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Abstract: Antibiotic resistance is one of the major challenges that humankind shall face in the short
term. (Bacterio)phage therapy is a valuable therapeutic alternative to antibiotics and, although the
concept is almost as old as the discovery of phages, its wide application was hindered in the West by
the discovery and development of antibiotics in the mid-twentieth century. However, research on
phage therapy is currently experiencing a renaissance due to the antimicrobial resistance problem.
Some countries are already adopting new ad hoc regulations to favor the short-term implantation of
phage therapy in clinical practice. In this regard, the Phage Therapy Work Group from FAGOMA
(Spanish Network of Bacteriophages and Transducing Elements) recently contacted the Spanish
Drugs and Medical Devices Agency (AEMPS) to promote the regulation of phage therapy in Spain.
As a result, FAGOMA was asked to provide a general view on key issues regarding phage therapy
legislation. This review comes as the culmination of the FAGOMA initiative and aims at appropriately
informing the regulatory debate on phage therapy.

Keywords: phage therapy; bacteriophages; endolysins; antimicrobial resistance; compassionate use;
drug regulation

1. General Aspects of the Use of Phages as Antimicrobials

The emergence of multi-drug-resistant (MDR) bacteria seriously undermines our
ability to control bacterial infectious diseases. A recent study shows that MDR pathogens
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already cause more than one million deaths a year, and the prospects are even more
concerning [1,2]. Therefore, short-term proactive measures are urgently needed. Proposed
strategies include controlling the spread of antibiotic resistance, designing new antibiotics,
and developing alternative therapies. Bacteriophages (phages), bacterial viruses, were
discovered in the second decade of the 20th century and soon used to treat bacterial
infectious diseases with encouraging results [3]. However, phage therapy was abandoned
due to the discovery of antibiotics, with the exception of the Soviet Union and some
Eastern European countries (due to hindered access to antibiotics there). Recently, and
in the face of increasing bacterial resistance to antibiotics, phages have re-emerged as
alternative or complementary therapies to control bacterial infections [4]. The advantages
and disadvantages of phage therapy are discussed below.

1.1. Advantages

(a) Activity against antibiotic-resistant bacteria. Phages can infect and kill bacteria,
including MDR strains [5]. This is the most obvious advantage towards recovering
phage therapy to fight antimicrobial resistance today. Moreover, the composition of
the phages for therapy may be designed to impose an evolutionary trade-off in which
the evolution of bacterial resistance to phage results in increased susceptibility to
antibiotics [6]. Under this rationale, the combination therapy of phages plus antibiotics
has a remarkable potential to smartly tackle antibiotic resistance by both eliminating
resistant strains and preventing the dissemination of resistance genes [7,8]. Many
works have been published thus far where phage–antibiotic synergy, known as PAS
effect, is reported. This suggests that combined therapy can be the safest and a more
advantageous approach, as it minimizes resistance and virulence [9–11].

(b) Specificity. The high specificity of many phages towards their host bacterial strains
makes them a highly selective therapy that prevents the dysbiosis of the healthy
microbiota. Contrary to antibiotics, only strains of the same genus or species—and
often just one or very few strains within a species—are susceptible to infection by a
given phage, protecting the normal microbiota and reducing side effects [12]. The
specificity of phages lies in the bacterial receptor that the virions recognize through
one or more receptor-binding proteins [13], and can be further driven by post-entry
anti-phage defense mechanisms [14]. Phages can be polyvalent (i.e., with a broad host
range) if they recognize a receptor present in several bacteria or, alternatively, their
specificity can be very restricted if they bind receptors exclusive to a single bacterial
type. Another possibility is that the phage uses a receptor that is only expressed
under certain conditions which therefore restricts its infectivity (e.g., the receptor
of phage lambda is the maltose receptor, which is only expressed in the presence of
maltose [15]).

(c) Multiplication at the site of the infection (auto-dosage). Phages can multiply at the site
of the infection. Once the phages reach the targeted bacteria, they will replicate and
generate progeny. Therefore, if sufficient phage particles are able to reach the infection
site, phage therapy can be considered as auto-dosage treatment. Furthermore, once
the infection is successfully controlled, phages would be eliminated in the absence of
bacterial hosts. Thus, whenever an auto-dosed, “active” treatment is achieved, it can
elicit the infection eradication by only a single administration [16].

(d) Ubiquity and diversity. Phages can be found in virtually any environment [17], and
they play an utmost important role in ecosystems by regulating bacterial popula-
tions [18], including the human microbiota. The main practical consequence of such
ubiquity and the concomitant diversity is the ease of discovery of novel phages, which
contrasts with the currently slow antibiotic discovery rate.

(e) Evolvability. Phages are evolving entities and, therefore, can be optimized using
directed evolution techniques. This opens up many possibilities compared to con-
ventional treatments, which are stable chemical compounds. Phage evolvability
can be exploited in many ways, such as increasing lytic capability, improving par-
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ticle stability, expanding the host range, or counteracting bacterial resistance. For
instance, the Appelmans’ protocol uses spontaneous mutation and recombination
among phages present in a cocktail to produce phage variants capable of infecting
initially non-susceptible bacterial strains [19,20].

(f) Safety. Humans are carriers of many different phages forming the phageome [21,22].
Their biological functions, beyond regulating bacterial populations, are not yet entirely
clear [23]. However, their widespread presence in the human body seems to be a good
safety indicator. Moreover, there is evidence of phage safety from clinical trials and
intake of phage-treated foods [24]. A potential concern of phage therapy could be the
release of bacterial endotoxins after lysis of the targeted bacterial cells. It should be
noted, however, that similar observations have been made regarding conventional
therapy with certain antibiotics [16], and that the current literature does not support
detrimental inflammatory reactions upon phage administration. Phages may also
enter tissues that are not the specific target of the treatment, but these interactions
also do not appear to produce side effects [25].

1.2. Weaknesses

(a) Phage-resistance. In the same way that resistance to antibiotics emerges, bacteria
can become resistant to phage infection. The most common solution to address
this involves the use of cocktails of different phages, rather than a single phage,
and/or the “à la carte” selection of phages for each particular infectious isolate. This
makes it much less likely that the host will become resistant to all phages at the same
time [26]. The so-called “step-by-step” technique is an interesting approach in which
phages are isolated against phage-resistant bacterial mutants in successive screening
steps to obtain other phages capable of infecting resistant variants. By this method,
the natural antagonistic co-evolution that would occur upon treatment is mimicked
prior to therapy, thus generating a phage cocktail able to infect both the original
bacterium and the foreseeable resistant variants [27]. Moreover, the emergence of
phage-resistant bacteria is not always a disadvantage, since it sometimes involves
a decrease of the fitness or virulence of the bacterial host [28], or may resensitize
bacteria to antibiotics [9].

(b) Specificity. This feature can be a double-edged sword. Phage specificity requires
careful susceptibility testing of each bacterial pathogen before treatment, which may
be viewed as an issue for certain acute infections that require urgent action. In
addition, this specificity may require either the development of large phage libraries
and/or extensive sampling and screening efforts to provide sufficient coverage of
bacterial diversity. This can be a daunting task and has posed major regulatory issues,
since, according to the current framework, each individual phage should undergo
review and approval. In addition, the eventual need to develop a different phage
preparation for each bacterial pathogen, as a personalized medicine, reduces business
profitability and can be viewed as a serious drawback by pharmaceutical companies.
Again, phage cocktails targeting different receptors or different bacterial strains would
be a potential solution.

(c) In vivo phage activity. There is not necessarily a correlation between the in vitro and
in vivo behavior of a phage, particularly regarding its propagation ability. This is due
both to the complexity of body fluids and the ecological in vivo interactions [29,30].
In addition, the phage propagation is dependent on the physiological state of the
bacterial host, which may not be optimal for infection in vivo (for example, depending
on whether the bacterium is embedded or not within a biofilm, the expression of
receptor molecules, etc.) [31]. Moreover, phages are bigger than antibiotics and,
therefore, diffuse less efficiently. This limitation is aggravated in vivo, where multiple
physical barriers are encountered. Therefore, the probability of infection at low phage
and bacterial densities is low, and the threshold densities required to ensure phage
infection may often require the administration of very high phage doses [32,33].
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(d) Immune response. Since phages are made of biomacromolecules, they are potentially
capable of eliciting an immune reaction upon administration [34]. Generally, the
immune reactions against phage components are not considered problematic for
the individual under treatment, although they do have a relevant contribution to
the outcome of phage therapy [35]. On one hand, the immune response potentially
causes the removal of phages from the system [36], although this effect may be
overcome by adjusting such parameters as dosing, administration route, etc. On the
other hand, synergism with the immune antibacterial response seems relevant for
therapeutic success [37], although some evidence suggests that phage therapy can
also be successfully applied in immunocompromised patients [38]. To sum up, the
interaction of phages with the immune system is complex and not yet well understood,
although many unknown implications seem to affect the therapeutic efficacy without
contradicting the presumed safety of phage therapy.

(e) Gene transfer. Phages potentially have the ability to modify the genome of the host
bacteria, which may increase their virulence or dissemination of antibiotic resistance
genes [39]. Indeed, phages can mobilize large fragments of bacterial genomes at
relatively high frequencies [40,41]. To date, it is not known whether the mobilized
DNA is randomly selected or whether the transfer of some particular genes is favored,
e.g., those related to virulence, survival, or fitness of the host strain. A relevant mech-
anism for phage-mediated transfer of particular genes is associated with lysogeny
(the integration of the phage genetic material into the bacterial chromosome) [42].
Therefore, this issue could be minimized by selecting exclusively virulent phages, as
well as by analyzing phage genomes in detail to ensure that they do not contain genes
encoding toxins or any other undesirable genes.

2. Obtaining Therapeutic Phage Preparations

The main steps for obtaining phage suspensions suitable for use in clinical settings are
summarized in Figure 1.
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2.1. Selection of Screening Host Strains and Phages Intended for Therapy

The process of phage therapy begins with the identification and selection of phages
and bacterial strains suitable for phage production. Phages are found in any environment,
even under extreme conditions, being the most abundant biological entities on our planet,
with a current total estimate of 1031 particles [17]. Phage “hunting” site selection will
depend on the bacteria to be eliminated [43], since phages infecting a certain host can
normally be isolated from environments inhabited by such bacterium. However, it may
be difficult to find phages active against a bacterial isolate from samples of the same
patient, since the resident bacteria (including the pathogenic one) are probably lysogenic,
tolerant, or resistant to the accompanying phages. Therefore, alternative sampling places
are recommended. Many pathogenic bacteria also present free-living variants in nature,
making it possible to find suitable phages for therapy in environmental samples. Human-
made sites or infrastructures, such as wastewater treatment plants, usually contain a high
diversity of phages active against human pathogens [44].

Once samples are collected, phage screening parameters will depend on the target
bacterium. In general, phages can be isolated using reference strains or clinical isolates as
hosts for propagation [45]. In some cases, the bacterium of interest may not be amenable
to culture, and thus a surrogate host may be used instead (e.g., Mycobacterium smegmatis
is strongly preferred for the isolation of mycobacteriophages over the pathogenic, slowly
growing Mycobacterium tuberculosis [46]). If a broad-range phage is desired (for exam-
ple, one that targets several strains), isolation with multiple bacterial strains may be pre-
ferred, although single strain enrichment does not necessarily preclude finding broad-range
phages [43]. Apart from the search for new phages, it is also possible to use those that are
already available in laboratories around the world, or in phage banks [47,48]. In general
terms, the isolation of phages does not pose a great difficulty neither methodologically
nor economically, as long as its host bacterium is culturable. Indeed, phage isolation and
selection methods are as old as the first descriptions of phages and are still considered as
solid and useful protocols nowadays.

2.2. Small- and Large-Scale Production Processes

Phage production is typically carried out by the double-layer agar method, which
allows isolation of individual phages, and then liquid culture of single plaques [49]. A
pure phage lysate (containing a single type of lysis plaques) is obtained by centrifugation,
filtration, and/or further purification methods (see below). The process can be scaled up
and optimized to an industrial level by using bioreactors of different sizes [50], which allow
continuous and semi-continuous production. The latter seems the most advantageous for
large-scale standardized production, since it avoids co-evolution of the phage with the
bacteria (although it may be operationally complex) [51].

2.3. Purification of Phage Solutions

The main goal of this process is to avoid the presence of bacterial toxins, lipopolysac-
charide, or other cellular debris, in the phage suspensions [52]. In addition to centrifugation
and membrane filtration, it may be necessary to apply additional steps, such as dialysis, ul-
trafiltration, or treatment with organic solvents. To verify the absence of toxic components,
the corresponding tests should be performed and, if necessary, additional purification
methods such as specialized filtration, affinity chromatography, tangential flow filtration,
and/or CsCl gradient ultracentrifugation can be used. An alternative may be anion ex-
change chromatography, as demonstrated using Convective Interaction Media® (CIM)
columns [53]. These more specialized approaches often require laborious optimization for
each phage (or groups of related phages), but also allow the concentration of viral particles
in lysates with low phage titers.
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2.4. Storage

Depending on the phage, phages can be stored at different temperatures, commonly
at 4 ◦C, −80 ◦C, or in liquid nitrogen (−196 ◦C), or can be freeze-dried [54,55]. Protection
of lysates against evaporation or contamination is often sufficient to minimize the decrease
in their titer over time. Additives can be added to prevent or delay the loss of infectivity.
Mg2+ and Ca2+ ions (around 10 mM in the form of CaCl2 or MgSO4) are the most used
supplements since they are added to the culture medium before infection to facilitate
adsorption and are then present in the recovered lysate [54,56]. Other common additives are
cryopreservants such as disaccharides (lactose, sucrose, trehalose) or polyethyleneglycol, as
well as gelatin or Ficoll [57,58]. Adsorption of phages to cell debris can cause a considerable
decrease in titer, implying that removing cellular contaminants from a crude lysate is also
important for storage. In addition, minimizing the number of passages is an important issue
since multiple rounds of propagation combined with the high mutation frequencies shown
by phages can lead to genetic differences between the original isolate and its progeny [54].

2.5. Formulation and Administration

Phages are basically protein structures and, therefore, they are susceptible to proteases,
certain chemical compounds, high temperatures, pH, and ionic strength. Thus, it is impor-
tant to use an appropriate formulation to ensure that the phage titer remains stable both
during formulation and storage and in the in vivo environment where they are applied.
Again, the optimal formulation conditions may vary depending on the specific phage, so
this deserves careful consideration in the case of phage cocktails, as each type of phage may
require individually tailored conditions [59]. However, the major determinant of phage
therapy formulations is the method chosen for delivery, which, in turn, depends on the
infection site:

(a) Oral administration is appropriate for gastrointestinal infectious diseases. In some
cases, oral phages given without additional protection, as water-based liquid suspen-
sions, reportedly survived gastric passage and were recovered in the feces [60–62].
The formulation efforts for liquid phage suspensions are typically minimal since
phages are just prepared in sterile buffers such as phosphate-buffered saline (PBS),
the bacterial growth medium, standard saline, or water [61,63–65]. More elaborate
formulations specifically intended for oral administration can improve phage survival
through the extreme conditions of the gastrointestinal tract. For example, encapsu-
lation protects phages from the highly acidic stomach environment and digestive
enzymes [66]. Furthermore, their release can be triggered in a controlled manner, for
example, pH-dependent release, with capsules programmed to become permeable at
different pHs regarding the aimed site of action: from the stomach (pH 1–3) to the
small intestine (pH 5.5–6.5) or the colon (pH 6.5–7.2) [67]. A wide range of natural and
synthetic polymers are available that offer considerable plasticity for tailoring phage
encapsulation and subsequent release to different biomedical applications, including
polysaccharides, natural or synthetic plastic polymers, liposomes, and micelles [68,69].

(b) Topical administration of phages is chosen for skin infections, wounds, burns, ulcers,
and osteoarticular infections [70]. Phages have been topically administered in liquid,
semi-solid, and liposome-encapsulated formulations, as well as phage-immobilized
wound dressings [63]. When using liquid preparations, they may just be dripped
onto the infected site or applied in a gauze soaked with the preparation. Alternatively,
gel or cream formulations are suitable to overcome some of the limitations of liquid
preparations, with a preference for hydrogels over organic solvent-based gels. This is
especially relevant for the treatment of burn wounds, since hydrogels help keep the
wound hydrated as much as they favor phage stability [63]. Commercial infection-care
products can also be used as a formulation basis for topically delivering phages, but
care should be taken as to whether the composition of the product reduces phage
infectivity [71].
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(c) The local phage treatment of respiratory infections requires preparing phages either
as stable liquid formulations for intranasal instillation or nebulization, or as a solid
powder in an inhalable form [72]. The most popular formulations for respiratory
infections are liquid suspensions, due to the relative simplicity of preparation. Nebu-
lization of liquid phage suspensions has been tested with mixed outcomes, generally
suggesting that temperature, relative humidity, the nebulization-induced mechanical
stress, delivery efficiency of the system, and the nature of the phage itself greatly
influence the outcome. Regarding dry powder inhalation, the methods to obtain
solid phage formulations include freeze-drying or spray-drying. In general, both
processes subject phages to diverse stresses that may impact their infectivity [73], but
the control of key parameters and addition of suitable excipients, including polymers
for encapsulation, can enhance phage preservation [74,75].

(d) Intravenous administration is recommended in the treatment of systemic infec-
tions [76]. In this case, liquid phage suspensions are typically used, normally prepared
in aqueous buffers suitable for inoculation [64,72].

(e) Intravesical instillation of liquid phage preparations has also been used to treat
genitourinary tract infections [77,78].

3. Quality Criteria for Therapeutic Phage Preparations

As products intended for human therapy, phage preparations must comply with cer-
tain quality criteria that ensure their safety for clinical use, as well as exhaustive traceability
documentation. The production and delivery parameters must be set up by the phage
preparation supplier in accordance with the applicable regulations (see Section 4) and to
meet the agreed quality attributes. For phage-based products, these quality controls would
typically include:

(a) Phage identity. The identity of each phage is defined by its specific genomic se-
quence [79,80]. Metagenomics has already been proposed as a quality control method
for some vaccines [81], and thus has also been used to assess the composition of
commercial phage products [82,83]. This method allows the detection of biological
contaminants while also assuring the active product identity. While random mu-
tations during propagation are inevitable, they need to be as limited as possible
by process design (e.g., minimizing subcultivation steps), and functional properties
should be regularly tested with validated quality controls, as even single-nucleotide
polymorphisms can lead to significant phenotypic changes. However, a highly dis-
criminating PCR-based genotyping technique might be sufficient in some cases [79].
The maximum acceptable level of genomic divergence between the master batch and
the phage population in the therapeutic product, as well as the frequency of such
quality check, should be nonetheless adjusted on a case-by-case basis [79].

(b) Phage Titer. The titer of each individual phage is classically assessed by the double-
layer agar method. An alternative is lethality curves, in which the kinetics of phage-
induced lysis are assessed by measuring the optical density of phage-infected bacterial
cultures [84]. Other methods, such as qPCR and ELISA, can be used to quantify phages,
but they do not necessarily quantify infectious viral particles, whereas double-layer
and lethality assays do determine biological activity [79].

(c) General Purity. For biopharmaceuticals, the purity and correct composition is clas-
sically assessed by high-performance liquid chromatography, combined with mass
spectrometry if necessary. These methods can be used to identify phage capsid
proteins, toxins, or other bacterial proteins. Because of the potential risk posed by
the necessary production with pathogenic bacterial hosts, quality criteria should
specify maximum levels for contaminants such as toxins or bacterial DNA, which
normally must be tested with specific and appropriate molecular biology methods as
specified below.

(d) Toxins. Several in vitro methods have been developed for endotoxins quantification:
gel-clot, turbidimetric, and chromogenic tests. Among the latter, the limulus ame-
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bocyte lysate assay is the most widely used [85]. When this assay is not applicable,
e.g., due to masking effect, a reporter cell line can be used [86]. In addition, several
commercial assays can be used to detect other toxic bacterial proteins, including
ELISA or assays based on reporter cell lines.

(e) Contaminating Nucleic Acids. Quality controls may also be required to determine
the concentration of contaminating nucleic acids (i.e., non-phage nucleic acids). The
presence and concentration of residual nucleic acids are typically checked by qPCR.

(f) Other Quality Controls. Current regulations on sterility or general quality parameters
in pharmaceutical products should also apply to phage-based pharmaceuticals [87].
Some parameters that may need to be checked are the total microbial load, pH,
osmolarity, visual appearance, and/or maximum water content (in lyophilized prepa-
rations) [79].

4. Regulation for Phage Preparations

Perhaps the greatest hurdle to the implementation of phage therapy in Western
medicine is the lack of appropriate regulation. If phage preparations are considered “classi-
cal” medicinal products, they must comply with the corresponding legislation concerning
medicinal products production and quality. This essentially means that they should follow
GMP (good manufacturing practices) requirements, which has imposed an important
problem for the development of medicinal phage preparations in terms of increasing costs
or complicating management for developing large-scale production [88].

Although therapeutic phages shall be considered indeed a medicinal product, the na-
ture itself of the phage makes it essentially different from common antimicrobial chemother-
apy. Indeed, phage specificity, virus–host co-evolution, or a complex in vivo pharmaco-
logical behavior have negatively influenced the outcome of many of the phage therapy
clinical trials conducted in contemporary times [33,89–91]. Therefore, the clinical trial
path to the market still seems rather far away. A provisional conclusion has been that the
parameters by which we evaluate phage therapy should perhaps be specifically adapted
and may not be the same as those of chemotherapeutics [92]. So far, the most successful
approach to applying phage therapy in the clinic has been tailored formulations, i.e., phage
preparations specifically designed and developed to tackle the infection present in a specific
patient. In fact, the compassionate use of phages intended for specific patients without
better treatment options is the current regulatory framework for phage therapy in most
countries [4,88]. Within this framework, some of the stricter requirements can be bypassed,
although it still requires approval from the competent authorities in every individual case.

A recently adopted strategy in Belgium has allowed a more systematic and practical
approach to personalized phage therapy, which also provides production and handling
flexibility (e.g., by not forcing strict GMP compliance). The key to this approach is to
consider phage products as magistral preparations, since, unlike medicinal products, these
are subject to less strict regulation in terms of their production and marketing [93,94]. In this
context, phages are regarded as active pharmaceutical ingredients (APIs) (substances used
in a finished pharmaceutical product intended to procure a pharmacological effect), which
are provided with an external quality assessment according to a dedicated monograph. A
practical infrastructure to operate under this regulatory framework would be a dedicated
phage bank in which each conserved phage should be certified to be used as an API in
such a way that the certification covers all essential quality attributes (including a “genetic
passport” issued for each phage in particular) [48,94]. In Spain, magistral formulations
are governed by European regulations and by the Royal Spanish Pharmacopoeia (order
SSI/23/2015, BOE-A-2015-467) and by the consensus document specifying the requirements
for APIs for use in magistral formulations (CTI/FM/150/02/16) and following the rules of
correct elaboration and quality control (RD 175/2001, BOE-A-2001-5185). These documents
define “magistral formulation” as “the drug intended for an individualized patient to
explicitly fulfill a detailed medical prescription of the active ingredients that it includes,
prepared by a pharmacist or under his direction according to the rules of proper preparation
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and quality control established for this purpose, dispensed in a pharmacy or pharmaceutical
service and with due information to the user”. In the case of phages, express authorization
from the competent agency (in Spain, the AEMPS) would be required to use them in
magistral formulations, as well as a dedicated monograph provided by the supplier and
stating the “rules of proper preparation and quality control”. The exemplary monograph
elaborated in Belgium can be accessed as Supplementary Material in reference [94], and
it contains, in a summarized manner, most of the issues covered by this review. While
this bold framework may be practical for the time being, it has not yet been adopted by
many countries. To our knowledge, there are no examples in Spain of phage therapy
application under this regulatory framework, although phages have been administered
as compassionate medicines. In any case, it is altogether clear that phage therapy may
not fit within the traditional drug regulations. Some calls have already been made to
adapt or develop a specific regulation for phage therapy [95,96]. The main objectives of
such a regulation should be, at least, (a) developing adequate criteria for assessing the
quality, efficacy, and safety of phage products; (b) lightening the formal procedures for
administrating personalized phage therapy; and (c) fairly distributing responsibility and
compensation among the involved actors.

Regardless of the sub-optimal regulatory status of phage therapy in most countries,
including Spain, phage preparations for therapy are available either commercially (e.g.,
through the Eliava Institute in Georgia, which keeps and promotes the Eastern tradition in
phage therapy) or through the request to academic or clinical institutions devoted to phage
therapy research and promotion.

5. Clinical Trials and Prospects for Phage Therapy

Although potentially controversial [97], an adapted regulation in support of personal-
ized phage therapy (perhaps following the lead of the Belgian experience) can be a shortcut
to bring phage therapy to the clinic and even to the market in Spain. However, as it has
been pointed out, once phage therapy becomes increasingly adopted in clinical practice
and/or the number of untreatable infections begins to rise, the personalized phage therapy
would need such infrastructure dedication that it may become impractical (unless health-
care/research systems are decisively funded to meet the need). This situation would surely
favor a more traditional, market-based approach [89]. The latter would still require phage
formulations to be developed through the common drug clinical pipeline, i.e., demonstrat-
ing efficacy in randomized clinical trials. In fact, one of the major hurdles to the practical
prospects of phage therapy is the lack of substantial evidence within the current clinical
trial standards. While a good amount of mostly successful case reports has been recently
published, the phage research community still fails to deliver convincing randomized
clinical trial results supporting phage therapy efficacy. If we consider the two better-known
recent phage therapy trials that yielded disappointing results (i.e., the PhagoBurn trial and
the Nestlé Bangladesh diarrhea trial), available evidence suggests a poor understanding of
the complex phage behavior in vivo, as well as improper assumptions on the pathogenic
bacteria susceptibility [33,90]. Both issues greatly complicate standardized, large-scale
trials. For example, the abovementioned trials reported a lower phage dose than expected
at the infection site and resistance to the cocktails among the infecting bacteria. A posterior
reflection on the Bangladesh study by one of its authors pointed out that the polymicrobial
nature of some infections makes them a tough target for phage therapy alone, and even
more complex for a productive randomized controlled trial [89]. Therefore, a possible
suggestion towards successful clinical trials may be to exclusively target well-characterized
infections, dedicating extra care to consider the appropriateness of the targeted patholo-
gies [98]. In actuality, the only phase 2 clinical trial that has produced positive efficacy
results to date followed this path, by selecting a single-pathogen infection (chronic otitis
caused by antibiotic-resistant Pseudomonas aeruginosa) and testing the identity and quantity
of bacteria present in every patient [99]. Further issues regarding phage production (accord-
ing to GMP), storage, product shelf-life, dosage, and proper formulation/administration
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need to be exhaustively assessed and optimized to ensure the future success of clinical trials.
Regardless of the potential hurdles, many phage clinical trials are currently ongoing at
different stages, both including predefined phage cocktails and personalized interventions,
thus safeguarding a potential future regularization of phage therapy based on clinical trial
evidence. Some examples of ongoing clinical trials are included in Table 1.

Table 1. Ongoing clinical trial examples involving phage therapy.

Disease Pathogen(s) Treatment Status References

Diabetic foot ulcers Staphylococcus aureus Topical phage cocktail Not yet recruiting (expected
start date: June 2022) NCT02664740

Invasive infection in
patients with inactive

Crohn’s disease
E. coli Oral phage cocktail Recruiting (estimated

completion: June 2023) NCT03808103

Chronic airway infection
in cystic fibrosis patients P. aeruginosa Nebulized phage therapy Recruiting (estimated

completion: December 2022) NCT04684641

Diabetic foot ulcers
P. aeruginosa, S. aureus
and/or Acinetobacter

baumannii
Topical phage cocktail Recruiting (estimated

completion: December 2021 NCT04803708

Prosthetic joint infections Several pathogens
Combined

antibiotic/personalized
phage therapy

Not yet recruiting
(estimated start date:

October 2022)
NCT04787250

Chronic airway infection
in cystic fibrosis patients P. aeruginosa Nebulized phage cocktail Not yet recruiting NCT05010577

Wound infections in
burned patients

S. aureus, P. aeruginosa
or Klebsiella
pneumoniae

Topical phage cocktail
Not yet recruiting

(estimated start date:
January 2022)

NCT04323475

Pressure injury infections S. aureus, P. aeruginosa,
K. pneumoniae

Topical phage cocktail in
combination with

antibiotics

Not yet recruiting
(estimated start date:

January 2022)
NCT04815798

Urinary tract infections E. coli or K. pneumoniae

Personalized phage
therapy administered

through intravenous or
intravesical route

Recruiting (estimated
completion:

September 2023)
NCT04287478

Tonsillitis Several pathogens Nebulized phage cocktail
Phase 3. Active, not

recruiting (estimated
completion: December 2024)

NCT04682964

Chronic airway infection
in cystic fibrosis patients P. aeruginosa Inhaled phage cocktail Recruiting (estimated

completion: March 2022) NCT04596319

6. Most Urgent Indications for the Application of Phage Therapy in Spain

In our opinion, the use of phage therapy would be advisable:

(a) In the case of a severe infection produced by an MDR bacterium.
(b) When the infection occurs in an area reluctant to the use of antibiotics, such as in

prosthetics.
(c) Or, in general, whenever there is no standard of care option available, such as patients

suffering from hypersensitivity to the antibiotic treatment.

In these situations, i.e., in the absence of any other satisfactory therapy and when
there is a real risk to the patient’s life or significant deterioration of their quality of life,
the use of phages, possibly in combination with standard-of-care antibiotics, would be
advisable. Conversely, whenever the patient’s infection can be satisfactorily treated with
antibiotics, those will always be the therapy of choice. Additionally, a proper diagnostic of
the infection-causing bacteria must be conducted (see Section 5), as well as a susceptibility
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proof of such bacteria towards the phage preparation to be applied (what is known as a
“phagogram”) [100,101]. We provide details below on the most urgent indications in which
a regularization of phage therapy could have a greater impact.

6.1. Cystic Fibrosis

Cystic fibrosis (CF) is a rare disease (the prevalence in Spain is estimated to be 0.55 per
10,000 inhabitants [102]). Although not an infectious disease, per se, it is relevant here
due to the chronicity of infections in these patients. The lungs of CF patients are generally
infected by strains of Haemophilus influenzae, P. aeruginosa, Stenotrophomonas maltophilia,
S. aureus, Achromobacter spp., Burkholderia cepacia, and Mycobacterium abscessus, usually
resistant to many antimicrobials. Among them, the main pathogens in Spain are S. aureus
and P. aeruginosa (chronically present in around half of the total patients), with the latter
being significantly associated with worse pulmonary function. According to a Spanish
multicenter study, 55% of P. aeruginosa isolates from CF patients were MRD, while 16%
were extensively drug-resistant [103]. In addition, these microorganisms can form biofilms,
which make antibiotic treatment difficult even when they are susceptible. Prolonged
treatment with antimicrobials in adulthood also facilitates the settlement of nontuberculous
mycobacteria, yeasts, and filamentous fungi, which further contribute to clinical disease.
Colonization is associated with episodes of exacerbation of the respiratory symptoms and
progressive deterioration of respiratory function, which is the leading cause of death in
CF patients [104,105]. CF is the third most frequent indication for lung transplantation;
however, the persistent infections common among CF patients relate to significant post-
transplant morbidity and mortality, and in certain circumstances, these infections may
even contraindicate transplantation. For this reason, the clearance of MDR infections in CF
patients, particularly those caused by P. aeruginosa, is expected to have a remarkable impact
on the life quality and expectancy of these patients.

6.2. Osteoarticular Infections

These are a particular form of deep, localized infections with poor response to antibi-
otic therapy. The diffusion of antibiotics into bone tissue is often low and is negatively
affected by the presence of bacterial biofilms at the contact between bone and prosthetic
material. Repeated surgeries to eradicate the biofilm mechanically, i.e., removing the im-
plant and/or resecting the infected bone, and sometimes amputation, is the only infection
control option [106]. Most of these infections are related to the hospital environment, such
as those produced by multidrug-resistant P. aeruginosa and S. aureus resistant to methicillin,
fluoroquinolones, and rifampicin. In these cases, treatment options are often limited to
antibiotics of last resort, such as polymyxins which have been shown to have higher relapse
rates and higher frequency of complications.

There are some recent examples of clinical cases (CF and osteoarticular infections)
treated with phages that support the feasibility of this therapy (Table 2).

Table 2. Examples of clinical cases treated with phage therapy.

Disease Pathogen(s) Treatment Outcome References

CF with chronic MDR lung
infection

Achromobacter
xylosoxidans Inhalation, orally Dyspnea resolved and cough reduced.

Lung function improved [107]

CF with disseminated
infection, lung
transplantation

M. abscessus Intravenous
Sternal wound closure, improved liver

function, substantial resolution of
infected skin nodules

[108]

CF with MDR pneumonia,
persistent respiratory failure,

and colistin-induced
renal failure

P. aeruginosa Intravenous

Pneumonia clinically resolved, no
sputum production, return to baseline

renal function, white blood cell
count normalized

[109]
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Table 2. Cont.

Disease Pathogen(s) Treatment Outcome References

CF with persistent lung
infection, lung
transplantation

A. xylosoxidans Inhalation
Respiratory condition improved;

sputum cultures positive but with low
bacteria concentration

[110]

Lung transplant recipient
patients with MRD
resistant infections

P. aeruginosa and
Burkholderia

dolosa

Intravenous,
inhalation

Two patients were discharged from the
hospital off ventilator support. A third

patient infection relapsed and died
[111]

COPD with
drug-resistant pneumonia A. baumannii Inhalation

Sputum/ blood and bronchoalveolar
lavage fluid negative, restoration sinus

rhythm, lung function improved
[112]

Prosthesis infection S. aureus Local Bacteria removed, rapid healing [113]

Osteomyelitis P. aeruginosa Local No clinical signs of persistent infection [114]

Infection of the right knee
and chronic osteomyelitis of

the femur after injury
P. aeruginosa Local No pain, soft tissue at the surgical site

unremarkable, mobility satisfactory [115]

Osteomyelitis of the
distal phalanx S. aureus Local

The ulcer healed, re-ossification of the
distal phalanx, erythema and

edema decreased
[116]

Fracture-related infection K. pneumoniae Local

Skin graft vascularized and viable, the
sinus tract closed and dry, pus no

longer discharged from the pin sites of
the external fixator, restored

muscle function

[20]

7. General Aspects of the Use of Endolysins as Antimicrobials

In addition to phages, their lytic enzymes have also been explored as antimicro-
bials [117]. Phage lysins are enzymes that mediate enzymatic cleavage of peptidoglycan
either in the early stages of phage infection to assist in the injection of phage DNA or the
late stages of infection, allowing the release of viral progeny by generalized lysis of the
bacterium. Lysins are a promising new class of antibacterial agents that may also offer an
answer to the problem of bacterial multidrug resistance. When added exogenously, they
induce rapid osmotic lysis of Gram-positive bacteria by degradation of peptidoglycan with
subsequent cell death. Their efficacy has also been extended to Gram-negative pathogens,
which have a protective outer membrane, by protein engineering [118]. These endolysins
are also called “enzybiotics” and have been shown to be safe, effective, fast-acting, and
highly specific [119,120]. In addition, they weaken biofilms and have a low likelihood of
causing resistance [119,120], and can be used either alone or in combination with traditional
antibiotics [121]. Their potential applications are the same as those of phages, but they
offer some advantages. For example, enzymes cannot propagate as phages do; therefore,
their effect is directly dose-dependent and can be better controlled. In addition, they are
not able to mobilize DNA, so horizontal gene transfer is avoided, and they should be
easier to produce on an industrial scale given the prior experience with the production of
heterologous therapeutic proteins.

Since peptidoglycan is present exclusively in bacteria and not in mammalian cells,
the risk of cytotoxic effects to humans and animals is minimized. However, since they
are proteins, they may induce an immune response. Indeed, in vitro and in vivo studies
have shown that neutralizing antibodies can be generated upon repeated exposure to
lysins. However, although these antibodies reduce the antibacterial activity of the enzybi-
otics, they do not completely neutralize them [122,123], which suggests that enzybiotics
could be used repeatedly to treat the same bacterial infection [124]. The situation for the
treatment of Gram-negative bacteria with lysins may be slightly different. Testing several
non-engineered anti-Gram-negative lysins in vivo resulted in antibody production that did
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completely inhibit the in vitro bactericidal activity of the enzymes [125]. This suggests that
further optimization must be taken into account when translating anti-Gram-negative en-
zybiotics to the clinic. Engineered endolysins against Gram-negative bacteria, nonetheless,
have shown promising results in in vivo models of infection [126]. An additional major
problem of many anti-Gram-negative enzybiotics is a lack of activity in the presence of
human serum, probably due to their high cationicity, thus perhaps limiting their use for
systemic treatment [127]. However, serum-active lysins against Gram-negative bacteria
are already being developed by some companies and laboratories [126,128,129]. These ad-
vancements point out that, with appropriate experimental development, clinically valuable
lysins will also be available in the medium term against Gram-negative pathogens.

Systemic administration of enzybiotics may also release cellular debris from lysed
bacteria, which may induce a proinflammatory response. These bacterial cell debris include
lipopolysaccharides, (lipo)teichoic acids, and peptidoglycan through membrane fragmenta-
tion and can potentially lead to severe complications such as septic shock. However, allergic
or severe inflammatory reactions have not been described so far upon administration of
enzybiotics, even in clinical trials with human subjects [130,131]. The conclusions from
some studies indicate that there should be an optimal dose of enzybiotics that is sufficient
to kill the bacterial pathogen without additional fragmentation of the peptidoglycan layer
and spreading of proinflammatory factors [122,123].

In recent years, the way has been paved for recombinant lysins to enter different
phases in preclinical and clinical trials. Accelerated clinical advances and their high
technical feasibility make them a good alternative therapy to replace or to be used in
combination with conventional antibiotics in the short term, even with some authors
pointing out that lysins may be able to enter the clinic in a shorter term than phages [132].
Some companies are already taking the initiative to conduct phase II and III clinical trials
with enzybiotic-based products. An enzybiotic for cosmetic and topical application is
already being marketed under the GladSkin brand, marketed by Micreos. Recently, human
clinical trials (Phase I) have been conducted with two endolysins, iNtRON-N-Rephasin®

SAL200 (Tonabacase) [130] and Exebacase (CF-301) from ContraFect [133], against S. aureus
bacteremia without observing any adverse effects. Tonabacase is currently in phase II [134],
and Exebacase (CF-301) has completed phase II successfully and is in phase III to test its
activity against bacteremia and endocarditis caused by S. aureus [135].

8. Global Phage Therapy Market

As discussed in this review, the application of phage therapy is experiencing a con-
siderable boom in recent years. Since 2017, the global phage therapy market reached USD
567.9 million and growth expectations at compound annual growth rate (CAGR) are of 3.9%
for the period from 2018 to 2026 [136]. In 2016, USA had a 37% share of the global market
and became the largest market in the use of phages [137]. Europe is the second-largest
market due to the wide application of phages in the food and environmental fields. The
particular cases of Georgia, Poland, and Belgium are especially relevant because they are
pioneer countries in having taken the step from basic research to the market. It seems most
probable that this market will experience growth in the short term, supported by heavy
investment in biotechnology infrastructures, the evolution of agricultural practices and
their corresponding regulation, and foreseeable government initiatives favoring the use
of these technologies (or at least discouraging the massive use of antibiotics) in different
sectors, including that of human health, due to the antibiotic resistance crisis [138]. In this
regard, the most promising market for phage therapy would be the treatment of infections
caused by MDR bacteria. Estimates are that this will globally represent more than USD
13.8 billion a year by 2027 [139].

However, some potential hurdles may still be found in the way towards a successful
market entrance, such as the already mentioned regulatory issues (Section 4), the quality of
the results from future phage therapy clinical trials (Section 5), or questions about phage
patentability (although patents granted for phage products do already exist) [132,140].
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The more “canonical” nature of enzybiotics, similar to other therapeutic proteins, is an
additional reason to think that they may make their market entrance in a shorter term
than full phages, following the traditional avenue through intellectual property protection
of the molecules and conduction of clinical trials (Section 7). However, provided that
reasonable regulatory measures come into place, therapy with full virions, especially in
its personalized version, may be available to patients first, although its path to proper
marketability may be longer.

In this context and given that large pharmaceutical companies have practically stopped
investing in new antimicrobial compounds, many scientific startups are focusing on study-
ing and characterizing phages and their products for their therapeutic application. These
new companies are located mainly in the USA, India, Korea, Canada, and some European
countries. In Spain, the first company focused on the development of endolysins (Telum
Therapeutics) has recently been created [141]. An optimistic short-term future can also be
envisioned for these developments if we consider the latest investments taking place in the
area of alternatives to antibiotics, such as the BioNtech acquisition of PhagoMed [142], or the
high investment rounds to support new endolysins search platforms, as in Micreos [143].

9. Final Conclusions

Bacterial resistance is a major global threat and a leading cause of mortality worldwide.
The lack of effective antibiotics against MDR strains urgently requires therapeutic alterna-
tives, and phages or their derivatives can be a promising approach with sufficient scientific
and technological know-how in place. However, the lack of both specific regulation for
their clinical use and public awareness stands out, in our opinion, as the major hurdles to
be presently faced. With this review, we would like to emphasize the advantages of phages
as therapeutic tools and how they can be used to combat MDR bacteria. Moreover, despite
some foreseeable drawbacks also covered here, phages are nowadays the only short-term
solution for many patients. Taking this into account, a suitable regulatory initiative from
the competent authorities would be welcomed in Spain in the short term. Both scientific
literature and the lead examples of other countries prove that phage therapy is already
mature to be translated into a regulation that must ease, protect, and help developing the
phage therapy market and infrastructure.
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