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Abstract

Cystic fibrosis is a mono-genetic multi-system disease; however, respiratory manifestations cause the main
morbidity and mortality where chronic bacterial infections lead to bronchiectasis and ultimately respiratory failure.
Metabolomics allows a relatively complete snapshot of metabolic processes in a sample using different mass
spectrometry methods. Sample types used for discovery of biomarkers or pathomechanisms in cystic fibrosis (CF)
have included blood, respiratory secretions, and exhaled breath to date. Metabolomics has shown distinction of CF
vs. non-CF for matrices of blood, exhaled breath, and respiratory epithelial cultures, each showing different
pathways. Severity of lung disease has been addressed by studies in bronchoalveolar lavage and exhaled breath
condensate showing separation by metabolites that the authors of each study related to inflammation; e.g.,
ethanol, acetone, purines. Lipidomics has been applied to blood and sputum samples showing associations with
lung function and Pseudomonas aeruginosa infection status. Finally, studies of bacteria grown in vitro showed
differences of bacterial metabolites to be associated with clinical parameters. Metabolomics, in the sense of global
metabolomic profiling, is a powerful technique that has allowed discovery of pathways that had not previously
been implicated in CF. These may include purines, mitochondrial pathways, and different aspects of glucose
metabolism besides the known differences in lipid metabolism in CF. However, targeted studies to validate such
potential metabolites and pathways of interest are necessary. Studies evaluating metabolites of bacterial origin are
in their early stages. Thus further well-designed studies could be envisioned.
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Introduction
Cystic fibrosis (CF) or mucoviscidosis is a multi-system
monogenetic disease caused by mutation of the cystic fi-
brosis transmembrane regulator (CFTR) gene leading to
abnormal folding and function of the CFTR protein,
which is a chloride/bicarbonate channel. Absence of a
functional protein leads to dehydration and acidification
of glandular and other secretions. Lung manifestations
are abnormal mucus viscosity and rheology, abnormal
mucociliary clearance with propensity to bacterial infec-
tion, and increased inflammation [1]. Gastrointestinal
manifestations of CF include pancreatic insufficiency,
malabsorption, and abnormal intestinal motility often as-
sociated with bacterial intestinal overgrowth. Intestinal
obstruction in the newborn period and distal intestinal

obstruction syndrome (DIOS) in older patients can
occur secondary to abnormal viscosity and probably also
due to intestinal mucus obstruction. Metabolic abnor-
malities that are not considered to be a consequence of
malabsorption have been reported for essential fatty
acids, for instance docosahexaenoic acid and linoleic
acid [2], and cholesterol and triglyceride pathways [3].
As early detection and initiation of therapies result in

better outcomes, diagnosis occurs by newborn screening
in many countries. Definitive diagnosis is made by sweat
test, showing elevated chloride concentration in CF.
Metabolomic technology in CF has been used for bio-
marker detection and identification of potential patho-
mechanistic changes to advance novel therapeutic
approaches.
Metabolomics or metabolomic profiling is the com-

prehensive assessment of endogenous and exogenous
metabolites in small volumes of bodily secretions and
tissue samples. The detectable metabolites include lipids,
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carbohydrates, peptides, and proteins with different mo-
lecular size and charge of either endogenous or exogenous
origin. Untargeted metabolomic profiling has been used
for assessment of pathways in the context of disease
diagnosis, insight into normal or pathologic processes,
comparison of groups and disease processes, and nor-
mal events such as aging. The most widely used and
sensitive technical approaches for metabolomics in-
clude nuclear magnetic resonance (NMR), which can
be used without sample pre-separation, and mass spec-
trometry (MS) methods coupled to different extraction
methods. Extraction methods used for sample prepar-
ation include gas or liquid chromatography (GC or LC)
and capillary electrophoresis (CE). While extraction
methods for MS may potentially bias the detection of
metabolites, MS has the advantage of being more sensi-
tive compared to NMR techniques. Another technique
that is currently considered the state-of-the-art instru-
ment secondary to its wider dynamic range is ultra per-
formance liquid chromatography-mass spectrometry
(elevated energy) (UPLC-MS(E)) or UPLC coupled to
MS via electrospray ionization (ESI) [4]. This method
provides higher selectivity and sensitivity compared to
other methods.
This review will focus on untargeted metabolomic pro-

filing for biomarker or pathway discovery although many
further studies, not referenced here, have used sensitive
NMR or MS technologies for targeted metabolomics,
i.e., measuring known metabolites.

Review
Metabolomic studies in CF
Patient-based studies have utilized blood, sputum, bron-
choalveolar lavage fluid (BALF), exhaled breath conden-
sate (EBC), and urine as biological samples to evaluate
differences between CF and non-CF subjects, to evaluate
markers of disease severity or to gain novel insight into
pathophysiology. Mechanistic studies used cell cultures
and bacteria derived from CF lung infection as sub-
strates. Figure 1 provides a schematic.

Blood-based studies
Blood samples can be obtained relatively noninvasively
from subjects at all ages; however, the measured metabo-
lites may be from any organ and may lack sensitivity for
the compartmentalized CF lung disease. Serum or
plasma should not be used interchangeably given signifi-
cant differences that have been described in a systematic
analysis in healthy, fasting subjects, where serum was
found being less sensitive to incubation procedures and
revealing a higher number of metabolites compared to
the concomitantly obtained plasma [5]. Comparison of
serum metabolomic profiles from 31 children with CF to
age- and gender-matched children with other respiratory

diseases showed differences in several metabolites and
pathways linked to mitochondrial function including de-
creases in ketone bodies and medium chain carnitines.
Further, several branched-chain amino acids were de-
creased in CF compared to non-CF suggestive of muscle
wasting. Differences in bile acids and presumably
bacterial-derived metabolites from the tryptophan path-
way could be related to intestinal dysbiosis [6]. Laguna
et al. evaluated plasma metabolomics in 25 subjects with
CF comparing patient samples collected during exacer-
bation vs. clinical stability. Of the 398 identified metabo-
lites, five metabolites were significantly lower during
exacerbation compared to clinical stability. The affected
pathways were related to nucleotide metabolism (hypo-
xanthine and N4-acetylcytidine), amino acid metabolism
(N-acetylmethionine), carbohydrate (mannose), and ster-
oid metabolism (cortisol). Principal component analysis
using these five metabolites provided 79 % separation
[7]. Given the known differences in lipid content of cells
and fluids in CF, e.g., n-6 and n-3 fatty acids [8] and
cholesterol [9], two studies used lipidomics for specific
assessment of phospho- and lysolipids following organic
extraction of plasma. Eighteen healthy children, 33 chil-
dren with mild lung disease, and ten children with severe
lung disease of CF were included [10]. Eleven peaks con-
tributed to separation between CF and non-CF and four

Fig. 1 Sample types reflective of specific or general disease
manifestation
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peaks were differentially displayed in mild vs. severe CF. A
follow-up study evaluated potential correlations of plasma
lipidomics with severity of lung disease and chronic
Pseudomonas aeruginosa infection status. Plasma was ob-
tained from 44 F508del homozygote patients at two time
points, 3 years apart, to track disease progression. Twelve
free fatty acids correlated with FEV1 and six lipids showed
associations with P. aeruginosa infection [11].

Sputum-based studies
Lipidomics has also been applied to sputum obtained
from 16 adult patients, the majority of whom were P.
aeruginosa infected. Using three different extraction
methods, a range of lipid mediators was detected includ-
ing those related to cyclooxygenase and lipoxygenase
pathways [12]. Some of these, e.g., an epoxide of linoleic
acid and LTB4, showed correlations to lung function
either individually or in multivariate partial least
squares analyses. Notably, the high bacterial load and
various proteases in CF sputum, extraction methods,
and storage could affect metabolites. Recently, Zhao et al.
showed differences in LC-MS metabolomic signatures
after storage at 4° but not at −20° and −80° for at least
28 days [10, 13].

Bronchoalveolar lavage
Bronchoalveolar lavage (BAL) is performed in many in-
stitutions in children who cannot expectorate. Inflam-
mation normalized to infection is already elevated in
young children with CF compared to non-CF disease
controls [14] and neutrophil elastase in BAL fluid
(BALF) may be an early biomarker [15]. Using 1H NMR,
Wolak et al. evaluated BALF from 11 subjects with CF
undergoing clinically indicated procedures. A larger
number of metabolites were detectable in samples with
higher levels of inflammation as determined by relative
and absolute neutrophil count. The selected and identified
peaks were derived predominantly from amino acids,
lactate, and acetone. The authors acknowledged the
challenge of dilution factor in BALF and used different
methods to account for this, e.g., normalization to acetone
and statistical processing. Quantitative fitting of alanine,
taurine, valine, and lactate resulted in clear separation be-
tween low and high inflammation samples [16].
Subsequent evaluations compared BALF from CF to

non-CF disease controls using UPLC-QtofMS [17]. The
discovery set of 25 samples revealed 338 peaks that were
associated with inflammation defined by neutrophil
count. Named metabolites included those from purine,
polyamine, and nicotinamide pathways and metabolites
related to protein degradation. Thirty markers were vali-
dated using targeted MS in a new set of BALF samples
derived from pediatric subjects with CF, healthy non-
smoking or smoking adults, and subjects with COPD.

Metabolites related to purine metabolism and protein
degradation were correlated to neutrophilic inflammation
in the various sample types and diseases, and several
markers correlated with lung function [17].

Exhaled breath—breathomics
A less invasive method than BAL is measurement of me-
tabolites in exhaled breath collected as condensate of
water-soluble markers (EBCs) present in epithelial lining
fluid and/or as volatile organic compounds (VOCs).
Challenges include variability of EBC production be-
tween individuals, the lack of a marker of dilution, and
potential influence of different collection devices [18].
Only few data are reported on metabolomic profiling of
EBC compared to measurement of specific markers
using either mass spectrometry or NMR methods. In a
cross-sectional study, Montuschi et al. evaluated if the
NMR spectroscopy profiles followed by identification of
selected compounds in EBC differentiated stable (n = 29)
from non-stable (n = 24) patients with CF [19]. Among
the 11 most differentiating metabolites using PLS-DA,
four (acetate, ethanol, 2-propanol, and acetone) sepa-
rated the CF from healthy group. Seven metabolites were
most relevant for distinguishing stable vs. exacerbation
samples in CF, again this could be reduced to four me-
tabolites (ethanol, acetate, 2-propanol, and methanol) as
a panel without significant loss in sensitivity and specifi-
city. Importantly, the study provided careful control
measures including within day and between-day repeat-
ability in disease and healthy subjects and external valid-
ation in a set of patients from a different CF center. The
same group of authors more recently reported discrim-
inatory NMR spectra of EBC in CF compared to primary
ciliary dyskinesia (PCD) [20]. Both the discovery and the
validation group of CF and control subjects had been in-
cluded in the prior analyses, but repeat measures con-
firmed identification of the same metabolites. Seven
metabolites, including ethanol and acetate, discriminated
CF from PCD. When only three metabolites—acetoin,
lactate, and methanol—were included in the panel, there
was only a 6 % reduction in R2. Short-chain fatty acids,
ethanol, and methanol discriminated both diseases com-
pared to healthy subjects. The authors speculated that
several of these markers may be related to inflammation.
VOCs are produced during most metabolic reactions

and markers present in exhaled breath are either derived
from the lung itself or metabolites diffusing through the
epithelium. Analyses can be performed using GC-MS or,
to make it more affordable and portable, metallic sensors
that detect pattern of volatiles [21]. Robroeks et al. com-
pared VOC in breath obtained from 57 healthy controls
and 48 subjects with CF. Of the 1099 VOC substrates
that were present in at least 7 % of the subjects’ samples,
a panel of 22 discriminated between healthy and CF
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subjects with 100 % specificity and 14 attributes cor-
rectly identified the 23 P. aeruginosa-positive compared
to the 25 P. aeruginosa-negative subjects [22]. A proof
of concept study evaluated a commercially available elec-
tronic nose device which operates on the principle of 32
polymer nanosensors measuring changes in electrical re-
sistance by VOCs. The device provided discrimination
between PCD and CF compared to healthy with equal
sensitivity and specificity as differentiation between dis-
eases—both around 84 % sensitivity and 60–65 % speci-
ficity. An indication of differences between stable and
exacerbation state was noted but sample size was not
designed to test this [23].

In vitro studies
Metabolomics has been applied to P. aeruginosa during in
vitro growth to evaluate changes during chronic infection
and to seek associations of bacterial metabolites with clin-
ical outcomes. P. aeruginosa isolates collected longitudin-
ally over several years from 18 patients were subjected to
1H NMR [24]. Growth characteristics and NMR profiles
differed significantly between patients’ isolates and these
differences exceeded differences associated with duration
of infection. Conversely, analyses of all isolates by duration
of infection showed nine metabolites that are associated
with earlier vs. later stages of infection. Another study ad-
dressed metabolic adaptation of P. aeruginosa during
chronic CF lung infection [25]. P. aeruginosa isolated from
13 adult CF patients were cultured in synthetic medium to
imitate CF lung conditions, and culture supernatants were
subjected to 1H NMR analyses. Principal component ana-
lyses (PCA) of the NMR spectra identified three dominant
clusters. Analyses of these clusters relative to bacterial
growth characteristics and patient outcomes showed sig-
nificant associations between cluster membership and
both, lung function and pH of the spent culture medium.
Spent culture pH showed a negative correlation with lung
function. These studies highlight that despite the limita-
tions of imitating in vivo bacterial growth conditions, bac-
terial metabolomics can contribute to understanding the
bacterial adaptation to the CF lung environment.
One study to date used bronchial epithelial cultures

comparing pathways between CF and non-CF donors
allowing insight into source of metabolites in respiratory
secretions, i.e., epithelial cell derived, inflammatory cell
derived, or of bacterial origin [26]. In a rigorous ap-
proach to reduce the effects of culture conditions, the
investigators included cultures grown at three different
study sites/methods. Differences in pathways were lower
levels of several purines, reduced glucose metabolism in
pentose and sorbitol pathways, and lower levels of oxidized
and reduced glutathione. Kynurenine and anthranilate as
metabolites of tryptophan pathways were increased in CF
compared to non-CF.

Urine as matrix
Despite the ease of collection and description of urine
metabolomic profiling in many other diseases, only one
study has been reported in CF. This was in fact part of a
targeted study on altered methyl status and oxidative
stress in children with CF [27]. The urine NMR spectra
showed significant elevation of phthalate compounds in
pancreatic-insufficient children with CF but not in
pancreatic-sufficient CF and non-CF children. The
source of the phthalates was traced to the enteric coating
of the enzymes. Although this study was designed to inter-
rogate specific pathways, the untargeted metabolomic
method led to changes in enzyme preparations as the
authors reported in an addendum [28].

Statistical approaches used in metabolomics
Two types of data analysis approaches, univariate ana-
lysis and multivariate analysis, have been widely used in
metabolomics projects, including most of the CF related
studies referenced in this paper.
Univariate analysis approach analyzes each metabolite

separately. It includes parametric methods such as
paired t test, Welch t test, and linear model and non-
parametric methods such as Wilcoxon signed rank test,
Mann-Whitney test, and Kruskal-Wallis ANOVA. A
parametric method is used when the data basically meets
normality assumption. Data transformations such as log
transformation are often used to improve normality. t
test is frequently used for the comparison of two classes,
e.g., CF vs. non-CF. While t test is easy to use, one of
the advantages of using a linear model is that multiple
confounders can be controlled in the model, so that
metabolic variations due to these confounders can be re-
moved from the data. These linear models were for ex-
ample used in the blood-based studies referenced here
[6, 7]. Univariate analysis of metabolomics data usually
includes hundreds of tests (one for each metabolite),
therefore the control of false discovery rate (FDR) in
multiple testing is very important. The most commonly
used FDR control methods are Q value [29] and the
Benjamini-Hochberg procedure [30].
Multivariate analysis approach analyzes all of the me-

tabolites in the data simultaneously in one analysis. It
detects important metabolic variations though dimen-
sion reduction. It includes non-supervised classification
methods such as principal component analysis (PCA)
and supervised classification methods such as partial
least squares discriminant analysis (PLS-DA) and or-
thogonal partial least squares discriminant analysis
(OPLS-DA). PCA detects major variations in the data
without using sample classes, therefore being suitable
for data exploration, and detection of outliers in the
dataset. Most of the CF studies compare two or more
classes of samples, e.g., CF vs. non-CF [6], CF with low
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inflammation vs. high inflammation [16], stable CF vs.
unstable CF [19], and CF vs. PCD vs. healthy subjects
[20], such studies benefit from using supervised classifi-
cation methods. Unlike PCA which looks for major
metabolic variations in the data, PLS-DA and OPLS-DA
look for metabolic variations that are specifically related
to the study classes. A major challenge of multivariate
analysis is overfitting, i.e., the model fits the data so well
that it cannot generalize to new data. Overfitting occurs
when the model describes noise in the data. Statistical
cross validation can be used to reduce overfitting. In
cross validation, the samples are split into training set
and testing set, and results from the training set are
tested in the testing set as used in several of the studies
here [6, 16, 19, 20, 25]. A limitation of cross validation is
that all of the samples used for validation come from the
same study. The most rigorous validation is external val-
idation, i.e., validation performed in an independent data
set. Montuschi et al. provided some good examples of
using external validation to identify CF-related bio-
markers [19, 20]. When an independent data set is not
available, permutation-based validation could be used as
an alternative, not used in any of the referenced CF
studies. In permutation-based validation, the predictive
power of the model is compared with the predictive
powers calculated using hundreds and thousands of

permutated data sets. Using it in combination with cross
validation provides a more reliable validation result than
using cross validation alone.
It is important to choose appropriate statistical

method based on the purpose of the analysis and statis-
tical assumptions. A summary of the statistical methods
and their assumptions is in Table 1. The results gener-
ated from univariate analysis and multivariate analysis
often complement each other. Examining results from
both approaches allows researchers to look at the data
from different perspectives and extract the best possible
amount of information from the data.

Conclusions
The ability of simultaneously obtaining an almost
complete snapshot of metabolic activity in a given sys-
tem is a strength of metabolomics, with the caveat that
some metabolites may potentially require special pro-
cessing methods, are not stable, or that markers of inter-
est are proteins. Examples in CF include markers of
oxidative stress or C-reactive protein. Several lessons
have been learned to date; One, systemically measured
metabolites, i.e., blood derived, confirm previously
known pathways and add some potentially novel discov-
eries. Assessment of lung-specific markers may be chal-
lenging, especially during early disease when changes

Table 1 Common statistical approaches used in metabolomics data analysis

Method Purpose Statistical assumptionsa

A. Methods that analyze each metabolite separately

Parametric methods Paired t test Compare two groups Random sampling, normality, paired samples,
no major outliers

Student t test Compare two groups Random sampling, normality, independent samples,
equal variances, no major outliers

Welch t test Compare two groups Random sampling, normality, independent samples,
unequal variances, no major outliers

Linear model Compare two or more groups and
with the possibility to control confounders

Random sampling, linearity, and additivity, errors are
independent, homoscedastic, and follow normal
distribution, no major outliers

Nonparametric methods Wilcoxon signed
rank test

Compare two groups Random sampling, paired samples, differences between
paired samples have symmetrical distribution

Mann-Whitney
U test

Compare two groups Random sampling, independent samples

Kruskal-Wallis
ANOVA

Compare more than two groups Random sampling, independent samples

B. Methods that analyze all of the metabolites simultaneously

Unsupervised
classification methods

PCA Detect major pattern in the data,
detect outliers

Linearity

Supervised classification
methods

PLS-DA Find metabolites that best separate
two or more study groups

Linearity, no major outliers

OPLS-DA Find metabolites that best separate
two or more study groups, with easier
result interpretation than PLS-DA

Linearity, no major outliers

aThe assumption of continuous data is not listed, because all of the metabolomics data are continuous data and meet this assumption
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may be compartmentalized to the lung; two, samples dir-
ectly obtained from the lungs as BAL or exhaled breath
provide evidence for early inflammation but are still in
early stages for use as biomarkers. Since targets in EBC
are very dilute, contamination from oral or GI tract has
to be monitored; three, detection of bacterial metabolites
in human samples is complicated by substantial overlap
between bacterial and host metabolites. Despite their ob-
vious limitations, in vitro studies of bacteria may con-
tribute to understanding of bacterial metabolism in CF
lung infection. In summary, metabolomics remains a
promising technology but study design, selection of par-
ticipants, and validation of findings remain crucial [31].
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