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Abstract

The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence
homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these
constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering
purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of
inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from
a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of
observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by
the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of
these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring
residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We
quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different
fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de
novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution
signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Ca-RMSD error relative to the
observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery
provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the
universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic
variants in normal and disease genomes.
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Introduction

Exploiting the evolutionary record in protein families
The evolutionary process constantly samples the space of

possible sequences and, by implication, structures consistent with a

functional protein in the context of a replicating organism.

Homologous proteins from diverse organisms can be recognized

by sequence comparison because strong selective constraints

prevent amino acid substitutions in particular positions from

being accepted. The beauty of this evolutionary record, reported

in protein family databases such as PFAM [1], is the balance

between sequence exploration and constraints: conservation of

function within a protein family imposes strong boundaries on

sequence variation and generally ensures similarity of 3D structure

among all family members [2] (Figure 1).

In particular, to maintain energetically favorable interactions,

residues in spatial proximity may co-evolve across a protein family

[2,3]. This suggests that residue correlations could provide

information about amino acid residues that are close in structure

[4,5,6,7,8,9,10,11]. However, correlated residue pairs within a

protein are not necessarily close in 3D space. Confounding residue

correlations may reflect constraints that are not due to residue

proximity but are nevertheless true biological evolutionary

constraints or, they could simply reflect correlations arising from

the limitations of our insight and technical noise. Evolutionary

constraints on residues involved in oligomerization, protein-

protein, or protein-substrate interactions or other spatially indirect

or spatially distributed interactions can result in co-variation

between residues not in close spatial proximity within a protein

monomer. In addition, the principal technical causes of con-

founding residue correlations are transitivity of correlations,

statistical noise due to small numbers and phylogenetic sampling

bias in the set of sequences assembled in the protein family

[12,13,14,15]. One does not know a priori the relative contributions
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of these possible causes of co-variation effects and is thus faced

with the complicated inverse problem of using observed

correlations to infer contacts between residues (Figure 1). Given

alternative causes of true evolutionary co-variation, even if

confounding correlations caused by technical reasons can be

identified, there is no guarantee that the remaining correlated

residue pairs will be dominated by residues in three dimensional

proximity.

The initial challenge is thus to solve the inverse sequence-to-

structure problem by reducing the influence of confounding

factors. Only then is it possible to judge whether the evolutionary

process reveals enough residue contacts, which are sufficiently

evenly distributed (spread) throughout the protein sequence and

structure, to predict the protein fold. The ultimate criterion of

performance is the accuracy of 3D structure prediction using the

inferred contacts. Previous work combined a small number of

evolutionarily inferred residue contacts with other, structural,

sources of information to successfully predict the structure of some

smaller proteins, [16,17,18,19]. However, three crucial open

questions remain with respect to using evolutionarily inferred

residue-residue couplings for protein fold prediction. The first is

whether one can develop a sufficiently robust method to identify

causative correlations that reflect evolutionary constraints. The

second is whether the inferred, plausibly evolutionary, correlations

primarily reflect residue-residue proximity. The third is whether

these inferred residue-residue proximities provide sufficient

information to predict a protein fold, without the use of known

three-dimensional structures.

The de novo protein structure prediction problem in the
era of genome sequencing

Solving this inverse problem would enable novel insight into the

evolutionary dynamics of sequence variation, and the role of

evolutionarily constrained interactions in protein folding. Deter-

mination of protein structure, by experiment or theory, provides

one essential window into protein function, evolution and design.

However, our knowledge of protein structure remains incomplete

and is far from saturation. In spite of significant progress in the

field of structural genomics over the last decade [20], only about

half of all well-characterized protein families (PFAM-A, 12,000

families), have a 3D structure for any of their members [1]. At the

same time, the current upper limit on the total number of protein

families (,200,000; PFAM-B) is an order of magnitude larger, and

continues to grow with no clear limit in sight. Therefore, as

massive genomic sequencing projects rapidly increase the number

and size of protein families, in particular those without structural

homologs [21], accurate de novo prediction of 3D structure from

sequence would rapidly expand our overall knowledge of protein

structures in a way difficult to achieve by experiment.

Limited ability of current de novo 3D structure prediction
methods

Although the challenge of the computational sequence-to-

structure problem remains unsolved, methods that use fragment

libraries [22,23] or other strategies to search conformational space

[24,25], followed by sophisticated energy optimization or

molecular dynamics refinement, have been successful at predicting

the 3D structures of smaller proteins (,80 residues) [22,24,25,26]

[25,27,28]. In addition, custom-designed supercomputers have

allowed insight not only into molecular dynamics of protein

function, but also into the folding pathways of smaller proteins

such as BPTI and WW domains [29,30]. However, none of these

computational approaches have yet achieved de novo folding from a

disordered or extended polypeptide to the native folded state for

larger proteins and it is generally appreciated that the primary

obstacle to 3D protein structure prediction is conformational

sampling, i.e., successful search of the vast space of protein

conformations for the correct fold [26,31]. Using current methods,

it is computationally infeasible to adequately sample the enormous

set of all 3D configurations a protein might explore in the process

of folding to the native state. In this paper we explore the idea that

information gleaned from statistical analysis of multiple sequence

alignments can be used to solve this problem [2,5,6,32,33]. The

goal is use residue-residue contacts inferred from the evolutionary

record (EICs) to identify the tiny region in the space of all possible

3D configurations of a given protein that contains the correctly

folded or ‘native’ structure.

Figure 1. Correlated mutations carry information about distance relationships in protein structure. The sequence of the protein for
which the 3D structure is to be predicted (each circle is an amino acid residue, typical sequence length is 50–250 residues) is part of an evolutionarily
related family of sequences (amino acid residue types in standard one-letter code) that are presumed to have essentially the same fold (iso-structural
family). Evolutionary variation in the sequences is constrained by a number of requirements, including the maintenance of favorable interactions in
direct residue-residue contacts (red line, right). The inverse problem of protein fold prediction from sequence addressed here exploits pair
correlations in the multiple sequence alignment (left) to deduce which residue pairs are likely to be close to each other in the three-dimensional
structure (right). A subset of the predicted residue contact pairs is subsequently used to fold up any protein in the family into an approximate
predicted 3D shape (‘fold’) which is then refined using standard molecular physics techniques, yielding a predicted all-atom 3D structure of the
protein of interest.
doi:10.1371/journal.pone.0028766.g001

3D Structure Computed from Sequence Alone
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Extracting essential information from the evolutionary
sequence record using global statistical models

Statistical physics and computer science have developed a

number of methods that address the problem of inferring a

statistical model for a given set of empirically measured

observables. A partial analogy can be drawn to the inverse Ising

or Potts problem, in which heterogeneous local couplings between

discrete state variables are derived from measurements of two-

point correlation functions [34,35,36,37,38]. Similar maximum

entropy methods have been applied to problems in neurobiology,

e.g., for the engineering of stable and fast-folding proteins [39], for

the analysis of correlated network states in neural populations [40],

regulatory gene network modeling from transcript profiles [41], to

extract residue-residue interactions from nucleotide sequences

[42–43]), as well as derivation of protein signaling networks from

phospho-proteomics data [44]. The maximum entropy principle,

which requires maximally even probabilities subject to optimal

agreement between model-generated and empirical observables,

turns out to be a very useful device for approaching the problem of

extracting essential pair couplings from multiple sequence

alignments of families of homologous proteins. The use of a

maximum entropy approach to derive essential residue correla-

tions in proteins was introduced in 1999 by Lapedes et al. [14,15]

and then implemented algorithmically using belief propagation to

infer residue-residue interactions in protein-protein interfaces by

Weigt et al. [11] and using Monte Carlo optimization to study

sequence diversity in antibodies by Mora et al. [45]. An alternative

method developed by van Nimwegen et al. [46], similar in intent

but different in statistical approach, uses a Bayesian network

framework to disentangle direct from indirect statistical depen-

dencies between residue positions and also reports a dramatic

improvement in the accuracy of contact prediction from multiple

sequence alignments of proteins [13].

Solving the problem of conformational complexity
On this background, we asked if there is sufficient contact

information in pairwise correlations from the evolutionary

sequence record to fold a protein into a correct three-dimensional

structure. Our approach builds on an efficient algorithm to

compute the pair couplings in a maximum entropy model, called

mean field direct coupling analysis [47] and translates the resulting

residue couplings to a set of distance constraints for effective use in

distance geometry generation of 3D structures and in their

refinement by energy minimization and molecular dynamics

methods [48]. The essential data requirement for success of this

process is the availability of rich evolutionary sequence data that is

sufficiently diverse to reveal co-evolution patterns in amino acid

residues covering most structural elements of the protein. The

practical goal is to use this rich evolutionary sequence information

together with a global statistical model to massively reduce the

huge search space of possible protein conformations.

Testing the information content in residue co-variation
about 3D structure

We test the predictive power of this approach by generating a

set of candidate structures for proteins over a range of protein sizes

and different folds, including a trans-membrane protein, from

sequence information alone, i.e., without the use of templates or

fragment libraries. We quantitatively assess the extent to which

predicted 3D structures have the correct spatial arrangement of a-

helices and b-strands, as compared to the experimentally

determined structures. We report the details of these blinded

predictions, for 15 protein structures ranging from 48 to 258

amino acids in size and indicate how the method can be used to

effectively generate rich protein structural information from

sufficiently large and diverse protein family alignments (Figure 2,

Table 1). We conclude, based on our results and on the ability of

high-throughput sequencing to radically augment evolutionary

sequence information for different protein families, that prediction

of 3D protein structures from evolutionary co-variation is entirely

achievable and applicable to a rapidly increasing number of

protein families of unknown structure.

Results

Global better than local model for residue couplings
Mutual information does not sufficiently correlate with

residue proximity. We first attempted the prediction of

residue-residue proximity relationships using the straightforward

local mutual information (MI) measure. MI(i,j) for each residue

pair i, j is a difference entropy which compares the experimentally

observed co-occurrence frequencies fij(Ai,Aj) of amino-acid pairs Ai,

Aj in positions i, j of the alignment to the distribution fi(Ai)fj(Aj) that

has no residue pair couplings (details in Text S1):

MIij~
Xq

Ai ,Aj~1

fij Ai,Aj

� �
ln

fij Ai,Aj

� �
fi Aið Þfj Aj

� �
 !

ð1Þ

Contact maps constructed from residue pairs assigned high MI

values, and thus interpreted as predicted contacts, differ

substantially from the correct contact maps deduced from native

structures, consistent with the work of Fodor et al. [9] (Figure S1).

Visual inspection of MI-predicted contacts as lines connecting

residue pairs superimposed on the observed crystal structure

confirms that the contacts predicted from MI are often incorrect

and/or unevenly distributed (Figure 3, left, blue lines). Presumably

this arises due to the local nature of MI, which is independently

calculated for each residue pair i,j. Plausibly, the key confounding

factor is the transitivity of pair correlations, where the simplest case

involves residue triplets; for example, if residue B co-varies with

both A and C, because B is spatially close to both A and C, then A

and C may co-vary even without physical proximity (A–C is a

transitive pair correlation). Any local measure of correlation, not

just mutual information, is limited by this transitivity effect.

Effective residue couplings from a global maximum

entropy model. To disentangle such direct and indirect

correlation effects, we use a global statistical model to compute a

set of direct residue couplings that best explains all pair

correlations observed in the multiple sequence alignment (see

Methods and Text S1) [15,47]. More precisely, we seek a general

model, P(A1…AL), for the probability of a particular amino acid

sequence A1…AL of length L to be a member of the iso-structural

family under consideration, such that the implied probabilities

Pij(Ai,Aj) for pair occurrences (marginals) are consistent with the

data. In other words, we require Pij(Ai,Aj),fij(Ai,Aj), where fij(Ai,Aj)

are the observed pair frequencies of amino acids at positions i and j

in the known sequences in the family and the marginals Pij(Ai,Aj)

are calculated by summing P(A1…AL) over all amino acid types at

all sequence positions other than i and j. As specification of residue

pair properties (ignoring higher order terms) leaves the amino acid

sequence underdetermined, there are many probability models

that would be consistent with the observed pair frequencies. One

can therefore impose an additional condition, the maximum

entropy condition, which requires a maximally even distribution of

the probabilities - while still requiring consistency with data.

Probability distributions that are solutions of this constrained

3D Structure Computed from Sequence Alone

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e28766



optimization problem are of the form [11,45,49]:

P A1,:::,ALð Þ~ 1

Z
exp

X
1ƒiƒjƒL

eij Ai,Aj

� �
z

X
1ƒiƒL

hi Aið Þ
( )

ð2Þ

Here Ai and Aj are particular amino acids at sequence positions i

and j, and Z is the normalization constant. The Lagrange

multipliers eij(Ai,Aj) and hi(Ai) constrain the agreement of the

probability model with pair and single residue occurrences,

respectively. This global statistical model is analogous to

statistical physics expressions for the probability of the

configuration of a multiple particle system, such as in the Ising

or Potts models. In this analogy, a sequence position i corresponds

to a particle, such as a spin, and can be in one of 21 states

(Ai = 1..21); and, the Hamiltonian (the expression in curly brackets)

consists of a sum of particle-particle coupling energies eij(Ai,Aj) and

single particle coupling energies to external fields hi(Ai).

For our protein sequence problem, the eij(Ai,Aj) in equation 2 are

essential residue couplings that are used in the prediction of folding

constraints and the hi(Ai) are single residue terms that reflect

consistency with observed single residue frequencies. These

parameters are thus optimal with respect to the two key conditions,

(1) consistency with observed data (pair and single residue

frequencies) and (2) maximum entropy of the global probability

over the set of all possible sequences. In practice, once these

parameters are determined by matrix inversion (Equations M4,

M5), one can directly compute the effective pair probabilities

Pij
Dir(Ai,Aj) (Equation M6), and from these the effective residue

couplings (‘direct information’, in analogy to the term ‘mutual

information’) DIij by summing over all possible amino acid pairs

Ai,Aj at positions i,j:

DIij~
Xq

Ai ,Aj~1

PDir
ij Ai,Aj

� �
ln

PDir
ij Ai,Aj

� �
fi Aið Þfj Aj

� �
 !

ð3Þ

The crucial difference between this expression for direct

information DIij (Equation 3) and the equation for mutual

information MIij (Equation 1) is to replace pair probabilities

estimated based on local frequency counts fij(Ai,Aj), by the doubly

constrained pair probabilities Pij
Dir(Ai,Aj), which are globally

consistent over all pairs i,j.

Global maximum entropy statistical model reveals

residue proximity. We now examine whether the residue

coupling scores DIij (Equation 3; Equation 22, Text S1) from the

Figure 2. Predicted 3D structures for three representative proteins. Visual comparison of 3 of the 15 test proteins (others in Figure S3)
reveals the remarkable agreement of the predicted top ranked 3D structure (left) and the experimentally observed structure (right). Center: Ca-RMSD
error and, in parentheses, number of residues used for Ca-RMSD error calculation, e.g., 2.9 Å Ca-RMSD (67). The ribbon representation was chosen to
highlight the overall topographical progression of the polypeptide chain, rather than atomic details such as hydrogen bonding (colored blue to red in
rainbow colors along the chain, N-term to C-term; helical ribbons are a-helices, straight ribbons are b-strands, arrow in the direction of the chain; each
structure in front and back view, related by 180 degree rotation). The predicted proteins can be viewed in full atomic detail in deposited graphics
sessions for the Pymol program (Web Appendix A4) or from their coordinates (Web Appendix A).
doi:10.1371/journal.pone.0028766.g002

3D Structure Computed from Sequence Alone
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maximum entropy model provide information about spatial

proximity. Are residue pairs with higher DIij scores more likely

to be close to each other in 3D structure? Examination of contact

maps displaying residue pairs with highly ranked DIij values,

overlaid onto contact maps for an observed (crystal) structure,

reveals a surprisingly accurate match. The high-scoring residue

pairs are often close in the observed structure, and these pairs are

well distributed throughout the protein sequence and structure, in

contrast to pairs with high-scoring MIij values, (Figure 3, Figure

S2). This remarkable level of correct contact prediction holds for

all of our test cases (Table 1, Table S1) in the four main fold

classes.

Others have shown that given sufficient correct (true positive)

contacts combined with a lack of incorrect (false positive) contacts,

predicted contacts can be implemented as residue-residue distance

restraints to fold proteins from the main four fold categories with

up to ,200 residues to under 3 Å Ca-RMSD error from the

crystal structure [50] and, in later work, up to 365 residues with

accuracy under 3 Å Ca-RMSD error [50,51]. We were therefore

encouraged to use our blindly predicted proximity relations as

residue-residue distance restraints to fold proteins de novo from

extended polypeptide chains.

Protein all-atom structures inferred from evolutionary
constraints

In spite of elegant analyses using subsets of real contacts [50,51],

it is not a priori obvious to what extent accuracy of contact

prediction translates to accuracy of 3D structure prediction and, in

particular, how robust such prediction is to the presence of false

positives. We therefore decided to assess the accuracy of contact

prediction by the very stringent criterion of accuracy of predicted

3D structures.

Generating model structures. Starting from an extended

polypeptide chain with the amino acid sequence of a protein from

the family (Table S1) we used well-established distance geometry

algorithms, as used for structure determination by nuclear

magnetic resonance (NMR) spectroscopy [52] (Text S1). The

distance constraints were constructed using residue pairs with high

DI scores pairs and secondary structure constraints predicted from

sequence (Text S1, Appendix A1, Table S2). The protocol

generates initial 3D conformations and then applies simulated

annealing [48] (steps outlined in Text S1 and Appendix A2). We

reasoned that the number of distance constraints (NC) needed

should scale monotonically with the protein length L, as seen in

fold reconstruction from observed contact maps [50,51]. To

explore the variability of predicted structure using a given set of

distance restraints, we generated 20 candidate structures for a

range of NC values which started at NC = 30 and incremented in

steps of 10 to the nearest multiple of 10 to L, e.g., from NC = 30 to

NC = 160 for the Hras proteins which has 160 core residues in the

PFAM alignment. Thus, in total we generate on the order of 2*L

candidate three-dimensional structures for each protein family as

prediction candidates, more precisely, between 400 and 560,

depending on the size of the protein (Table 1, Appendix A3). In

practice, a smaller number of candidate structures may be

sufficient. Each candidate is an all-atom structure prediction for

a particular reference protein of interest chosen from the family.

The model structures satisfy a maximal fraction of the predicted

distance constraints and meet the conditions of good

stereochemistry and consistency with non-bonded intermolecular

potentials. The top predicted structure for each protein is selected

by blind ranking of these candidate structures using objective,

primarily geometric, criteria (Figure 2, Figure S2, Appendix A3).

3D structure inference for small and larger proteins of
diverse fold types

To evaluate the information content of residue pair correlations

with respect to protein fold prediction, we apply the method to

Table 1. Accuracy of predicted proteins.

Target Protein
Uniprot ID Fold L* Pfam ID No. seqs

Blind top
Ca-rmsd** TM*** Best Ca-rmsd** TM*** TP**** Ref. PDB

RASH_HUMAN a/b 161 Ras 10K 3.5 (161) 0.7 2.8 (155) 0.76 0.8 5p21

CHEY_ECOLI a/b 114 Response_reg 72K 2.98 (107) 0.65 2.96 (107) 0.67 0.67 1e6k

THIO_ALIAC a/b 103 Thioredoxin 13K 3.86 (94) 0.55 3.5 (97) 0.59 0.68 1rqm

RNH_ECOLI a/b 141 RNase_H 11K 4.0 (110) 0.54 3.5 (114) 0.57 0.68 1f21

TRY2_RAT b 223 Trypsin 16K 4.27 (186) 0.6 4.27 (186) 0.54 0.81 3tgi

CADH1_HUMAN b 100 Cadherin 12K 3.8 (88) 0.55 3.86 (96) 0.57 0.86 2o72

YES_HUMAN b 48 SH3_1 6K 3.6 (47) 0.37 3.35 (43) 0.41 0.52 2hda

O45418_CAEEL a+b 100 FKBP_C 8K 4.1 (88) 0.48 3.4 (79) 0.53 0.77 1r9h

ELAV4_HUMAN a+b 71 RRM_1 28K 2.9 (67) 0.57 3.16 (71) 0.59 0.71 1g2e

A8MVQ9_HUMAN a+b 107 Lectin_C 5K 4.8 (85) 0.39 4.0 (100) 0.53 0.8 2it6

PCBP1_HUMAN a+b 63 KH_1 9K 4.69 (46) 0.25 4.61 (61) 0.35 0.47 1wvn

OPSD_BOVIN a tm 258 7tm_1 27K 4.84 (171) 0.5 4.29 (180) 0.55 0.38 1hzx

BPT1_BOVIN a+b 52 Kunitz_BPTI 2K 2.73 (53) 0.49 2.75 (53) 0.49 0.71 5pti

OMPR_ECOLI a 77 Trans_reg_C 24K 4.7 (64) 0.35 3.9 (62) 0.45 0.38 1odd

SPTB2_HUMAN a 108 CH(calp hom) 4K 4.0 (47) 0.37 3.88 (88) 0.5 0.5 1bkr

*Protein length.
**[Å (#residues)].
***Template Modeling score [0.0–1.0].
****True positives for Nc = 50 [0.0–1.0].
doi:10.1371/journal.pone.0028766.t001

3D Structure Computed from Sequence Alone
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increasingly difficult cases. We start with small single-domain

proteins and move on to larger, more difficult targets, eventually

covering a set of well-studied protein domains of wide-ranging

biological interest, from different fold classes. We report detailed

results for four example families, and summary results for 11

further test families, and provide detailed 3D views of all 15 test

protein families in Figure S3 and detailed 3D coordinates and

Pymol session files for interactive inspection in Appendices A3 and

A4, http://cbio.mskcc.org/foldingproteins.

Small: an RNA binding domain (RRM). The blind

prediction of the 71-residue RRM domain of the human Elav4

protein (Uniprot ID: Elav4_human) is a typical example of a

smaller protein. The distance constraints are derived from a rich

corpus of 25K example proteins in the PFAM family. The highest

ranking predicted structure has a (excellent) low 2.9 Å Ca -RMSD

deviation from the crystal structure over 67 out of 71 residues, a

TM score of 0.57 and GDT_TS 54.6, indicating overall good

structural similarity to the observed crystal structure, [53,54],

(Figure 2 top, Table 1). It has correct topography of the five b-

strands and two a-helices, marred only by a missing H-bond

pattern between strands 1 and 3, at least partly due to the

truncation of the strand 1, a consequence of the short length of the

sequence in the PFAM alignment. Strands 2 and 3 align with only

1.6 Å Ca-RMSD deviation over the length of the predicted strands

and are positioned well enough for hydrogen bonding, with some

correct registration. Interestingly, the 4th b-strand (penultimate)

missed by the secondary structure prediction method is placed in

the correct region in 3D: this is one of several examples in which

residue coupling information overrides incorrect local prediction.

The predicted top-ranked domain of Elav4 very likely lies within

the refinement basin of the native structure.

Medium size: Ras oncogene (G-domain), an a/b domain

with an GTPase active site. The G-domain family in PFAM,

with Human Ras proto-oncogene protein (Uniprot-ID:

hras_human) chosen as the protein of interest, has a core

multiple sequence alignment (MSA) of 161 residues. The

structure has an a/b fold with a 6-stranded b-sheet, surrounded

by 5 a-helices, one of which (a-2) is involved in the GTPase switch

transition after GTP hydrolysis. The highest ranked, blindly

predicted structure is 3.6 Å Ca-RMSD from the crystal structure,

over 161 residues (Figure 2 middle) and has a high TM score of 0.7

(range 0.0–1.0, with 1.0 implying 100% of residues are within a set

distance from the correct position [53]). The six b-strands and five

a-helices are placed in the correct spatial positions and are

correctly threaded (Appendices A3 and A4). The 6 b-strands,

which make 5 b-strand pairs are not within hydrogen boding

distance for all backbone bonding, but the correct register can be

easily predicted for 26/30 of the residue pairs, Text S1. The

accuracy of overall topography of the highest-ranked structures is

remarkable (Table 1) and, as far as we know, currently not

Figure 3. Progress in contact prediction using the maximum entropy method. Extraction of evolutionary information about residue
coupling and predicted contacts from multiple sequence alignments works much better using the global statistical model (right, Direct Information,
DI, Equation 3) than the local statistical model (left, Mutual Information, MI, Equation 1). Predicted contacts for DI (red lines connecting the residues
predicted to be coupled from sequence information) are better positioned in the experimentally observed structure (grey ribbon diagram), than
those for MI (left, blue lines), shown here for the RAS protein (upper) and ELAV4 protein (lower). The DI residue pairs are also more evenly distributed
along the chain and overlap more accurately with the contacts in the observed structure (red stars [predicted, grey circles [observed] in contact map;
center, upper right triangle) than those using MI (blue [predicted], grey circles [observed]; center, lower left triangle). Details of contact maps for all
proteins comparing predicted and observed contacts are in Figures S1 and S2, Text S1.
doi:10.1371/journal.pone.0028766.g003
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achievable for proteins of this size by any de novo structure

prediction method [27].

Larger: trypsin, an enzyme with a two-domain b-barrel

structure. The largest (non-membrane) protein family tested in

the blind test is the trypsin-fold serine protease family, with rat

trypsin chosen as a representative protein. Its size, at 223 amino

acids, is significantly larger than proteins that can be predicted by

other de novo computational methods. Trypsin consists of b-

strands in two structurally isomorphous b-barrel domains. The

highest-ranked predicted structure has 4.3 Å Ca-RMSD error

over 186 out of 223 residues (Figure 2 bottom, Table 1,

Appendices A3 and A4). The overall distribution of secondary

structure elements in space is approximately correct and our

method correctly predicts 5 disulfide bonded cysteine pairs, which

lie within our alignment, Text S1. The topography of the first b-

barrel (domain 1) is good and plausibly within refinement range of

the observed structure. Five correct pairs of b-strands are

identified (one absent) and 70% of hydrogen bonding paired

residues are predicted with correct register, Text S1. However,

domain 2 has a number of incorrect loop progressions (see Pymol

session in Appendix A3), and possibly (by inspection) is not within

refinement range of the correct structure. Predicting the structure

of proteins in the trypsin family is particularly challenging, as the

structure is known to undergo a conformational change after

cleavage of the activation peptide [55] and, as the N-terminal and

C-terminal peptide cross from one domain to the other.

Inferring the residue configuration in the active site of

trypsin. In spite of the limited quality of structure prediction in

domain 2 of trypsin, it is interesting that the top-ranked structures

place the Ca atoms of the highly conserved active site triad

residues Ser-His-Asp in correct relative spatial proximity, i.e., within

0.64 3 Å Ca-RMSD (and 1.3 Å all atom-RMSD) error, after

superimposition of the three residues of the catalytic site with the

same three residues of the experimental structure (Figure S4). This

may reflect strong evolutionary constraints near functional sites

and may imply that the configuration of resides around an active

site can be predicted more accurately than other detailed aspects

of the 3D structure. The ability to predict active site constellations

at this level of accuracy would be particularly interesting for the

design of drugs on predicted structural templates.

Exploration: rhodopsin, an a-helical transmembrane

protein. Rhodopsin is the first membrane protein predicted

using this method. This important class of membrane proteins has

7 helices and the PFAM family from which the distance restraints

are inferred contains many subfamilies of class A G-protein

coupled receptors [56]. For the highest ranked predicted

rhodopsin structure (4.84 Å Ca-RMSD error from a

representative crystal structure over 171 residues), the overall

topography of the helices is accurate (TM score 0.5), with most of

the positional deviation arising for helices 1 and 7, which are

misaligned relative to the direction perpendicular to the

membrane surface, (Table 1, Figure S3). The predicted structure

with the highest TM score (0.55), and 4.29 Å Ca-RMSD over 180

residues, also misaligns the terminal helices but does recapitulate a

network of close distances (,4.5 Å) between the side chains of

Arg135 (helix III) and Glu247, Thr251 (helix VI) as well as other

well-known inter-helical proximities such as Asn78 (helix II) to

Trp161 (helix IV) and Ser127 (helix III) [57]. Given that the

current version of the method has no information about

membrane orientation for membrane proteins, this constitutes

an excellent starting point for future application of the method to

3D structure prediction for membrane proteins.

Ranking inferred structures. To arrive at useful and

objective blind predictions, the set of inferred structures for each

family is ranked by objective criteria based on physical principles

and a priori knowledge of general principles of protein structure.

In the current implementation, we use consistency with the well-

established empirical observation of right-handed chain twist in a-

helices and right-handed inter-strand twist for b-strand pairs [58]

(Text S1). The virtual dihedrals of the a-helices and the predicted

b-twists in the candidate structures were combined together as a

score, weighted by the relative numbers of residues in b-strands

and a-helices for each protein, see scores for all structures in

Appendix A5. We found these geometric criteria effective in

eliminating artifacts that appear to arise from the fact that distance

constraints do not have any chiral information, such that the

starting structures prior to refinement using molecular dynamics,

while consistent with distance constraints, may have incorrect

chirality, either globally or locally. We also eliminated candidate

structures with knots (as with the top ranked trypsin prediction)

according to the method of Mirny et al. [59].

The highest-ranked all-atom model structure is taken as the top

blindly predicted structure (Table 1, Table S1). Lower ranked

structures are expected to have lower accuracy of 3D structure,

but this has to be tested after blind prediction by comparison with

known structures. As a test of the entire procedure and the ranking

criteria, we assessed our blind predictions by comparing the

ranking score of the predicted structures with the experimentally

observed structure, from X-ray crystallography, of the chosen

reference protein, (Text S1, Figure 4A, Figure S5 and Appendix

A5). For proteins such as RAS and Trypsin (Figure 4B), the

objective criteria successfully ranks those predicted structures with

the lowest Ca-RMSD error to a crystal structure as highest

scoring. As we remove obviously knotted proteins [59] we would

miss genuinely knotted proteins [60] which are, however, rarely

observed.

Assessment of prediction accuracy: 3D structures
Summary of blinded 3D accuracy for 15 test proteins of

known structure. We were surprised at the extent and high

value of the information in the derived distance constraints about

the 3D fold of examples from all major fold classes containing

various proportions of a-helices and b-sheets. This high

information content in residue couplings, derived from the

maximum entropy statistical model, extends, so far, to proteins

as large as G-domains, like H-ras, with 161 residues, and serine

proteases, like trypsin, with 223 residues, as well as the rhodopsin

family, a trans-membrane protein, with 258 aligned residues. This

size has so far been out of range for state-of-the-art de novo

prediction methods even when three-dimensional fragments are

used [22,61]. In general we find that predicted a/b folds, among

the 15 proteins investigated in detail, produce the most accurate

overall topography (Table 1, Table S1, Figure S5.). We anticipate

that these results will likely extend to many protein families and

that accurate structures can be generated for many of these using

distance constraints derived from evolutionary information and

predicted secondary structure alone, followed by energy

refinement. For 12 out of the set of 15 protein families (Table 1),

the top blindly ranked structures have coordinate errors from

2.7 Å–4.8 Å for at least 75% of the residues, using the accepted

practice of omitting a moderate fraction of badly fitting residues in

order to avoid exaggerated influence from outliers resulting from

the square in the definition of Ca-RMSD (using the MaxCluster

suite [62]). For most practical purposes, one might consider these

to be within the basin of attraction within which one is highly likely

to be able to identify the particular correct fold, which we estimate

roughly to have a radius of about 5 Å Ca-RMSD. The partial

exceptions are rhodopsin (OPSD) for which the relatively low
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4.8 Å Ca-RMSD error is limited to 171 out of 258 residues (66%);

and PCBP1 at 4.7 Å for 46/63 residues (73%). For these proteins,

the agreement is limited to a smaller, though still sizable, fraction

of the protein and it is less likely that the correct overall fold would

be recognized. The major exception is SPTB2 at 4.0 Å for 47/108

residues (44%), which we consider not satisfactory. The TM scores

customary in CASP reflect these differences and it is plausible that

the top-ranked predictions for 11 out of the 15 test proteins would

be considered excellent for de novo modeled structures of this size

(Table S1) [27,61,63].

Detailed examination of the close contacts of top ranked

predicted structures reveals interesting violations, (Figure 5). For

Ras and Trypsin false positive DI constraints (between Ser145 and

Asp57 for Ras, and Ser127 and Ala37 for trypsin) are not satisfied

in the top predicted structures thereby improving the accuracy.

Conversely, a contact is made the N-terminal b-strand and the C-

terminal helix in RAS and C-terminal b-strand in ELAV4, despite

the fact that no constraints are used in the vicinity of these contacts

(grey circles, Figure 5).

Best 3D prediction accuracy in top 400 candidate

structures. To assess the potential of the method and with a

view toward future improvements of ranking criteria for sets of

candidate structures, one can ask the question, from hindsight,

which of, say, 400 candidate structure has the highest accuracy.

This question is analogous to protein structure prediction reports

that discuss the relationship (scatter plots) of, e.g., model energy

against model error. Here, the best candidate structures by TM

score, selected from among 400 candidate structures for each

protein (NC = 10–200), have TM scores from 0.5 to 0.76 and

typically a lower error than the blindly top ranked structure,

ranging from 2.8 Å to 4.6 Å Ca-RMSD for all 15 families,

covering at least 80% of the residues, with the exception of OPSD

where we achieve 4.3 Å for 180/258 residues (66%), (Figure 4B,

Table1, Table S1). The fact that in most cases better 3D structures

are found in the top 400 candidates is a non-trivial positive

indication, as the conformational search space of protein folds is so

large, that random methods, or moderately effective methods,

would have an exceedingly low probability of achieving errors in

this low range in as few as 400 structures. However, some of the

structures generated here among the top 400 appear topologically

incorrect, with the polypeptide chain passing through loops in a

way that is, according to visual intuition, atypical of fully correct

Figure 4. Accuracy of blinded 3D structure inference. A. The overall performance of the de novo structure prediction reported here based on
contacts inferred from evolutionary information (EICs), ranges from good to excellent for the 15 test proteins (on left: 3D structure type [a= a-helix-
containing, b= b-strand-containing, 7tm-a= containing seven trans-membrane helices]; in parentheses: size of protein domain/number of residues
used for Ca-RMSD error calculation; on bar: Uniprot database ID). Larger bars mean better performance, i.e., lower Ca-RMSD co-ordinate error. Left:
performance for the top ranked structure for each target protein out of 400–560 (depending on the size of the protein, 20 structures per NC bin, NC in
steps of 10, details in Appendix A3 and A6) candidate structures in blind prediction mode; right: performance of the best structure, in hindsight, out
of 20 candidate structures generated, for 20 sets of constraints ranging from 10:200, in steps of 10. This reflects what would be achievable with better
ranking criteria or independent post-prediction validation of structure quality (Table 1; details of blind ranking scores in Web Appendix A5). Other
well-accepted methods for error assessment, such as GDT-TS and TM score are useful for comparison purposes (Table S1, Web Appendix A6). B.
Ranking score of each candidate structure (quantifying expected structure quality) versus Ca-RMSD error. Ideally, higher-ranking scores correspond to
lower error. The distribution of the candidate structures (black dots) for Elav4, Ras and Trypsin shows, in retrospect, that the ranking criteria used here
are relatively useful and help in anticipating which structures are likely to be best (plots for all tested proteins in Figure S5). In blind prediction mode,
a list of predicted candidate 3D structure has to be ranked by objective and automated criteria, with a single top ranked structure or a set of top
ranked structures nominated as preferred predictions.
doi:10.1371/journal.pone.0028766.g004
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structures. Such topologically incorrectly structures would not be

within a basin of attraction of conventional energy refinement,

e.g., by simulated annealing. This indicates that neither low Ca-

RMSD as a measure of overall accuracy, nor the more recently

developed template modeling (TM) score, nor the global distance

test - total score (GDT-TS), is fully informative indicators of

structure quality. These classic structure comparison metrics need

to be supplemented by more sophisticated measures, which

quantify topographical differences in chain progression in 3D

space, a direction for future work [64,65], together with an

analysis of violations of constraints in the spirit of Miller et al. [3].

In any case, the encouragingly high accuracy of the folds we

generate amongst a relatively small number of candidates imply

that improved ranking criteria may lead to a better set of top-

ranked, fully blinded predictions.

Current technical limits of 3D prediction accuracy. As

an estimate of the accuracy maximally achievable by this method

and its particular implementation, we performed reference

calculations using artificial, fully correct, distance constraints

derived from the experimentally observed structure. With this

ideal set of constraints, we can construct protein structure models

at an error of not lower than about 2.0 Å Ca-RMSD (Text S1,

Table S3, larger values for some of the larger proteins). This places

a lower bound on the expected error, inherent in the distance

geometry and refinement part of the method and this error will

scale to some extent with the length of the protein as others have

noted [50]. That we achieve candidate structures close to these

bounds with predicted distance constraints is consistent with the

notion that the inferred residue couplings contain almost all the

information required to find the native protein structure, at least

for the 15 protein families examined here. This technical lower

limit also represents a challenge for generic methods improvement

for computation of accurate all-atom structures from distance

constraints.

Assessment of prediction accuracy
Accuracy of contact prediction. The accuracy of prediction

of 3D structures crucially depends on the accuracy of contact

prediction and the choice of distance constraints from a set of

predicted contacts. Note that residue-residue proximity is a

different requirement than residue-residue contact, as residues

may be near each other in space without any of their atoms, being

in inter-atomic contact (defined as inter-atomic distance near the

minimum of non-bonded inter-atomic potentials (‘van der Waals’),

say, about 3.5 Å). Here, we use the term inter-residue contact

interchangeably with inter-residue proximity, i.e. minimum atom

distance of less than 5 Angstroms. We assess the accuracy of

contact prediction in terms of the number of true positives and

false positives among predicted contacts, i.e., those that agree and

those that disagree with the contacts observed in known 3D

protein structures.

We find that the highest scoring pairs provide remarkably

accurate information about residue-residue proximity (Figure 6A,

Figures S6 and S7). For example, the rate of true positives is above

0.8 for the first 50 pairs for HRAS and still above 0.5 for the first

200 pairs; for other proteins, it is lower but still relatively high, e.g.,

above 0.7 and 0.4 for the first 50 and 200 for ELAV4. These

results are consistent with our parallel evaluation of contact

prediction accuracy for a large number of bacterial protein

domains [47] and represent a significant improvement over local

methods of contact prediction from correlated mutations or co-

evolution. Not surprisingly, there is a general trend for a higher

rate of true positive contact prediction to results in better predicted

3D structures, The predicted structures of proteins such as Ras

and CheY with a high proportion of true positive predicted

contacts tend to be more accurate than those with lower rates, for

example the KH domain of PCBP1 and the calponin homology

domain of SPTB2. However, this relationship between the

proportion of true positives and the accuracy of the best-predicted

Figure 5. Top-ranked predicted structures can make correct contacts in the absence of constraints and avoid incorrect contacts in
spite of false positive constraints. The top blindly ranked structures are evaluated in terms of quality of contact prediction (NC = 40 for Elav4,
NC = 130 for Ras, NC = 160 for Trypsin). The predicted constraints (red stars) are correct when they coincide with contacts derived from the observed
structure (grey circles) and otherwise incorrect (false positives, red on white). The contacts derived from the predicted 3D structure (dark blue) are in
good general agreement with those from the observed structure (grey). The cooperative nature of the folding prediction process permits favorable
situations, in which contacts regions not touched by a predicted constraint (red) are still predicted correctly (black circle for RAS, dark blue on grey,
no red) and false positive constraints are not strong enough to lead to incorrect contacts (left black circle Elav4, red star, no dark blue or grey).
However, in unfavorable situations missing constraints may imply that contact regions are fully or partially missed (black circle, trypsin) or mostly
missed (right black circle for Elav4, grey adjacent to and wider than dark blue).
doi:10.1371/journal.pone.0028766.g005
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Figure 6. Key requirement of global statistical model for correct prediction. Evaluation of accuracy in terms of predicted contacts (A) and
predicted 3D structures (B). (A) The two global models, the Bayesian network model (BNM, green [13]) and direct information model (DI, red, this
work and [47]) have a consistently high rate of correctly predicted contacts (true positives) among the top NC ranked residue pairs; two local models,
mutual information (MI, green, equation 1) and SCA (black, [66]) have a consistently lower rate of true positives. Here, local refers to statistical
independence of each pair i,j, while global refers to statistical consistency of all pairs. In (B), only the predicted 3D structures (green, BNM; red, EIC) for
the global models agree well with the observed structure (grey); Ca-RMSDs is calculated over the number or residues in parentheses (Pymol sessions
for all structures in Web Appendix A4). Attempts to generate 3D structures for the two local methods MI and SCA failed (not shown). Comparing (A)
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structures is not as simple as one might have expected, Figures S6,

S8 and S9. For instance the thioredoxin predicted structures are

on the whole more accurate than the predicted the lectin domain

(A8MVQ9_HUMAN) structures despite the fact that thioredoxin

has a lower true positive rate than lectin domain for its predicted

contacts. Since the quality of 3D structures could depend also on

the distribution of the contacts through the chain, for each protein

we also calculated the distance of a experimental contact to the

nearest predicted contact and this ‘spread’ showed a good

correlation with the Ca-RMSD accuracy achieved, (Figure S10

and Text S1).

Comparison of contact prediction accuracy between

global and local models. How well do other contact

prediction methods work? The two global models, the Bayesian

Network Model (BNM, [13,46]) and the DI model (this work and

[15] have a consistently high rate of correctly predicted contacts

(true positive rate) among the top NC ranked residue pairs; in

comparison two local models, MI (Equation 1) and statistical

coupling analysis (SCA, [66]), both have a lower rate of true

positives (Figure 6A, Figures S6, S7, S11, S12, S13, S14, and S15).

The relatively high accuracy of contact prediction in the BNM

model encouraged us to generate predicted 3D structures based on

the BNM ranked residue pairs as the basis for inferred distance

constraints, following the protocol developed for the DI model.

For ten test proteins, folded all-atom 3D structures for BNM agree

well with the observed structure (green structures in Figure 6B and

data not shown). On the whole, the Ca-RMSD errors are

somewhat higher for the structures from the BNM model than

those for the DI model (red structures in Figure 6B). In particular,

using the notation [protein identifier/error for BNM/error for

DI], we have: [RASH/5.6 Å/2.8 Å], [ELAV4/3.8 Å/2.6 Å],

[YES/4.6 Å/3.6 Å] [CADH/4.7 Å/3.9 Å] and trypsin did not

reach an accuracy lower than 12 Å Ca-RMSD with the BNM

constraints (Figure 6B and data not shown). On the other hand,

the BNM and the DI predictions for OMPR were in the same

accuracy range when compared to the experimental structure, as

the BNM result was over 74 atoms as opposed to 63 atoms for the

DI method [OMPR/4.4 Å/4.0 Å].

These results confirm that in general a higher rate of true

positives for contact prediction leads to better 3D structure

prediction; and, that for the global methods one needs at least a

true positive rate of about 0.5 and on the order of about 100

predicted contacts, depending on size and other details of

particular protein families. Interestingly, a false positive rate as

high as about 0.3–0.5 can still be consistent with good 3D structure

prediction. Clearly, the global statistical models provide a

substantial increase in the accuracy of prediction of residue

contacts and of 3D structures.

Information requirements for improved prediction of 3D
structures

Requirement of sufficient sequence range coverage by the

multiple sequence alignment. Among the test set of twelve

protein families, the lowest accuracy was obtained for the SPBT2

and rhodopsin proteins, (see Table 1, Table S1, Figure S3). In

these cases a significant number of key residues are not included in

the PFAM hidden Markov model (HMM) and thus were excluded

from our analysis. If the alignment covers only part of the

structure, the statistical model of the sequence is restricted to this

part of the structure and does not provide information for non-

covered regions. Since regions not covered by the PFAM

alignments are often at the N-terminus or C-terminus of the

protein and these are in contact in many protein structures, this

will significantly harm the accuracy of prediction that is possible.

Our analysis also shows that prediction is less likely to be accurate

even within the covered region when ends of the alignment are

absent. How much additional sequence information is required to

build an alignment for the entire protein sequence in each case?

This question is non-trivial as the diversity sampled at each

sequence position by evolution varies greatly. Indeed the strength

of structural evolutionary constraints may diminish towards the

protein termini, analogous to the ‘frayed ends’ observed in many

NMR-determined structures.

Correct folding with a surprisingly small number of

distance constraints. What is the minimum number of

predicted distance constraints needed to generate an

approximate 3D fold? An important parameter of our folding

protocol is the number of inferred distance constraints, NC, used to

generate candidate structures. While residues with the highest

ranked pair correlations are usually close in 3D structure (Figures

S6 and S7) the reliability decreases with decreasing value of DIij.

We assessed the accuracy of the predicted protein folds for 15

evaluation families as a function of NC (Figures 7A and S16, Table

S1).

Going from 10 to typically 200 distance constraints, we find that

the prediction error drops sharply as EIC constraints are added,

until false positives gradually start to degrade the prediction

quality. We conclude that one needs about 0.5 to 0.75 predicted

constraints per residue, or about 25–35% of the total number of

contacts, to achieve reasonable 3D structure prediction. This

number is close to those reported by other groups, who used fully

correct close residue pairs to impose inexact distances as

constraints [50,51,67]. For instance, Elav4 (length 71) folds to

below 5 Å Ca-RMSD with only 20 constraints, whilst Trypsin

(length 223) takes 130 constraints. However, the number of

constraints per residue to reach below 5 Å Ca-RMSD is not

constant (column 15 Table S1), and proteins such as OMPR at

0.66 constraints per residue, and Ras at 0.25 constraints per

residue show that this will depend on other factors, such as type of

fold and false positive rates. While the accuracy of structure

prediction for some proteins clearly decreases as the number of

false positives, for example Cadh1, Elav4 and Yes, other proteins,

such as Ras and CheY stay the same or even improve in accuracy

as the false positive proportion increases, (Figure S8). This result

underlines the necessity of using the constraints to attempt to fold

the proteins, in order to assay the quality of predicted contacts,

rather than relying on true positive rates of contact prediction

alone.

Increasing prediction accuracy over time, but lower than

expected numbers of sequences needed. Since we not

require today’s standard of high performance computing, we

wondered how long ago it would have been possible to make good

structural predictions. How does the accuracy of predicted folds

depend on the number of sequences in the multiple sequence

alignment and their evolutionary diversity? To start to explore

these questions we computed the accuracy of folding using

distance constraints for four representative proteins, using

alignments from 20 different releases of PFAM [1] covering the

and (B) confirms that a higher rate of true positives for contact prediction leads to better 3D structures and that for DI one needs at least a true
positive rate of about 0.5 for about 100 predicted contacts, depending on size and other details of particular protein families. Interestingly, a false
positive rate as high as about 0.3–0.5 can still be consistent with good 3D structure prediction.
doi:10.1371/journal.pone.0028766.g006
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last 13 years. For each multiple sequence alignment we calculated

20 structures for a range of constraints from 30–200, (Figure 7B).

During this period the available sequence information has increased

dramatically as the result of new sequencing technology and large-

scale genome projects, so we examined the best structure attained as

a function of the number of sequences. Although there is a clear

overall trend for the Ca-RMSD of predicted structures to drop

monotonically as the number of sequences in the family increases

(for example, RnaseH, 4 Å Ca-RMSD threshold was reached in

2009 when the number of sequences reached 5000), not all protein

families behave the same way. The predicted Ras structures reached

under a 4 Å Ca-RMSD in 2002 with as few as 1200 sequences,

then, surprisingly, rose again as more sequences were included, to

finally dip to 2.5 Å Ca-RMSD in 2009. Similarly, although the

predicted structures of CheY and the SH3 domain from the Yes

protein improve with the number of sequences available, predicted

structures had Ca-RMSD in errors as low as 3.3 Å and 4.7 Å

respectively in 1999, with ,600 sequences for both. (Figure 7B).

Most surprisingly, a predicted OMPR structure with an error under

5 Å Ca-RMSD would have been possibly using as few as 170

sequences (1999 PFAM release).

Hence our results highlight the overall relationship of accuracy

of the predicted fold to the number of sequences available.

However, this relationship is not straightforward. The distribution

of sequences in the sequence space of a particular family will

doubtless have an effect. In our current implementation of the

algorithm, sequences with over 70% residue identity to family

neighbors are down-weighted (Text S1). Therefore the effective

number of sequences used for the DI coupling calculation is far less

than the size of the family. Approximately only 12–40% of

sequences available in the family are actually used for the

calculation (Table S1). This reduction in the effective number of

sequences varies substantially between families, highlighting the

different distributions over sequence space covered by individual

families (column 18 in Table S1). We speculate that future work

will improve our understanding of which, as well as how many

sequences are optimal for contact inference from evolutionary

information.

Discussion

Evolutionary constraints are determinants of 3D structure
Protein folding algorithms tend to focus on finding the global

minimum of the free energy of the polypeptide chain by physical

simulations or by a guided search in conformational space using

empirical molecular potentials. In this work we test the ability of a

set of evolutionarily derived distance constraints between pairs of

residues to guide the search towards the correct structure. As

found in the study on the collective behavior of neurons, described

quantitatively by models that capture the observed pairwise

correlations but assume no higher-order interactions [40], our

results suggest that pairwise amino-acid co-evolution statistics

contain sufficient information to find the native fold. In both cases,

success is contingent on the fact that indirect correlations are, at

least to some extent, removed from consideration, this is achieved

through the maximum entropy methodology. In the case

considered here it was not necessary to explicitly consider higher

order couplings, which greatly reduced the complexity of the

analysis. The fact that this simplification works at all may be as

much a starting point for an exploration of our understanding of

the evolution of proteins as it is a route to structure prediction.

Advantage of global statistical models
Our calculations show that the maximum entropy approach is

very effective at taking into account the interdependencies of

locally calculated mutual pair information. In contrast, MI high-

ranking correlated residue pairs tend to be highly clustered in the

contact map and have lower chain coverage, with substantial

redundancy of information and a high rate of false positives from

chain transitivity. In the maximum entropy calculation used to

calculate the DI residue couplings, computation of the Cij(Ai,Aj)

matrix is straightforward, given a multiple sequence alignment,

however it is the matrix inversion (Equation 18a and b, Figure 8

and Text S1) that provides the global nature of the probability

model. The application of this text-book approach from statistical

physics to the problem of extracting essential pair couplings from

alignments of protein sequences, with a 21-state model, leads to

major progress in the problem of predicting protein-protein

interactions from sequence data [11], and their use in protein

folding (this work). Interestingly, an alternative approach to

finding direct couplings using a Bayesian network model [BNM]

also leads to improved accuracy of fold prediction using our

folding protocol, compared to MI, but less so than DI couplings. A

preliminary inspection showed that the overlap between the high-

ranking couplings of the DI and BNM constraints is only about

40% yet the overlap contains an enhanced proportion of true

positives. Understanding the theoretical connections between the

two approaches may help combine the algorithms to improve the

accuracy of the inferred contacts for deriving correct protein folds.

Extracting proximity information for very conserved
residues

Completely conserved residues provide no information about

pair correlations, by definition. However, the ability to predict

Figure 7. Moderate number of distance constraints and varying number of sequences required for correct 3D structure prediction.
A. How many distance constraints are needed for fold prediction? What fraction of false positives can be tolerated? With increasing number
of predicted essential distance constraints (NC, horizontal axis), 3D prediction error decreases rapidly, as assessed by Ca-RMSD between the best of 20
(in each NC bin) predicted structures and the observed structure (here, for the 15 test proteins, using Pymol). Remarkably, as few as ,NRES/2 (,L/2)
distance constraints dij (with chain distance |i2j|.5) suffice for good quality predictions below 5 Å Ca-RMSD, where NRES is the number of amino acid
residues in the protein multiple sequence alignment. We therefore routinely generated candidate protein structures for up to NC = NRES distance
constraints for blinded ranking (and for up to NC = 200 for other tests). Eventually the number of false positives does degrade prediction quality, e.g.,
for the 58 residue protein BPTI once NC is about 80 (1.5 NRES) the prediction quality is lost. In practice, we do not recommend using NC.NRES, i.e,
more than about one constraint dij with |i2j|.5, per residue. B. When would it have been possible to fold from sequence? The increase in the
number of sequences available in public databases (here, from successive archival releases of the PFAM collection of protein family alignments) is one
of two key elements in the ability to predict protein folds from correlated mutations. Nevertheless plotting the numbers of sequences and dates
shows that it would have been possible to calculate the structures up to 10 years ago for some proteins and that amazingly few sequences are
sufficient. For example, although the retrospective prediction error (vertical axis, Ca-RMSD, using Pymol) for the best 3D structure (of 400 candidates
each) in four protein families (Ras, SH3 domain (YES_human) and RnaseH from Ecoli) has decreased over time, the decrease is not strictly monotonic,
as the result of non-systematic growth of the database. The point at which a predicted protein structure from a particular family reaches below 4 Å
Ca-RMSD varies considerably. For example, while RnaseH required about 6000 sequence to dip below 4 Å error, reached around 2008, the structure
of CheY could have been predicted to 3.3 Å Ca-RMSD, with only the 600 sequences available in 1999.
doi:10.1371/journal.pone.0028766.g007
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distance constraints between highly conserved residues is a

valuable feature of the DI algorithm presented here, and, in

contrast to other homology-free protocols, allows direct deduction

of structural information about disulfide bonds and binding sites

[24]. As described above the active site residues Ser, His, and Asp

in Trypsin are accurate within 1.3 Å all atom RMSD of the crystal

structure, (Figure S4). Even the four different loops that form the

tri-nucleotide (GTP/GDP) binding site of HRAS protein, which

contain well-known highly conserved amino acids boxes (GKS,

DTAGQ, NKCD, SA in one-letter amino acid notation) separated

Figure 8. Computational pipeline for protein folding. The MSA for the protein family is typically generated by a sequence similarity search in a
large database of protein sequences to collect related sequences that are likely to have similar 3D structures. Correlations between sequence
positions i and j are calculated from observed frequencies of amino acids in single MSA columns and column pairs. By inferring a minimal statistical
model of full length-sequences, which is consistent with these correlations (Text S1), direct coupling strengths eij(A,B) between any pairs of residues
are deduced. They help to derive distance constraints, which in turn are used to produce folded structures using the following steps: distance
geometry generation of approximate folds, molecular dynamics simulated annealing using standard force fields, and chirality filtering. Here, we use
MSAs from the PFAM collection of pre-aligned sequence families [1].
doi:10.1371/journal.pone.0028766.g008
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by up to 100 residues in the sequence, appear in approximately the

correct spatial location around the binding pocket in the highest

ranking predicted structures. The striking accuracy of prediction of

which loops participate in substrate sites formed by sequence-

distant residues is consistent with strong evolutionary constraint in

functional areas of the protein fold. The statistical model ranks co-

variation signals from nearly conserved residues sufficiently highly

to contribute to the correct prediction of such sites (Text S1).

Limitations in prediction accuracy
Clearly some protein folds are predicted more accurately than

others and this may be due to a number of different factors. One

clear limitation in overall accuracy is structure generation from

distance constraints, using any particular protocol, as demonstrat-

ed by the folds achieved from a control set of completely correct

constraints. However, use of improved molecular dynamics

approaches may lower the accuracy limits of our current pipeline

and we anticipate refinement of the predicted structures using

iterative approaches. Among our test set, some protein folds are

predicted more accurately than others due to the quality of the

predicted constraints – in particular the proportion of harmful

false positives. As discussed earlier, possible reasons for false

positive predictions of residue couplings include: (i) statistical

background noise (e.g. low statistical resolution in the empirical

correlations due to an insufficient number of proteins in the family

or due to global correlations from phylogenetic bias in the

frequency counts), (ii) the presence of functional constraints not

involving spatially close residues, such as functional constraints

imposed by protein-protein or protein-ligand interactions. In this

work, we reduce the noise factor by requiring at least 1000

sequences in the protein family alignment, although one may be

able to reduce this limit in the future with more refined methods

for taking into account the density distribution of family members

in protein sequence space, as well as the organization into protein

subfamilies [68]. Functional constraints, for example resulting

from interactions with external partners of the protein, or

alternative conformations of the same protein as in allostery, are

particularly interesting and will be the subject of future analysis.

Contribution to the current art of 3D structure prediction
The challenge of 3D protein structure prediction depends on

the extent of sequence similarity of the sequence of interest to

other protein sequences whose structure is known. The difficulty of

the prediction task ranges from fairly easy, if homologs of known

structure are available, to very hard, when no detectable

significant sequence similarity to a protein of known structure or

to a known structural motif is available. Progress in this field has

been expertly assessed by the pioneering community effort, the

Critical Assessment of Techniques for Protein Structure Prediction

(CASP), founded by Krzysztof Fidelis, John Moult and their

colleagues in 1994 [69,70,71], www.predictioncenter.org). A series of

ingenious methods have led to significant progress as reported in

CASP since then, including threading, molecular dynamics,

fragment-based assembly, contact prediction, machine learning,

as well as methods combining several techniques [16,63,72,73].

Internet servers have also facilitated the use of these new methods

and allowed ongoing critical assessment of prediction accuracy

[74,75]. On this background, the goal of this work is to assess the

contribution of one primary source of information, evolutionarily

inferred residue couplings, to 3D structure, rather than optimizing

prediction accuracy in the field of all other methods, as is done in

CASP. We anticipate that in future objective assessment exercises

others may want to adopt a derivative or variant of the method

presented here for use in combination methods, e.g., improved

contact energy in the I-Tasser simulation method [76] [19] or

addition of EIC distance restraints into the Rosetta server. Here,

the significant information content in inferred contacts is apparent

both in the assessment of prediction accuracy both for contacts

(2D) as well as for all-atom structures (3D).

Contribution to solving biological problems
We anticipate that our method, alone or in combination with

other techniques, may soon allow 3D structures with correct

overall fold to be predicted for biologically interesting members of

protein families of unknown structure, with potential applications

in diverse areas of molecular biology. These include (1) more

efficient experimental solution of protein structures by X-ray

crystallography and NMR spectroscopy, e.g., by eliminating the

need for heavy atom derivatives, by guiding the interpretation of

electron density maps or by reducing the required number of

experimental distance restraints, as elegantly demonstrated by the

Baker and Montelione groups [77]. Additional interesting

potential applications include (2) a survey of the arrangements of

trans-membrane segments in membrane proteins; (3) discovery of

remote evolutionary homologies by comparison of 3D structures

beyond the power of sequence profiles [78] (4) prediction of the

assembly of domain structures and protein complexes [79] (5)

plausible structures for alternative splice forms of proteins; (6)

functional alternative conformers in cases where our approach

generates several distinct sets of solutions consistent with the entire

set of derived constraints; and (7) generation of hypotheses of

protein folding pathways if the DI predictions involve residue pairs

strategically used along a set of folding trajectories. We also

anticipate that structural genomics consortia would benefit greatly

from reasonably accurate predictive methods for larger proteins,

for example, to (8) prioritize protein targets and define domains of

interest for both crystallography and NMR pipelines.

The need to accelerate structure determination
Large investments continue in structural genomics, the global

effort to solve at least one structure for each distinct protein family

and to derive biological insight from these structures. While

tremendous strides have been made in the last decade and

experimental structure determination has been greatly accelerated,

much less than 50% of the overall goal has been achieved to date.

At the same time, the number of known protein families has

increased as the result of massively parallel sequencing. Among the

12,000 well-organized protein domain families (PFAM-A collec-

tion of multiple sequence alignments), fewer than 6000 domain

families have one member with a known 3D structure (from which

plausible models can be built for all family members using the

technique of model building by homology to structural templates).

Beyond these, there are currently about 200,000 additional protein

families with sequences that do not map to domains of known

structure. The ability to calculate reasonably accurate structures

for many of these families de novo from sequence information would

enormously accelerate completion of the goal of structural

genomics to cover the entire naturally occurring protein universe

with known 3D structures. The speed advantage of the method

under investigation here compared to experimental structure

determination, derives from the increase of sequencing capacity by

several orders of magnitude in the last decade. As we are about to

reach a truly explosive phase of massively parallel sequencing, we

anticipate increased coverage of sequence space for protein

families by several orders of magnitude, well above the level of

1000–10000 non-redundant sequences for protein family and with

rich evolutionary information about protein structure directly from

sequence. We speculate that the utility of methods such as the one
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here has therefore not saturated, that predictions will become

more accurate, and that applications will become broadly

applicable to biological problems that can benefit from knowledge

of protein structures.

Protein folding in practice
Our de novo folding protocol for a medium-size protein using

evolutionarily derived constraints does not require high-perfor-

mance computing and can be done in well under an hour on a

standard laptop computer. One starts with a multiple sequence

alignment, uses the maximum entropy model to predict a set of

residue couplings from the protein family alignment, adds

predicted secondary structures, derives a set of distance con-

straints, generates initial structures using distance geometry,

refines these using molecular dynamics with simulated annealing

and ranks predicted structures according to a set of empirical

criteria. This first detailed report for 15 proteins in different fold

classes suggests that one can predict reasonably accurate protein

structures ‘‘on the fly’’ and that one will be able to pre-compute

and make publically available arguably useful predicted structures

for thousands of protein families in diverse fold classes in the near

future.

Materials and Methods

The main steps (Figure 8) in the blind prediction (1) and

subsequent evaluation (2) of accuracy are: (i) computation of

effective direct coupling analysis (DCA) coupling strengths in the

maximum entropy model, secondary structure prediction, defini-

tion of distance constraints inferred from evolutionary information

(EICs), the number of constraints used and their relative weight,

computation of a relatively small number of candidate structures,

and development and application of automated criteria to rank

predicted structures; and, (ii) evaluation of prediction accuracy by

computation of structural error of predicted contacts and

predicted 3D structures relative to the reference crystal structure.

We call the overall method EVfold and additional details are

available in Text S1, Table S4, S5 and http://EVfold.org.

(1) Computation of DCA residue pair coupling
parameters in the maximum entropy model

We identified a set of PFAM protein family sequence alignments

with known crystal structure for at least one family member and

more than 1000 sequences in each family. Sequences in the family

alignments were weighted to reduce potential spurious correlations

due to sampling bias from redundant sequence information in

dense regions of sequence space. A maximum entropy model was

applied to identify a maximally informative subset of correlated

pairs of columns across the family alignment. The statistical model

describes the expected behavior of all residues up to pair terms as a

joint probability distribution.

To compute the effective pair couplings and single residue terms

in the maximum entropy model two conditions must be satisfied.

The first condition is maximal agreement between the expectation

values of pair frequencies (marginals) from the probability model

with the actually observed frequencies:

Pij Ai,Aj

� �
:

X
Ak~1,:::,qf gk=i,j

P A1,:::,ALð Þ~fij Ai,Aj

� �
ðM1Þ

where Ai and Aj are particular amino acids sequence positions i

and j. The second condition is maximum entropy of the global

probability distribution, which ensures a maximally evenly

distributed probability model and can be satisfied without violating

the first condition:

S~{
X

Ai ji~1,:::,Lf g
P A1,:::,ALð Þ ln P A1,:::,ALð Þ ðM2Þ

The solution of the constrained optimization problem defined by

these conditions, using the formalism of Lagrange multipliers, is of

the form:

P A1, . . . ALð Þ~ 1

Z
exp

X
1ƒiƒjƒL

eij Ai,Aj

� �
z

X
1ƒiƒL

hi Aið Þ
( )

ðM3Þ

This global statistical model is formally similar to the statistical

physics expression for the probability of the configuration of a

multiple particle system, which is approximated in terms of a

Hamiltonian that is a sum of pair interaction energies and single

particle couplings to an external field. In this analogy, a sequence

position i corresponds to a particle and can be in one of 21 states,

and a pair of sequence positions i,j corresponds to a pair of

interacting particles. The global probability for a particular

member sequence in the iso-structural protein family under

consideration is thus expressed in terms of residue couplings

eij(Ai,Aj) and single residue terms hi(Ai), where Z is a normalization

constant.

Computationally, determination of the large number of

parameters eij(Ai, Aj) and hi(Ai) that satisfy the given conditions is

a complex task, which can be elegantly solved in a mean field

approximation (Text S1 and [47]) or, alternatively, in a Gaussian

approximation [80]. In either approximation the effective residue

coupling are the result of a straightforward matrix inversion

eij Ai,Aj

� �
~{ C{1

� �
ij

Ai,Aj

� �
ðM4Þ

of the pair excess matrix restricted to (q21) states (1#Ai,Bj#q21)

and

Cij Ai,Aj

� �
~fij Ai,Aj

� �
{fi Aið Þfj Aj

� �
ðM5Þ

which contains the residue counts fij(Ai,Aj) for pairs and fi(Ai) for

singlets in the multiple sequence alignment The parameters hi(Ai)

are computed from single residue compatibility conditions. Given

the formulation of the probability model (Equation 1), the effective

pair probabilities (with ~hh Aið Þ as defined in the Text S1) are

PDir
ij Ai,Aj

� �
~

1

Z
exp eij Ai,Aj

� �
z~hhi Aið Þz~hhj Aj

� �n o
ðM6Þ

These pair probabilities refer to the full specification of particular

residues Ai, Aj at positions i and j. For the quantification of effective

correlation between two sequence positions i and j, one has to sum

over all particular residue pairs Ai,Aj to arrive at a single number

that assesses the extent of co-evolution for a pair of positions. In

analogy to mutual information,

MIij~
Xq

Ai ,Aj~1

fij Ai,Aj

� �
ln

fij Ai,Aj

� �
fi Aið Þfj Aj

� �
 !

ðM7Þ

such that the DCA coupling terms between columns i and j are

given by
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DIij~
Xq

Ai ,Aj~1

PDir
ij Ai,Aj

� �
ln

PDir
ij Ai,Aj

� �
fi Aið Þfj Aj

� �
 !

ðM8Þ

As there are L2 values DIij, and one expects residue contacts of the

order of magnitude of L, only a relatively small number top-ranked

DIij values (ordered in decreasing order of numerical value) are

useful predictors of residue contacts in the folded protein. Given

the analogy to statistical physics, the residue couplings eij(Ai, Aj), on

which the DIij are based, can be thought of as pair interaction

energies. The hypothesis, that only a fairly small subset of these

pair terms are needed to determine the protein fold, is consistent

with the very interesting physical notion that only subset of

residue-residue interactions essentially determine the protein

folding pathway. In practice, the validity of the probability

formalism does not depend on the validity of this physical

interpretation. We therefore proceed to use the ranked set of DIij

values as raw valuable material for the derivation of distance

restraints for 3D structure prediction. The most computationally

intensive step being inversion of a large matrix of pair terms, the

Cij(A,B) matrix (over sequence positions i = 1,L and j = 1,L; and

amino acid residue types A = 1,20 and B = 1,20, of dimension L2 *

202, with L the length of the sequence of order 50–250 residues in

the current application.

(2) Selection of EIC distance constraints for use in the
generation of all-atom structures

The top-ranked set of DIij are then translated to inferred

contacts (EIC pairs) using four uniformly applied automated rules:

consistency with predicted secondary structure, removal of

predicted pairs close in sequence, exclusivity of SS bridge pairs

and a conservation filter. These rules were derived from general

plausibility arguments, and do not carry any information about the

topography of particular folds or fold types (Methods). The first NC

inferred EIC pairs, ranked according to their DCA coupling

scores, are then translated to distance constraints, i.e., bounds on

the distances between Ca and Cb residue and side chain centers

between paired residues; and, as weighted distance restraints for

structure refinement by simulated annealing using molecular

dynamics, resulting in candidate all-atom protein domain

structures.

(3) Blinded structure prediction
The protein polymers are folded from a fully extended amino

acid sequence of the protein of interest using standard distance

geometry techniques and simulated annealing with standard

bonded and non-bonded intra-molecular potentials (in vacuum)

using the CNS molecular dynamics software suite, with a

simulated annealing protocol similar to those used in structure

determination from NMR [48]. The elimination of mirror

topologies and ranking of candidate structures is achieved by

computing virtual dihedral angles using four appropriate Ca

atoms, reflecting standard a-helical and b-strand pair handedness,

and then adding the scores normalized to the predicted secondary

structure content (Text S1 and Figure S5). Candidate structures

are also filtered to remove knotted structures as defined by

computation of an Alexander polynomial by the KNOT server

[59].

(4) Evaluation of prediction accuracy
Accuracy of prediction of residue-residue contacts is quantified in 4

ways: (i) comparison of the EIC rank versus the minimum inter-

residue distance in the crystal structure (Figure S7); (ii) comparison

of the true positive rate of contact prediction versus the number of

constraints (Figure S6); (iii) quantification of the severity of the false

positives in a set of predicted constraints by measuring the mean of

the distance in chain space to the nearest contact in the

experimental structure (Figure S9); and (iv) quantification of the

distribution (spread) of the contacts along the chain and over the

structure of the protein, by measuring the mean of the distance

from every experimental (crystal structure) contact to the nearest

predicted contact (Figure S10).

Accuracy of prediction of 3D structure is quantified in 3 ways: (i)

using the TM score [53]; (ii) using GDT-TS [54]; and (iii) using

the Pymol [81] ‘align’ routine, which reports the Ca-RMSD for a

moderately trimmed set of residues after iteratively removing the

worst residue pairs from consideration as it finds an optimal

superimposition of the residues in the predicted and the reference

structure.

(5) Comparison to other contact prediction methods
We calculated the four measures of contact prediction accuracy

as in (4) above, for MI, BNM [13,46] and SCA [66] [82]. We

tested all three methods for their ability to generate protein folds

for a number of families, using exactly the same pipeline as for the

DI constraints of this work. Folding with constraints derived from

MI or SCA did not achieve reasonable accuracy with any of the

tested families (data not shown). However, constraints derived

from BNM were successful in generating de novo predicted

structures at less than 5 Å Ca-RMSD for 6 of the 10 tested

proteins.

Additional method details are in Text S1.

Supporting Information

Figure S1 Mutual Information (MI) contact maps. (4

pages). Predicted contacts (blue dots) from high-ranking MI scores

(excluding clashes with secondary structure prediction (see Text

S1) and residues pairs 5 or less apart in the polypeptide chain). MI

predicted contacts are overlaid onto contacts made in the

corresponding crystal structure (grey circles), names as in

Table 1. Contacts defined as 5 Å or less from any atom between

the paired residues. Number of top-ranked MI contacts shown

sorted into 4 groups: page 1, 150 (larger proteins); pages 2 and 3,

100 (medium size proteins); page 4 (smaller proteins), 50. MI

ranked scores of residue couplings are available in Web Appendix

A8.

(PDF)

Figure S2 Evolutionary Inferred Contacts (EICs) (from
Direct Information (DI)) contact maps. (4 pages). Predicted

contacts (red stars) from high-ranking DI scores (excluding clashes

with secondary structure prediction (see Text S1), and residues

pairs 5 or less apart in the polypeptide chain). EIC predicted

contacts overlaid onto contacts made in the corresponding crystal

structure (grey circles), names as in Table 1. Contacts defined as

5 Å or less from any atom between the paired residues. Number of

top-ranked EIC contacts shown sorted into 4 groups: page 1, 150

(larger proteins); pages 2 and 3, 100 (medium size proteins); page 4

(smaller proteins), 50. EIC ranked scores of residue couplings are

available in Web Appendix A1.

(PDF)

Figure S3 Ribbon representations of top ranked pre-
dicted structures. (4 pages). All 15 proteins showing on left, two

views of top ranked predicted structure (turned 180u), and on the

right, the same two views of representative crystal structure.
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Cartoon representation calculated in Pymol using predicted

secondary structure (in predicted structures) and shown with

rainbow coloring, blue N terminal, red C-terminal. All structure

coordinates and Pymol sessions for top-ranking structures available

in Web Appendices A3 and A4. Predicted structure IDs in order

are: OPSD_BOVIN: PF00001_P02699_180_20, TRY2_RAT:

PF00089_P00763_160_20, RASH_HUMAN:PF00071_P01112_

130_17 RNH_ECOLI:PF00075_P0A7Y4_70_16, CHEY_ECOLI:

PF00072_P0AE67_110_1, SPTB2_HUMAN:PF00307_Q01082_

60_20 A8MVQ9_HUMAN:PF00059_Q9NNX6_110_20, THIO_

ALIAC:PF00085_P80579_80_8, CADH1_HUMAN:PF00028_

P12830_70_4, O45418_CAEEL:PF00254_O45418_50_9, OMPR_

ECOLI:PF00486_P0AA16_40_18, ELAV4_HUMAN:PF00076_

P26378_40_12, PCBP1_HUMAN:PF00013_Q15365_40_15,

BPT1_BOVIN:PF00014_P00974_30_5, YES_HUMAN:PF00018_

P07947_40_2.

(PDF)

Figure S4 Active sites of top-ranked predicted Trypsin
and Ras structures. A. Overlay of 3 catalytic residues from

top-ranked predicted trypsin structure and 3tgi B. Overlay of 4

residues involved in the GTP binding site from the top-ranked

predicted Ras structure and 5p21. Pymol session available in Web

Appendix A4.

(PDF)

Figure S5 Discrimination scores of predicted struc-
tures. (2 pages) Scores are calculated for every predicted structure

using quality of virtual torsion between predicted b strands and

within a helices (Web Appendix A5, Text S1). Here, scoring of

candidate structures is assessed by comparing the ranking score of

the predicted structures with the experimentally observed structure

of the chosen reference protein (PDB), see Table 1 for PDB names.

(PDF)

Figure S6 True positive rate of predicted contacts for 4
methods. For each of the 15 proteins, plots show the proportion

of true positives over a range of top ranking constraint numbers

(10–200) for 4 different contact prediction methods. EIC (DI), this

work, shown in red, BNM [13] in green, SCA [61] in black and

MI ( our calculation) in blue. True positive is defined as within 5 Å

minimum atom distance. Contact predictions from all methods

were treated equivalently, with predicted secondary structure

clashes, more than one cysteine pairing per cysteine, and .90%

conserved residues removed, see Text S1 for pipeline. Although

the DI/EIC contacts almost always have the best true positive

proportion, the BNM method is favorable in some cases.

(PDF)

Figure S7 The minimum atom distance of top 200
ranked DI pairs. (4 pages). For each for the 15 proteins, plots

show the minimum distance between each DI ranked residue pair.

In red are the EICs and in purple the Dis which are filtered by our

algorithm. Note that for many proteins, especially A8MVQ9_HU-

MAN (lectin C ) and Trypsin, high ranking DIs which are false

positives are removed from the EICs used for folding, whereas

others, for example Ras and Chey are hardly affected, Text S1

and all scores available in Web Appendix A1. Note that the scale

changes for each protein.

(PDF)

Figure S8 Relationship between proportion of false
positives and 3D structure prediction accuracy. (4 pages).

For all 15 proteins, comparison of the proportion of false positives

in 20 sets of constraint numbers ranging from 10–200, compared

to the best Ca-RMSD accuracy for a structure predicted using the

same number of EIC constraints. Some proteins such as the SH3

domain of YES and trypsin inhibitor, how a clear decline in best

predicted structure accuracy with increasing proportion of false

positive contact and others such as CheY show the inverse

relationship. However, those that show an inverse relationship

tends to have a lower rate of FPs overall and all proteins show best

accuracy at FP proportion below 0.4.

(PDF)

Figure S9 Quantitative false positive assessment. (4

pages). Since a false positive calculation is typically is limited to

a binary count (it is counted as either a false positive or not), we

developed a metric to compare how far ‘wrong’ the FPs are. For

each predicted EIC constraint, in N-scoring residue pairs (10–200)

we calculate the Euclidean 2D distance to the nearest contact in

the crystal structure and report the mean of this distance for each

Nc, over all 15 proteins. This is repeated for each of the other

contact predicted methods, MI, BNM and SCA. Red, DI: blue,

MI; green, BNM: black SCA.

(PDF)

Figure S10 Quantitative assessment of spread of pre-
dicted contacts (4 pages). True positive counts alone do not

reflect how well-distributed the top N-scoring pairs are across the

protein. Therefore we developed a metric to measure how well the

top N-scoring residue pairs ‘cover’ the contact map of a

corresponding crystal structure. We compute the Euclidean 2D

distance between the contact map of the corresponding crystal

structure, and the contact map consisting of the top N-scoring

residue pairs. For each residue pair, separated by more than five

residues in sequence, we compute the distance to the nearest high-

scoring residue pair (for instance, the nearest ‘red star’ in the

contact map, in the case of EIC pairs). For each set of N-scoring

residue pairs we calculate the mean of the distances for all contacts

to the nearest contact in the crystal structure. Plotted is the mean

spread for each Nc for 4 methods, across all 15 proteins. Red, DI:

blue, MI; green, BNM: black SCA.

(PDF)

Figure S11 Bayesian Network Model (BNM) contact
maps. (4 pages). Predicted contacts (blue dots) from high-ranking

BNM scores excluding clashes with secondary structure prediction

(see Text S1) and residues pairs 5 or less apart in the polypeptide

chain. BNM predicted contacts overlaid onto contacts made in the

corresponding crystal structure (grey circles), names as in Table 1.

Contacts defined as 5 Å or less from any atom between the paired

residues. Number of top-ranked BNM contacts shown sorted into

4 groups: page 1, 150 (larger proteins); pages 2 and 3, 100

(medium size proteins); page 4 (smaller proteins), 50. BNM ranked

scores of residue couplings are available in Web Appendix A8.

(PDF)

Figure S12 Statistical Coupling Analysis (SCA) contact
maps. (4 pages). Predicted contacts (blue dots) from high-ranking

SCA scores excluding clashes with secondary structure prediction

(see Text S1) and residues pairs 5 or less apart in the polypeptide

chain. SCA predicted contacts overlaid onto contacts made in the

corresponding crystal structure (grey circles), names as in Table 1.

Contacts defined as 5 Å or less from any atom between the paired

residues. Number of top-ranked SCA contacts shown sorted into 4

groups: page 1, 150 (larger proteins); pages 2 and 3, 100 (medium

size proteins); page 4 (smaller proteins), 50. SCA ranked scores of

residue couplings are available in Web Appendix A8.

(PDF)

Figure S13 The minimum atom distance of top 200
ranked MI pairs. (4 pages). For each for the 15 proteins, plots

show the minimum distance between each MI ranked residue pair.
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In purple the MIs which are filtered out by our algorithm, Text S1

and all scores are available in Web Appendix A8.

(PDF)

Figure S14 The minimum atom distance of top 200
ranked BNM pairs. (4 pages). For each for the 15 proteins,

plots show the minimum distance between each DI ranked residue

pair. In purple the BNMs that are filtered by our algorithm, Text

S1 and all scores available in Web Appendix A9.

(PDF)

Figure S15 The minimum atom distance of top 200
ranked SCA pairs. (4 pages). For each for the 15 proteins, plots

show the minimum distance between each DI ranked residue pair.

In purple the SCAs which are filtered by our algorithm, Text S1

and all scores available in Web Appendix A10.

(PDF)

Figure S16 Number of distance constraints required for
correct 3D structure prediction. With increasing number of

predicted essential distance constraints (NC, horizontal axis), 3D

prediction error decreases rapidly, as assessed by Ca-RMSD

between the best of 20 (in each NC bin) predicted structures and

the observed structure (here, for the 15 test proteins, using Pymol)

shown separately. Remarkably, as few as ,NRES/2 (,L/2)

distance constraints dij (with chain distance |i2j|.5) suffice for

good quality predictions below 5 Å Ca-RMSD, where NRES is the

number of amino acid residues in the protein multiple sequence

alignment.

(PDF)

Text S1 Supplementary Methods and Analysis.
(PDF)

Table S1 Protein 3D structure computed from evolu-
tionary sequence variation.
(XLS)

Table S2 Conflict resolution between DIs and predicted
secondary structure constraints.
(DOC)

Table S3 Distance ranges used for predicted secondary
structural elements in folding calculations.
(DOC)

Table S4 b sheet detection in predicted structures.
(DOC)

Table S5 Control calculations testing real distances.
(DOC)
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