNA can also bind directly with
nucleocytoplasmic transport factors, including Ran GTPase-
activating protein 1 (RanGAP1; Donnelly et al., 2013). RanGAP
is a key regulator of the Ran cycle which maintains the
directionality of nucleocytoplasmic transport; it is anchored to
the cytoplasmic face of the nuclear pore where it hydrolyzes
RanGTP into RanGDP causing the dissociation of transport
complexes releasing RanGDP and transport receptors to either
release cargo into the cytoplasm for nuclear export or leave
receptors available to bind cargo for import (Stewart, 2007).
RanGAP overexpression was one of the strongest suppressors
of toxicity from expression of 30 G4C2 repeats in a Drosophila
screen and was found to mislocalize in patient brain tissue and
in patient-derived neurons (Zhang et al., 2015), although the
former finding in patient tissue has been disputed (Saberi et al.,
2018). Cells expressing 30 G4C2 repeats and patient neurons also
showed concomitant disturbances in the nuclear/cytoplasmic
ratio of Ran, which could again be rescued by overexpression
of RanGAP. Cytosolic accumulation of the Drosophila homolog
of TDP-43, TBPH, was also found in Drosophila salivary gland
cells expressing 30 G4C2 repeats, indicative of an imbalance
in its nucleocytoplasmic shuttling. Although RanGAP does not
contain any low complexity domains, interestingly its enzymatic
activity can be dramatically enhanced when artificially targeted

to liquid droplets (Peeples and Rosen, 2020, preprint). Noting
that although the conclusions drawn implicate the C9orf72 G4C2
repeat RNA, it is possible that effects were also mediated by
low undetectable levels of DPRs translated from the RNA, as
abnormalities in RanGAP distribution have been observed as a
result of poly-PR expression in the cortex of mice (Zhang et al.,
2019a). In summary, both DPRs and G4C2 repeat RNA can
disrupt nucleocytoplasmic transport by affecting the nuclear pore
directly, but also via transport receptors and the Ran cycle, much
of which involves interactions with LCD containing proteins and
alterations in phase separation behavior.

Genomic Homeostasis
Additional evidence also relates C9orf72 pathogenesis and phase
separation to genomic homeostasis. DNA damage has been
associated with arginine rich DPR toxicity, in particular aberrant
activation of the p53 pathway (Lopez-Gonzalez et al., 2016).
Poly-PR has recently been shown to lead to a stabilization of
p53 and the transcription of its targets, and p53 reduction
or knockdown rescues both poly-GR and poly-PR toxicity in
neurons and mice, and in G4C2 repeat expressing Drosophila
and C9orf72 patient-derived motor neurons (Maor-Nof et al.,
2021). Interestingly, the nucleolus mediates the stabilization of
p53 during DNA damage and regulates both its export and
degradation (Rubbi and Milner, 2003; Boyd et al., 2011) and the
nucleolar stress response pathway results in p53 accumulation
(Rubbi and Milner, 2003; Yuan et al., 2005). As discussed
above, both the arginine rich DPRs and G4C2 repeat RNA are
associated with nucleolar dysfunction, with disruption in the
phase separation of nucleolar proteins (White et al., 2019),
and thus these pathologies may intersect in this pathway.
In a mouse model expressing GFP-PR50 and in C9orf72-
FTD/ALS patient tissue, poly-PR was found to colocalize
with heterochromatin, highly condensed regions of chromatin
which are transcriptionally inactive (Zhang et al., 2019a).
These changes were not seen in GFP-(GR)100 expressing mice,
likely due to the restricted cytoplasmic distribution of the
DPR in this model, confirming that the actions of poly-PR
are due to its nuclear localization. Poly-PR was subsequently
found to disrupt the phase separation of heterochromatin
protein 1α (HP1α) causing solid compartments to form
within HP1α droplets and their bursting, and resulting in a
significantly reduced number of droplets in vitro. This was
recapitulated by reduced HP1α protein levels in the mouse
model with functionally disrupted H3 histone post-translational
modifications and upregulation of repetitive RNA elements,
known to localize to heterochromatin, and double-stranded
RNA which form from these which can initiate interferon
signaling and cell death in neurons; these changes could
also be induced by HP1α knockdown in cells. Interestingly,
these changes occurred concurrently with irregularities in
the nuclear lamina, which can also cause heterochromatin
dysregulation (Scaffidi and Misteli, 2005; Shumaker et al.,
2006). Indeed, changes in the nuclear lamina have been
observed in C9orf72-FTD/ALS models (Zhang et al., 2019a),
and loss of a Drosophila lamin enhanced C9orf72 repeat toxicity
(Freibaum et al., 2015). Thus, DPRs may also contribute to
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DNA damage and reduced transcription via alterations in
genomic homeostasis.

TDP-43 Aggregation and Phase Separation
Perturbed phase separation and membraneless organelle
formation appears to explain one of the key pathological features
of C9orf72-ALS/FTD, the nuclear depletion and cytoplasmic
aggregation of TDP-43 present in 97% and 45% of ALS and
FTD cases respectively (Ling et al., 2013). Unlike the widespread
DPR and RNA foci pathology, TDP-43 pathology is highly
correlated with brain areas showing the highest levels of
neurodegeneration and clinical symptoms (Mackenzie et al.,
2013; DeJesus-Hernandez et al., 2017). Based on this it has been
proposed that TDP-43 mislocalization and/or aggregation are
the most likely effectors of toxicity from the C9orf72 mutation
(Edbauer and Haass, 2016). Overt TDP-43 pathology is absent
in many in vivo models of the C9orf72 mutation (possibly
due to the short lifespan of model organisms) but increased
cytoplasmic accumulation, increased biochemical insolubility
or phosphorylation have been observed in Drosophila, murine
and cellular models expressing poly-GR and poly-GA (Khosravi
et al., 2017, 2020; Schludi et al., 2017; Solomon et al., 2018;
Cook et al., 2020; Hutten et al., 2020; LaClair et al., 2020;
Park et al., 2020; West et al., 2020). There have also been
reports of association between TDP-43 and DPR pathologies:
dendritic-like aggregates of poly-GR co-localized almost
completely with phosphorylated TDP-43 in C9orf72-ALS motor
cortex but formed only a small proportion of these TDP-43
aggregates in total (Saberi et al., 2018); similarly, a proportion
of both inclusions of poly-GR and poly-GA have been found
to colocalize with TDP-43 in C9orf72-FTD/ALS hippocampus
(Cook et al., 2020). In agreement with associations between
these pathologies, the burden of TDP-43 and poly-GA, poly-GP
or poly-GR inclusions correlates with neurodegeneration
(Mackenzie et al., 2013, 2015; Gendron et al., 2015; Saberi
et al., 2018; Sakae et al., 2018). Soluble poly-GP and poly-GR
levels also correlate with clinical severity (Quaegebeur et al.,
2020). Interestingly, there were also associations with the
methylation status of poly-GR, which can affect its phase
separation properties (Sakae et al., 2018; Gittings et al., 2020).
C9orf72 RNA foci composed of antisense C4G2 but not sense
G4C2 transcripts have also been associated with the cytoplasmic
mislocalization of TDP-43 in patient tissue (Cooper-Knock et al.,
2015; Aladesuyi Arogundade et al., 2019).

Disrupted stress granule dynamics have been proposed to
both directly and indirectly underlie the characteristic TDP-43
proteinopathy in ALS/FTD. Chronic stress can lead to an
accumulation of TDP-43 in cytoplasmic stress granules, which
become less dynamic by alterations in phase separation behavior
from liquid to non-fluid gel states (Boeynaems and Gitler,
2018; McGurk et al., 2018b). Thus, the direct recruitment of
TDP-43 to stress granules with impaired dynamics caused by
the arginine rich DPRs and G4C2 repeat RNA may similarly
explain pathological TDP-43 aggregation in DPR models and
C9orf72-ALS/FTD. However, TDP-43 itself harbors an LCD
and can also undergo LLPS in vitro (Molliex et al., 2015;
Conicella et al., 2016, 2020; Schmidt et al., 2019) and form

cytoplasmic droplets in cells independently of stress granules
(Gasset-Rosa et al., 2019; Mann et al., 2019). RNA appears
to be essential for these differences, with its presence being
essential for recruitment of TDP-43 to stress granules and
maintaining its solubility within them, and mutants lacking the
ability to bind RNA forming immobile homomeric inclusions
(Mann et al., 2019). This finding is consistent with TDP-43
inclusions in ALS/FTD patient tissue which do not contain stress
granule proteins or RNA (Mann et al., 2019). Alterations in
stress granule dynamics may thus indirectly prevent TDP-43
recruitment and promote homomeric TDP-43 inclusions. As
the arginine rich DPRs and G4C2 repeat RNA perturb stress
granule dynamics, their effect on TDP-43 aggregation may also
similarly be indirect. A pathological retention of mRNA to
poorly dynamic stress granules and DPR or repeat RNA-induced
nuclear mRNA retention via impaired export (Freibaum et al.,
2015; Rossi et al., 2015) would also further exacerbate this
pathway by resulting in a cytoplasm deficient in mRNA
preventing recruitment of TDP-43 to stress granules and
promoting homomeric TDP-43 interactions in the cytoplasm
resulting in further LLPS and the formation of more solid-like
hydrogels of TDP-43 (Guenther et al., 2018) and its eventual
aggregation. However, poly-GR interaction with TDP-43 does
not require the RNA binding capability of TDP-43 (Cook
et al., 2020) and can directly promote TDP-43 phase separation
in vitro and reduce its solubility (Hutten et al., 2020). The
direct effect of G4C2 RNA on TDP-43 phase separation has
not yet been studied. In addition, DPR induced stress granule
accumulation has been shown to specifically enhance RAN
translation (Green et al., 2017; Cheng et al., 2018; Westergard
et al., 2019), which would exacerbate any DPR induced
mechanism discussed including cytoplasmic mislocalization of
TDP-43; which itself has been shown to further enhance
RAN translation (Solomon et al., 2018). Thus, both direct and
indirect mechanisms relating to stress granules may account for
pathological TDP-43 aggregation in DPR models and C9orf72-
ALS/FTD (Figure 3).

In cells, although RNA-binding capacity was essential for
TDP-43 aggregation, the formation of cytoplasmic inclusions
(as predominates in disease) only occurred with a disrupted
nuclear localization signal which localizes TDP-43 to the
cytoplasm but not wildtype TDP-43 which remains in the
nucleus (Mann et al., 2019). Similarly, TDP-43 recruitment
to stress granules induced by poly-GR was also dependent
on its prior cytoplasmic mislocalization with the same
mutants (Cook et al., 2020). Together these indicate that
nucleocytoplasmic transport pathology lies upstream of TDP-43
pathology, as has been previously suggested (Dormann and
Haass, 2011; Boeynaems et al., 2016b). Described in detail
above, both arginine rich DPRs and G4C2 RNA induced
deficits in nucleocytoplasmic transport may occur through
the sequestration or demixing of nucleocytoplasmic transport
factors by inclusions of either DPRs or G4C2 RNA or DPR
or RNA induced stress granules, or by direct disruption
of FG nucleoporins in the nuclear pore, through which all
transport occurs. Indeed, poly-PR induced mislocalization of
nucleocytoplasmic transport factors was seen in the absence
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FIGURE 3 | How disruptions in phase separation and membraneless organelles may lead to TDP-43 aggregation in C9orf72-ALS/FTD and possible therapeutic
strategies. (1) C9orf72 arginine rich DPRs and G4C2 repeat RNA bind nuclear pore proteins with phenylalanine rich repeats (FG domains) and result in
nucleocytoplasmic transport dysfunction and mislocalization of TDP-43 to the cytoplasm. (2) Interaction between cytoplasmic TDP-43 and the arginine rich DPRs
results in the LLPS of TDP-43 in the cytoplasm. Impaired nucleocytoplasmic transport also results in an accumulation of the importin-α/β complex (the import
receptor for TDP-43) in the cytoplasm where it is also bound by the arginine rich DPRs and results in their reduced solubility. This begins a vicious feedback loop as
impaired nuclear import of TDP-43 further increases levels of cytoplasmic TDP-43, whose LLPS is potentiated by a nuclear retention of mRNA from impaired nuclear
export. (3) Cellular stress and the direct interaction of arginine rich DPRs and G4C2 RNA with stress granule proteins (including TDP-43) promotes phase separation
and the formation of stress granules. The arginine rich DPRs also induce condensation of importin-α/β. TDP-43 droplets recruit importin-α/β complexes and nuclear
pore proteins further impairing nucleocytoplasmic transport, resulting in more TDP-43 accumulation in the cytoplasm and depletion of nuclear TDP-43. Both stress
granule accumulation and cytoplasmic TDP-43 also enhance RAN translation of the arginine rich DPRs. (4) The stress granules induced by the arginine rich DPRs
and repeat RNA have reduced dynamics which entraps TDP-43, import receptors and nuclear pore proteins. Persistent TDP-43 and DPR-importin-α/β droplets are
likely to mature into more solid-like states such as hydrogels, further immobilizing these proteins. (5) TDP-43 in solid-like states and within stress granules, and also
DPRs, mature into pathological insoluble aggregates which further sequester proteins involved in nucleocytoplasmic transport. Thus, the disruption of phase
separation and membraneless organelles leads to a cascade of vicious feedback loops which result in depletion of nuclear TDP-43 and its accumulation and
aggregation in the cytoplasm in disease. (6) Therapeutic targeting of stress granules by reducing ataxin-2 levels, manipulating post-translation modifications such as
methylation of the DPRs and phosphorylation of TDP-43, or increasing importin-α/β to reduce excessive LLPS may enhance the solubility of TDP-43, help to reduce
its aggregation and ameliorate the pathological cascade in C9orf72-ALS/FTD and other TDP-43 proteinopathies.

of TDP-43 pathology in a mouse model (Zhang et al., 2019a).
It is currently unclear how a disruption in the nuclear pore
structure or biophysical properties may lead to a directional
imbalance in nucleocytoplasmic shuttling and cytoplasmic
mislocalization of TDP-43. Cytoplasmic mislocalization of
TDP-43 may be caused by either or both a reduction in
nuclear import and enhancement of nuclear export. TDP-43
nuclear import is governed by active transport via importin-β
binding to its nuclear localization signal, and thus reduced
availability of transport receptors or Ran cycle proteins may
have a major impact, whereas its export may either be passive
or via redundant export receptors (Archbold et al., 2018;

Ederle et al., 2018; Pinarbasi et al., 2018), and thus changes
in the nuclear pore may have greater effect. Further both
cytoplasmic TDP-43 (Solomon et al., 2018; Gasset-Rosa
et al., 2019) and TDP-43 aggregates (Chou et al., 2018) can
also sequester or lead to cytoplasmic demixing of proteins
including nucleocytoplasmic transport factors which would
again exacerbate these mechanisms– further enhancing
TDP-43 mislocalization and aggregation. Together, through
disruptions in phase separation behavior, stress granules and
nucleocytoplasmic transport in combination with loss of nuclear
TDP-43 autoregulation (Ayala et al., 2011; White et al., 2018),
TDP-43 pathology may become independent of the initial
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DPR insult and maintain its own pathological cascade in a
vicious feedback cycle (Solomon et al., 2018; Figure 3), which
may explain the segregation of DPR and TDP-43 pathology in
patient tissue.

Therapeutics
We have described the evidence for the ability of the C9orf72
arginine rich DPRs and G4C2 RNA to disrupt LLPS and perturb
membraneless organelles leading to key pathomechanisms in
disease, but what can be done to target these therapeutically to
prevent TDP-43 aggregation and toxicity? One potential avenue
would be to attempt to ameliorate the enhanced propensity
for proteins to phase separate in the presence of pathological
molecules and the resulting change in the biophysical properties
and functionality of the droplets or organelles formed (Elbaum-
Garfinkle, 2019). So far, the majority of treatments in this
area relating to C9orf72-FTD/ALS and TDP-43 proteinopathy
target stress granules. A high throughput screen identified a
diverse range of small-molecule compounds that could alter
stress granule properties; around half of these were compounds
with planar moieties, such as Mitoxantrone which reduced
both the size and number of stress granules formed, prevented
recruitment of RNA-binding proteins (including TDP-43) to
stress granules and decreased persistent TDP-43 puncta in cells
treated with cellular stressors, and also ameliorated toxicity from
overexpression of a mutant TDP-43 in primary neurons (Fang
et al., 2019). Planar compounds intercalate into nucleic acids,
and thus may act by preventing the RNA-dependent recruitment
of TDP-43 to aberrant stress granules. Interestingly, another
planar compound identified in this screen, doxorubicin, can
alter the phase separation of CAG and CUG repeat RNAs
and reduces G4C2 repeat RNA foci formation in cells (Jain
and Vale, 2017). In the former screen, doxorubicin could also
ameliorate toxicity from mutant TDP-43 but had differing cell
line-dependent effects on stress granules and did not prevent the
recruitment of TDP-43 (Fang et al., 2019). Thus, compounds
with planar moieties act on multiple and varying mechanisms
and maybe of therapeutic potential in C9orf72-FTD/ALS
pathology. Another target of note is the stress granule protein
ataxin-2, as its knockout or ASOs targeting ataxin-2 could
significantly decrease TDP-43 aggregation and increase survival
in a mouse model overexpressing wildtype TDP-43 (Becker
et al., 2017). Ataxin-2 harbors two intrinsically disordered
regions which both modulate phase separation behavior in vitro
(Bakthavachalu et al., 2018). Ataxin-2 knockdown significantly
decreases both the number of stress granules and the recruitment
of endogenous TDP-43 (Becker et al., 2017). The arginine rich
DPRs also directly interact with ataxin-2 (Lee et al., 2016;
Hayes et al., 2020), colocalizing with poly-GR aggregates
and TDP-43 in GR200 expressing mice (Cook et al., 2020).
Knockdown of ataxin-2 can rescue mislocalization of Ran (part
of the driving force for active nucleocytoplasmic transport) in
C9orf72 patient-derived neurons (Zhang et al., 2018a) and was
the strongest suppressor of poly-GR toxicity in a Drosophila
RNA inhibitor screen (Lee et al., 2016). This suppression
could also be recapitulated when either intrinsically disordered
region of ataxin-2 was deleted (Bakthavachalu et al., 2018),

suggesting that its LLPS ability facilities C9orf72 DPR toxicity.
Hence it is possible that stress granule assembly promotes
an environment for poly-GR to aggregate, undergo aberrant
interactions (such as with TDP-43) and enhance toxicity,
therefore modulating this process via reducing ataxin-2 levels
may provide a novel therapeutic target in C9orf72-ALS/FTD
(Figure 3, panel 6). Post translational modifications can also
regulate the LLPS of proteins and the properties of the
resulting condensates (Hofweber and Dormann, 2019) and
thus could be targets for intervention. The post-translational
modification poly-ADPribose (PAR) binds within the NLS of
TDP-43 promoting its LLPS and is required for recruitment to
stress granules (McGurk et al., 2018b). Knockdown of the PAR
polymerases (PARPs) tankyrase 1/2 or small molecule inhibition
of PARP-1/2 could both reduce toxicity from overexpression
of TDP-43 in Drosophila or spinal cord cultures, respectively
(McGurk et al., 2018a,b). Interestingly, the small molecule
inhibitors of PARP-1/2 reduce the formation of TDP-43-
positive stress granules in cells (McGurk et al., 2018a), whereas
the tankyrase-1/2 inhibitors do not affect stress granules but
prevent TDP-43 recruitment to them (McGurk et al., 2018b),
suggesting that the latter may act more specifically on TDP-
43. Indeed, recent data demonstrates a novel binding site for
the tankyrases on TDP-43 and suggests that binding may
prevent its ubiquitination and proteasomal turnover in the
nucleus, stabilizing TDP-43 in the cytoplasm (McGurk et al.,
2020). Thus, either direct or indirect pathways associated with
LLPS and stress granules are showing promise as therapies for
C9orf72-FTD/ALS.

Targeting DPRs or TDP-43 directly to prevent their aberrant
phase separation and aggregation may also be effective. It
has been recently shown that anti-cancer drugs partition
into droplets formed by their molecular targets and change
the properties of the condensate (Klein et al., 2020). Two
molecules which have recently shown promise for ALS are
lipoamide and lipoic acid which prevent FUS aggregation via
influencing FUS phase separation and reduce FUS toxicity
in vivo (Wheeler et al., 2019). The identification of small
molecules and compounds that can modulate the charge-charge
and cation-pi interactions essential for phase separation of
LCD containing proteins is an interesting avenue for future
research, although a greater understanding is needed into
the physiochemical mechanisms as to how molecules such as
lipoamide and lipoic acid disrupt these interactions inhibiting
LLPS (Wheeler, 2020). Again, post-translational modifications
can be targeted. As detailed above symmetric dimethylation of
poly-GR reduces its propensity for LLPS and appears to be
protective (Gittings et al., 2020; Pakravan et al., 2020). The
enzymes responsible for arginine methylation belong to the
protein arginine methyltransferase (PRMT) family (Yang and
Bedford, 2013). Knockdown of several PRMTs enhance toxicity
in Drosophila models of poly-PR toxicity, with PRMT1 also
colocalizing with poly-PR upon co-transfection in cell lines
(Boeynaems et al., 2016a), in agreement with the protective
role suggested by human studies. However, small molecule
inhibition of type I PRMTs, which produce asymmetrically
dimethylated arginine, alleviated the toxicity of both poly-GR
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and PR in cells (Premasiri et al., 2020). This could align
with the human studies as symmetric dimethylation would
protect the arginine residues from asymmetric demethylation,
although it does not explain why knockdown of the type I
PRMT PRMT1 exacerbated toxicity in the Drosophila studies.
These opposing roles do not however align with their effect
on LLPS, as both symmetric and asymmetric demethylation
of poly-GR reduce propensity to undergo LLPS. Interestingly,
a rapid demethylation of the stress granule protein G3BP1 is
critical for stress granule assembly (Tsai et al., 2016), showing
that methylation can modulate LLPS behavior in different
contexts and that the process can also be dynamic. Further
work will be required to assimilate these findings and
determine whether modulating the phase separation behavior
of the arginine rich DPRs by altering their methylation
state is a valid therapeutic target (Figure 3, panel 6).
Phosphorylation can also both enhance and hinder LLPS
of ribonuclear granules in vitro (Hofweber et al., 2018). In
the context of TDP-43, phosphorylation of its N-terminal
domain inhibits LLPS (Wang et al., 2018a) and C-terminal
domain phosphorylation has been shown to reduce TDP-43
aggregation and toxicity in cells (Li et al., 2011), suggesting
that the associated kinases or phosphatases could be targeted
(Figure 3, panel 6). However, as is commonly found in
neurodegeneration (Hofweber and Dormann, 2019), TDP-43
inclusions are hyperphosphorylated in patient brain which
may suggest that a role in aggregate formation (Hasegawa
et al., 2008). Also, post-translation modifications regulate a
vast number of protein and cellular functions, hence targeting
them on a specific molecule of interest is incredibly challenging
and complicating this even further is the fact numerous
post-translational modification enzymes have been associated
with ALS (Guo et al., 2020).

It has also been proposed that chaperones exist whose normal
function is to modulate LLPS within a cellular environment
that is particularly concentrated, unstable and oversaturated
in order to prevent abnormal fibrillization (Elbaum-Garfinkle,
2019). Such chaperones may provide more specific therapeutic
targets, rather than modifying the LLPS of membraneless
organelles or post-translational modifications which are both
vitally important in normal cell function. Heat shock proteins
are a classic example of cellular chaperones and the master
transcriptional regulator of heat shock protein expression
HSF1 can prevent cytoplasmic accumulation and toxicity from
over-expression of wildtype or mutant TDP-43; the associated
reduction in TDP-43 solubility was found to be enacted
by the heat shock protein DNAJB2a (Chen et al., 2016).
Variants of the heat shock protein Hsp104 engineered to
potentiate disaggregation are also able to dissolve both FUS
and TDP-43 aggregates in yeast (Jackrel and Shorter, 2014;
Jackrel et al., 2014) and FUS aggregates in cells (Yasuda et al.,
2017). Interestingly, nuclear import receptors, associated with
both DPR and TDP-43 toxicity in models and post-mortem
brain (Nishimura et al., 2010; Jovǐcić et al., 2015; Solomon
et al., 2018; Gasset-Rosa et al., 2019; Hayes et al., 2020;
Cook et al., 2020; Hutten et al., 2020; Park et al., 2020)
have also been shown to prevent the pathological phase

separation of RNA binding proteins (Springhower et al., 2020).
Transportin-1 can both prevent phase separation, hydrogel
formation and fibrillization of FUS and hnRNP A1 and
A2, and importantly dissolve already formed hydrogels and
fibrillar aggregates (Guo et al., 2018; Qamar et al., 2018;
Yoshizawa et al., 2018; Hofweber et al., 2018). ALS-associated
mutations in the NLS of FUS disrupt binding to transportin-
1, preventing its solubilizing effects on FUS and leading to
FUS accumulation in stress granules (Hofweber et al., 2018).
Functionally, increasing transportin-1 expression could also
restore nuclear localization of FUS or hnRNPA1/2, restore
proteins synthesis in hypomethylated FUS neurons, and improve
lifespan and muscle degeneration phenotypes in Drosophila
models of mutant FUS and hnRNP A2, respectively (Guo
et al., 2018; Qamar et al., 2018). Similarly, an importin-
α/β complex reduces in vitro LLPS and fibril formation of
TDP-43 and could also disassemble preformed fibrils (Guo
et al., 2018). TDP-43 is transported into the nucleus via its
classic NLS recognized by the importin-α/β complex, whilst
FUS and the hnRNPs contain a PY-NLS which is bound
and transported by transportin-1 (Mihevc et al., 2017). If the
PY-NLS of FUS is substituted for a classic NLS, the importin-
α/β complex can now inhibit its phase separation (Yoshizawa
et al., 2018). Hence, nuclear import receptors modulate the
phase separation and fibril formation of cargo in their respective
nucleocytoplasmic transport pathway, indicating an additional
physiological chaperone function of transport receptors in
maintaining solubility of their cargo. Thus, potential disease
therapies will likely need to reflect the major pathology involved.
In the case of C9orf72-ALS/FTD where TDP-43 is the major
pathology, the arginine rich DPRs bind to importin-α and β,
reducing their solubility and lead to their precipitation and
condensation; this results in defective nuclear import of TDP-43,
and thus likely contributes to the dominant TDP-43 pathology
(Hutten et al., 2020). High concentrations of importin-α/β can
suppress poly-GR induced TDP-43 phase separation in vitro
and its reduced solubility in cells, and inhibit RNA-driven
LLPS of poly-GR. Therefore, therapies boosting levels of
importin-α and β could ameliorate both DPR and TDP-43
pathologies and prevent other pathogenic interactions, which
may be beneficial for the wide range of cellular abnormalities
observed in C9orf72-ALS/FTD (Figure 3, panel 6). Notably,
both heat shock proteins and import receptors are reduced
in ALS/FTD patient tissue (Kinoshita et al., 2009; Nishimura
et al., 2010; Chen et al., 2016; Solomon et al., 2018), and thus
supplementation strategies will also restore physiological roles
lost in disease.

A complementary strategy to all of the above strategies is
to target the C9orf72 G4C2 repeat RNA and DPRs directly
to reduce their levels and prevent pathological intra and
intermolecular associations. An approach that has gained
much traction and is being pursued in clinical trials is
using ASOs to the C9orf72 repeat which can reduce the
formation of repeat RNA and DPRs in C9orf72 repeat-
expressing neurons and mice and patient-derived neurons
with an associated reduction in glutamate-induced toxicity in
cultured neurons and behavioral and cognitive phenotypes
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in mice (Donnelly et al., 2013; Lagier-Tourenne et al., 2013;
Sareen et al., 2013; Jiang et al., 2016; Gendron et al., 2017).
Small molecules which bind G4C2 G-quadruplexes can reduce
the production of DPRs and rescue toxicity (Zhang et al.,
2015; Simone et al., 2018), potentially by destabilizing and
ablating G-quadruplex dependent interactions (Zamiri et al.,
2014), which may prevent its nucleation behavior in relation
to RNA-dependent protein condensation and stress granule
formation discussed above. Endogenous targets that modulate
the production of repeat RNA and/or RAN translation have
also been identified. Reducing the transcription elongation factor
Spt4 or PAF1C complex, a transcriptional regulator of RNA
polymerase II, reduce production of expanded G4C2 repeat
RNA and thus the translation of DPRs and their associated
toxicity in model systems (Liu et al., 2012; Kramer et al.,
2016; Goodman et al., 2019a). Conversely, the RNA-binding
protein hnRNPA3 can bind G4C2 repeat RNA and its depletion
increases production of repeat RNA and DPRs (Mori et al.,
2013b, 2016). Genetic screens have also identified regulators
of RAN translation, including the small ribosomal protein
RPS25 and the eukaryotic translation initiation factors eIF4B
and eIF4H, whose loss could reduce the production of
DPRs and extend lifespan in Drosophila models and the
former also in C9orf72 patient cells (Goodman et al., 2019b;
Yamada et al., 2019). The integrated stress response also
promotes RAN translation (Green et al., 2017; Cheng et al.,
2018; Westergard et al., 2019), and inhibition of one part
of this—the double-stranded RNA-dependent protein kinase
(PKR) pathway—can reduce RAN translation and mitigate
gliosis, motor neuron loss and behavioral phenotypes in a
C9orf72 mutation mouse model (Zu et al., 2020). Of note,
hnRNPA3 and eIF4H are reduced in C9orf72-FTD/ALS patient
brain (Mori et al., 2016), and therefore supplementation
may provide therapeutic benefit, whereas components of the
PAF1C complex are upregulated and the PKR pathway is
aberrantly activated in disease and thus inhibition of these
pathways may normalize levels (Goodman et al., 2019a;
Zu et al., 2020).

SUMMARY

There is now substantial and clear evidence that a disruption
in the phase separation behavior of proteins and RNA
involved in the formation of liquid-like membraneless
organelles explains much of the major pathological
phenomena associated with C9orf72-ALS/FTD. Gain-of-
function mechanisms associated with the G4C2 repeat
expansion in C9orf72–G4C2 repeat RNA and the arginine
rich DPRs poly-GR and poly-PR—undergo phase separation
themselves and perturb the phase separation of LCD
containing proteins, resulting in abnormal membraneless
organelle formation and dissolution, impairing their
physiological functions and leading to neurodegeneration.
Further pathological phase separation induced by the
arginine rich DPRs is strongly associated with TDP-43
dysfunction and aggregation, the major pathological
hallmark of C9orf72-ALS/FTD correlating with neuronal
cell death. The targeting of abnormally phase separated
condensates using small molecules or gene therapy
provides a novel strategy for future therapeutics, although
a greater understanding is needed of phase separation
in order to design targets which are both beneficial
and precise.
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