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Abstract: The brain needs more energy than other organs in the body. Mitochondria are the generator
of vital power in the living organism. Not only do mitochondria sense signals from the outside
of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-
triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and
oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-
review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with
the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral
sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art
computational models of mitochondrial functions in relation to oxidative stress and neurodegen-
eration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and
oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate
neuronal activity and prevent neurodegeneration.

Keywords: mitochondria; oxidative stress; antioxidants; Alzheimer’s disease; amyotrophic lateral
sclerosis; Huntington’s disease; Parkinson’s disease; computational modeling

1. Introduction

The brain uses around 20% of energy in the whole adult human body [1–3]. Be-
cause brain cells consume high levels of energy, they require a powerful generator of
energy. The mitochondrion is a subcellular organelle and a power engine that produces
adenosine-5′-triphosphate (ATP), the biochemical “energy currency” in cells. Glucose
yields pyruvate (pyruvic acid) through the process of glycolysis. Pyruvate is transported to
the mitochondria and generates hydrogen ions via a pathway of oxidative phosphorylation.
Pyruvate dehydrogenase oxidizes pyruvate to form acetyl coenzyme A that is oxidized
in the tricarboxylic acid cycle. The coenzymes released in these mentioned pathways, the
reduced form of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinu-
cleotide (FADH2) are oxidized in the respiratory chain, resulting in the generation of a
proton gradient between the inner and outer membrane of the mitochondria. An increase
in electrochemical potential gradient by protons drives a membrane potential (negative
inside) and a pH gradient (basic inside) that synthesizes ATP through F0F1-ATP synthase.

Mitochondria produce 80% or more of the reactive oxygen species (ROS) in brain
cells. In general, oxidative stress is an indispensable process and an essential cellular event
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that occurs naturally [4]. Herein, an outstanding question arises: how does it become
detrimental and toxic so as to damage macromolecules and many different types of cells
in the brain [5,6]? A plausible answer may be that oxidative stress becomes toxic when
it continuously accelerates and reaches beyond a threshold level. Produced by a leakage
of electrons at the level of four complexes (I–IV), ROS, such as superoxide anion radical
(O2
−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) results in DNA oxidation,

lipid peroxidation, and protein oxidation.
Superoxide dismutase 1 (SOD1) catalyzes the partitioning of two superoxide anion

(2O2
•−) and converts it into hydrogen peroxide and oxygen. Then, hydrogen peroxide is

processed by catalase to produce two water molecules and oxygen. Aging and environmen-
tal stressors attenuate brain cell function to neutralize ROS and in consequence, oxidative
stress disrupts cellular homeostasis and triggers the progression of neurodegeneration.
The vicious cycle of oxidative stress is known to be the most common pathogenesis in
neurodegenerative disorders including Alzheimer’s disease (AD), amyotrophic lateral
sclerosis (ALS), Huntington’s disease (HD), Parkinson’s disease (PD), and others [3,7–9].
In this review, we discuss which molecules and stressors affect mitochondrial function
and how oxidative stress is linked to the pathophysiology and neurodegeneration of AD,
ALS, HD, and PD, respectively [3,7–10]. Furthermore, we present computational modeling
studies on mitochondria-driven metabolic processes and oxidative stress.

2. Brain Disorder and Mitochondrial Dysfunction
2.1. Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a common neurodegenerative disease characterized by
impaired cognition and neuronal loss in aged people. Principal agents of AD pathology are
attributed to the intracellular aggregation of hyperphosphorylated tau and the abnormal
deposition of amyloid beta (Aβ), which may be oligomeric (oAβ) or aggregated into
senile plaques. Recently, significant evidence of mitochondria as the direct targets for Aβ
mediated neuronal-toxicity has been produced. Marked by a decrease in ATP production
and an increase in oxidative stress elements such as ROS, mitochondrial dysfunction
contributes to AD pathogenesis [10]. One area of interest is transcription factor p53, a
vital component of aerobic respiration. Under normal circumstances, p53 trans-activates
cytochrome oxidase 2 (SCOS), a subunit of cytochrome c oxidase (COX) or complex IV
from the electron transport chain (ETC). However, it is well known that under pathogenic
conditions, oAβ upregulates p53, leads to increased expression of SCOS, and increases ROS
production [11]. Although additional p53 is recruited from the nucleus to the mitochondria
to ensure cell survival, p53 dependent anti-oxidative capacities are greatly suppressed in
AD, in which p53 will begin to exhibit prooxidative activities [12,13].

In AD mitochondria, antioxidant checkpoint mechanisms are significantly reduced.
When returning to mitochondrial homeostasis, NAD-dependent deacetylase sirtuin-3
(SIRT3), a class III histone deacetylase localized in the inner mitochondrial membrane and
matrix, decreases abundant p-53. Furthermore, when SIRT3 protein levels are reduced, Lee
et al. discovered increased mito-p53 occupancy [14]. Recent RNA expression chip datasets
have confirmed downregulated SIRT3 mRNA levels compared to controls in post-mortem
AD brains and in 3xTG AD mice expressing microtubule associated protein tau (MAPT),
amyloid-beta precursor protein (APP), and presenilin-1(PSEN1) transgenes [15]. Notably,
AD patients exhibited decreased expression of mitochondrial DNA (mtDNA) encoded
subunits of complex I (ND2 and ND4), nuclear DNA encoded subunits of complex I
(NDUFA2), and nuclear DNA encoded subunits of complex IV (NDUFA4) [14,16,17]. Given
that the mitochondrial respiratory complexes remain critical for normal ATP production,
any subunit functional defects can reduce respiratory activity and increase ROS production.

Concurrently, mitochondria-specific Aβ and p53 accumulation revealed mitochon-
drial oxidative events as an element not only sufficient to induce pathological conditions
but also result in neuronal death [12,18–20]. For instance, under oxidative stress, ROS
damages nuclear DNA, triggering assembly of the DNA damage response network [20].
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Especially when DNA double-stranded breaks (DBS) occur, p53 is phosphorylated by ATM
serine/threonine kinase (ATM) [21]. However, depending on the extent of DNA damage,
p53 will either drive gene expression towards the activation of cell cycle checkpoints or
cell death checkpoints. It has been reported that p53 transactivates critical determinants of
mitochondrial apoptosis such as Bax, Bak, Nova, and Puma while repressing those that are
antiapoptotic such as Bcl-2, Bcl-X, and Mcl-1 [22]. p53 may also directly activate Bax and
inhibit Bcl-2/-X in the mitochondria, driving the assembly of Bax/Bak lipid pores, which
alters mitochondrial membrane potential (∆Ψ) and leads to mitochondrial apoptosis [23].

In addition, p53 also engages with the mitochondrial permeability transition pore
via direct interaction with cyclophilin D (CypD) [24]. CypD regulates the opening of
mitochondrial permeability transition pore by phosphorylating serine residue S191 [25].
Indeed, SIRT3 which deacetylates CypD is downregulated in AD [26]. Furthermore, oAβ-
CypD complexes were found in AD brains and transgenic AD mice [27,28]. Mitochondrial
permeability transition pore activation results in decreased ∆Ψ. An influx of cytosolic
molecules, induces mitochondrial swelling and eventual rupture of the outer membrane,
ending in mitochondrial necrosis [29].

Overall, a loss of ∆Ψ often activates both apoptotic/necrotic pathways as well as
mitophagy in the same cell. Damaged mitochondria are selectively degraded by autophagy
in an effort to prevent cell death. However, under pathogenic conditions, mitophagy or
protective mechanisms are significantly compromised [30,31]. Simultaneously, impair-
ment of mitochondrial trafficking has been reported in AD hippocampal neurons [32,33].
Mitochondria deficiency at the synapse, decreases available synaptic ATP essential for
neurotransmission [18,34]. In combination, ranging from apoptosis/necrosis to mitophagy,
mitochondrial dynamics remain as a complex interdependent system that is significantly
disturbed, leading to neuronal death in the AD brain (Figure 1).

There still lacks a clear mechanism of the various elements that influence changes
from normal conditions to abnormal conditions in AD mitochondria. Higher oAβ concen-
trations were correlated with lower SIRT3 levels in a dose-dependent manner, as shown
on neuronal cells [35]. oAβ can also bind directly to and suppress complex I, accelerating
Aβ toxicity [36–38]. This supports the notion that mitochondria are a site of a deleteri-
ous positive feed-back loop of toxic oAβ, exacerbating AD pathogenesis [39]. Moreover,
studies have shown that Aβ jeopardizes neuronal viability via mitochondria in a non-cell
autonomous manner. In microglia, the transcriptional upregulation of nucleotide-binding
oligomerization domain (NOD)-like receptor protein (NLRP3) inflammasome components
combined with the generation of Aβ induced ROS, triggers the assembly of the NLRP3
inflammasome. NLRP3 inflammasome activation is then amplified by cross seeding Aβ,
which ultimately results in pyroptotic cell death (pyroptosis). Microglia releases free func-
tional Aβ, consequently injuring neighboring neurons. In total, oAβ directly interacts with
multiple downstream levels of mitochondria dysfunction in a cell specific manner. Thus,
ameliorating suppressed anti-oxidative capacities in relation to Aβ toxicity in AD may be a
potential therapeutic target warranting further investigation.

2.2. Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disorder
that affects the motor neurons located in the spinal cord, brain stem, and motor cortex.
Progressive motor neuron loss leads to muscle weakness, then muscle atrophy, spasticity,
eventual paralysis and finally death 3 to 5 years after diagnosis by denervation of the
respiratory muscles [40]. ALS-associated mitochondrial dysfunction occurs at different
levels, including ROS production, defective oxidative phosphorylation, oxidative stress,
and defective mitochondrial dynamics [8]. Superoxide (O2

−) and nitric oxide (NO), two
key pathogenic components produced by the electron transport system (ETS), leads to
oxidative damage such as DNA oxidation, protein oxidation, and lipid peroxidation [9,41].
High levels of O2

− can interact with NO to form peroxynitrite (ONOO-) which may
strengthen oxidative stress and trigger motor neuron damage [42–44]. Furthermore, our
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group has previously demonstrated that mitochondrial B-cell lymphoma-extra large (Bcl-
xL) gene expression is increased in astrocytes in response to cellular stress. An increase in
mitochondrial Bcl-xL prevents oxidative damage in astrocytes under ALS conditions in
mutant (G93A SOD1) transgenic mice (Figure 2A) [45,46]. In the ALS model, excitatory
amino acid transporter 2 (EAAT2) expression is reduced in reactive astrocytes, lowering
glutamate uptake in the synaptic cleft. Subsequently, the high level of extracellular synaptic
glutamate leads to excitotoxicity in the spinal cord of ALS patients [46,47].
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Figure 1. Mitochondrial dysfunction in Alzheimer’s disease. Oligomeric amyloid beta (oAβ) accumulates intracellularly
and triggers mitochondrial dysfunction in Alzheimer’s disease (AD). In the nucleus, oAβ upregulates the expression of p53.
While stress signals are present, p53 is translocated to the mitochondria. Sirtuin-3 (SIRT3), which inhibits p53 as well as
cyclophilin D (CypD) activity (yellow) functions as a reactive oxygen species (ROS) modulator, but is downregulated, tipping
the balance of respiration in favor of ROS production. While oAβ inhibits electron transport chain activity, p53 also represses
the production of ND2 and ND4, subunits of complex I, contributing towards overall energy depletion. Subsequently, low
ATP levels disturb downstream processes, such as axonal transportation, resulting in synaptic dysfunction. Ultimately,
over accumulated p53 and oAβ activates CypD, which prolongs mitochondrial permeability transition pore permeability,
triggering cell death.

Mitochondria are highly dynamic organelles whose structural alterations—mitochondrial
fission and fusion—may contribute to the etiology of ALS (Figure 2B,C) [48]. Mitochondrial
metabolites are shared and ∆Ψ is dissipated during the fusion process. Motility acceleration
and damaged part sequestration occurred during mitochondrial fission before mitochondrial
disposal [49]. Mitochondrial fusion is governed by mitofusin1 (Mfn1), mitofusin2 (Mfn2), and
optic atrophy protein1 (OPA1) [50]. Whereas dynamin-related protein1 (Drp1) and fission1
(Fis1) promote mitochondrial fission (Figure 2B,C) [51]. Disruption of mitochondrial cristae
has been exhibited in C9orf72-related, mutated SOD1-, TARDBP-, and FUS-associated ALS
cases [52–55]. Interestingly, either cellular stress or pathogenic-variant conditions facilitate
trans-localization of FUS and TDP-43 to the mitochondria. They increase Fis1 levels that cause
mitochondrial fragmentation, loss of membrane potential, and consequently an increase in
ROS production and defective mitochondrial axonal transport (Figure 2B) [56]. Furthermore,
FUS interacts with mitochondrial ATP synthase and reduces ATP production in mitochondria
that cause a loss of mitochondrial cristae, and mitochondrial fragmentation [57]. Liu et al.
demonstrated that the reduction of mitochondrial fusion proteins (Mfn1 and Opa1) and the
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steady-state activity of Drp1 and Fis1 are important for mitochondrial fission by altering
the balance of mitochondrial morphology in ALS mutant (G93A SOD1) transgenic mice
(Figure 2B) [58]. Notably, a dynamic change of fission and fusion is also shown in mC9orf72
fibroblasts with elevated MFN1 levels, resulting in an abnormal enlargement of mitochondrial
morphology (Figure 2C) [53]. Together, given the contribution of mitochondrial dysfunction to
the pathogenesis of ALS, identifying how mitochondrial dysfunctions are relevant to disease
onset and progression will elucidate important targets for the development of neuroprotective
therapies in ALS.
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Figure 2. Mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS). (A) B-cell lymphoma-extra large (Bcl-xL) gene
expression is increased in astrocytes in response to cellular stress. The increase of Bcl-xL prevents oxidative damage in
astrocytes under ALS conditions. Furthermore, inducible nitric oxide synthase (iNOS) expression in reactive astrocytes
facilitates an interaction of superoxide (O2

−) with nitric oxide (NO) that forms peroxynitrite (ONOO-). Moreover, reduction
of excitatory amino acid transporter 2 (EAAT2) levels inhibits glutamate uptake in the synaptic cleft, elevates the synaptic
glutamate, and triggers motor neuronal damage and cell death. (B) Mutated FUS and mutated TAR DNA-binding
protein 43 (mTDP-43) are localized to mitochondria, increase mitochondrial fission 1 protein (Fis1) and ROS levels, and
subsequently decrease ATP synthesis activity. In addition, mutated superoxide dismutase 1 (SOD1), FUS, and TDP-43
impair mitochondrial fission dynamics and lead to mitochondrial fragmentation and apoptosis. (C) Mutated C9orf72
increase mitofusion-1 (Mfn1) and abnormal mitochondrial fusion.

2.3. Huntington’s Disease (HD)

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease
caused by a polymorphic CAG repeat extension in exon 1 of the huntingtin gene, which
encodes for mutant Huntingtin (mHTT) protein [59]. Although the exact function of mHTT
is unknown, it interacts with other proteins involved in mitochondrial function, energy
metabolism, calcium handling, and transcriptional regulation. Under HD conditions,
mutant huntingtin (mHTT) protein becomes aggregated and generates nuclear inclusion
bodies. They also make cytoplasmic aggregates that directly interact with mitochondrial
elements [60]. It has previously been found that complex I activity was decreased in the
platelets of HD patients [61,62]. In addition, a significant decrease in complexes III and IV
activity was observed in the caudate and putamen of HD patients, which contributes to
a reduction in ∆Ψ [63–65]. Succinate dehydrogenase (SDH), a main component of Krebs
cycle and complex II, was also markedly reduced in the caudate nucleus of HD brains [66].
SDH affects mitochondrial function, catalyzing the oxidation of succinate to fumarate in the
Krebs cycle, reducing ubiquinone to ubiquinol. 3-nitropropionic acid (3-NP) and malonate
act as an irreversible and reversible inhibitor of SDH, respectively [67–69]. In chemical
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models of HD, malonate and 3-NP decreases Krebs cycle, complex II, and mitochondrial
respiratory chain complex activity. It is believed that malonate-induced energy deficits
cause a partial membrane depolarization, resulting in excitatory toxicity by removing the
voltage-dependent magnesium block of NMDA receptor-gated calcium channels [70–72].

In HD, mHTT inhibits protein importation in the mitochondria of isolated brains by
overexpressing translocase from the inner membrane 23 (TIM23), leading to neuronal death
in HD [73]. In addition, mHTT decreases ∆ψm stability, triggering impaired mitochondrial
Ca2+ homeostasis, and abnormal mitochondrial trafficking [74]. It has been shown that
mHTT enhances N-methyl-D-aspartate receptor (NMDAR), voltage-gated Ca2+ channel,
and inositol trisphosphate receptor (InsP3R) activity in a HD transgenic (YAC128) mouse
model [75–78]. Mitochondrial ATP production is significantly reduced in the muscles of
both symptomatic HD patients and presymptomatic HD gene carriers [79]. Moreover, the
generation of ROS highly impacts oxidative phosphorylation and lipid peroxidation in
the mitochondria of HD patients. Lipid peroxidation and mitochondrial dysfunction are
correlated in the striatum of HD patients and HD animal models [80,81]. Lipid peroxidation
is a metabolic process in which ROS leads to the oxidative degradation of lipids. 4-
hydroxynonenal (4-HNE), a lipid peroxidation product, is significantly elevated in the
caudate and putamen of the human HD brain. Nordihydroguaiaretic acid (NDGA), a
flavonoid and an antioxidant, decreased the levels of 4-HNE and mHTT and restored ∆Ψ
in R6/2 HD mice. Together, mHTT directly affects mitochondrial dysfunction and leads to
neuronal death in HD (Figure 3). Therapeutic modulations of mitochondrial function and
avoidance of oxidative stress are beneficial to HD [81]. In this regard, the development of
antioxidant drugs for targeting mitochondria may expedite the treatment of HD.
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Figure 3. Mitochondrial dysfunction and lipid peroxidation are found in the medium spiny neuron (MSN) of HD. mutant
Huntingtin (mHTT) gene expresses mHTT protein in the MSN. mHTT inclusions are increased in the nucleus and cytosol. In
the cytoplasm, both increased mHTT protein fragments and aggregates triggers neuronal damage. The aggregated form of
mHTT decreases Krebs cycle and Ca2+ activity, resulting in a decrease in complex I–IV or mitochondrial respiratory complex
activity. mHTT aggregation also decreases mitochondrial membrane potential (∆Ψ) and increases reactive oxygen species
(ROS) production. As Ca2+ permeability increases, the mitochondrial membrane is hyperpolarized, triggering cell loss. In
chemical models of Huntington’s disease (HD), malonate and 3-nitropropionic acid (3NP) inhibits succinate dehydrogenase
(SDH) at complex II and, eventually, reduces ATP production via complex V. Lastly, the level of 4-hydroxynonenal (4-HNE),
a neuronal lipid peroxidative damage marker, is elevated in HD and nordihydroguaiaretic acid (NDGA) reduces 4-HNE
levels and prevents mitochondrial damage in the MSN.
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2.4. Parkinson’s Disease (PD)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized
by unusual motor, non-motor symptoms, and the loss of dopaminergic neurons [82]. The
relation between mitochondrial damage and PD was first reported in the substantia nigra of PD
patients in 1989 [83–85]. In the substantia nigra of the patient brain there is approximately a 35%
deficiency in mitochondrial respiratory complex I [86]. This is supported by the administration
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a prodrug which inhibits complex I
and causes oxidative stress damage in dopaminergic neurons [87].

In the dopaminergic neuron, gene mutations linked to mitochondrial dysfunction have been
identified and their pathogenetic mechanisms have been studied in PD. For example, mutations
of phosphatase and tensin homolog (PTEN)-induced kinase (PINK1), Parkin, and DJ-1 are closely
associated with mitochondrial dysfunction and abnormal autophagy in PD patients [88,89].
Mutation of Omi/HtrA2 gene (G399S) results in a severe parkinsonian phenotype [90,91].
Moreover, glucocerebrosidase (GBA) L444P mutation causes a mitochondrial defect in primary
neurons, affecting PD [92]. Together, it is apparent that gene mutations and oxidative stress are
closely associated with dopaminergic neuronal damage and pathogenesis of PD.

Astrocytes provide structural and metabolic support to neurons, regulate blood flow, water
transport, and synaptic transmission within the brain [93]. They also produce various neurotrophic
molecules including glial-derived neurotrophic factor (GDNF) for the development and survival
of dopaminergic neurons [94,95]. In contrast, reactive astrocytes trigger the disruption of the
blood–brain barrier and affect the substantia nigra of PD patients [96]. Interestingly, our group
recently found that reactive astrocytes elevate the activity of flavin-dependent monoamine oxidase
B (MAO-B) and produce H2O2 in the substantia nigra of PD patients. This study shows a novel
pathological mechanism of PD that reactive astrocytes release gamma-aminobutyric acid (GABA),
an inhibitory neurotransmitter, and the astrocytic tonic inhibition causes dopaminergic neuronal
damage (Figure 4) [97]. This finding suggests that reactive astrocytes are involved in non-cell
autonomous pathway of dopaminergic neuronal damage, and therapeutic regulation of this
pathway may be applicable for improving neuropathological and behavioral abnormality in PD.
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Figure 4. The effect of mitochondrial dysfunction on astrocytes and neurons in Parkinson’s disease (PD). In the dopaminergic
neuron, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes a parkinsonian syndrome characterized by a loss of
dopamine-producing neurons. Autosomal recessive mutations in Parkin, Phosphatase and tensin homolog (PTEN)-induced
kinase 1 (PINK1), and DJ-1 increases mitochondrial toxicity. Thus, elevating α-Synuclein aggregation and mitochondrial
degradation. On the other hand, in reactive astrocytes, monoamine oxidase B (MAO-B) produces GABA, which is released
in a tonic manner, affecting neuronal degeneration. As a result, MAO-B activity also induces oxidative stress via H2O2 that
ultimately triggers the damage of dopaminergic neurons.
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3. Computational Modeling of Mitochondria in Brain Disorders

Computational modeling has been used to explore the role of mitochondrial dysfunction
in neurodegenerative diseases. The nature of computational approaches allows zooming in
the details of metabolic pathways within a mitochondrion or zooming out to describe the
population dynamics of mitochondria. Computational models and simulations are especially
useful for the understanding of the organelle’s function in a quantitative manner. Furthermore,
they can provide information on the onset and progression of the diseases by bridging the gap
between experimental studies.

3.1. Computational Modeling of Mitochondria

The main focus of the computational approaches at a single mitochondrion scale has
been on the energy-producing machinery in a network of dynamic intracellular enzymatic
reactions [98–106]. Traditionally, the computational modeling of this scale has been either
thermodynamic, kinetic, or stoichiometric approaches [107]. Thermodynamic models, based
on fundamental principles of thermodynamics, are simple approaches for the understanding
of complex molecular pathways and for testing various hypotheses, but they lack mech-
anistic details [108–112]. To examine the biochemical details, one may use stoichiometric
models [113–115], which, however, cannot offer information on transient behavior or regu-
latory interactions of metabolic pathways. Kinetic models can be used to describe transient
behavior and regulatory interactions to unveil kinetics and mechanistic details of the pathways.
However, when quantitative kinetic data from experiments is lacking, the model is only useful
to understand the phenomenological behaviors of the pathways [103,116].

The modeling and simulations can examine not only the details of modular metabolic
pathways of a mitochondrion, but can also be used to describe interactions of these path-
ways [117,118]. The major pathways (Figure 5) include energy metabolism [97–105], ROS
production [117–122], amino acid metabolism [123], calcium homeostasis [124,125], and biosyn-
thesis of various molecules [126] (Figure 5). Dysfunctions of these pathways are critical for
the development of neurodegenerative diseases directly or indirectly via ROS-related path-
ways [19,127].
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Figure 5. Computational modeling in a single mitochondrion scale. The major roles of a mitochondrion are illustrated
schematically and example equations are displayed. [X] represents the concentration of the molecule X. νATPuse is the rate of ATP
usage, νi the ATP production rate of i-th pathway, ηdeg the rate of ROS degradation, ηi the ROS production rate of i-th pathway,
γ the volume ratio of the mitochondrion to the cytoplasm, and J the flux of calcium ions through the channel in the subscript.
f can be any function, usually polynomial function, of amino acid and other intermediates concentrations. NCX refers to the
sodium–calcium exchanger.



Antioxidants 2021, 10, 229 9 of 19

Figure 6 illustrates the representative computational modeling approaches for the
population dynamics of mitochondria. Mitochondrial biogenesis (pathway 1 in Figure 6)
and mitophagy (autophagic degradation of mitochondria; pathway 4) regulates the number
of mitochondria in a cell. Mitophagy [128] occurs selectively to reduce the number of
impaired mitochondria that are generated via pathway 3 [129]. Fusion (pathway 2, forward)
helps mitochondria to survive against external stress and fission (pathway 2, backward)
creates new mitochondria while keeping the quality of the population [130]. The spatial
movement of mitochondria (pathway 5) helps mitochondria to enter other pathways like
fusion and mitophagy. The mitochondrial population can also respond to stresses, such as
hypoxia and calcium flux, by changing its spatial distribution [131]. Computational studies
can explain how these pathways are related to the maintenance of mitochondrial functions
against internal and external stressors [132–140].
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The ATP synthase, also called the F1F0-ATPase, plays a critical role in mitochondrial
function [141]. It is found deregulated in AD [142–144], which may lead to neuronal
dysfunction [145,146], and it is linked to numerous other neurological diseases [147–149].
Modeling of the kinetics as well as the molecular dynamics may play an increasingly
important role in understanding ATP synthase dysfunction in neurodegeneration.

The ATP synthase uses the proton-motive force across the inner membrane to syn-
thesize ATP from ADP and phosphate. It can also perform the opposite reaction, which
results in ATP hydrolysis. Early kinetic models include Pietrobon and Caplan’s six-state
model [150], which was incorporated in models of mitochondrial metabolism [102,103].
Gao et al. [151] incorporated structural details of the complex (Figure 7) [152–155]. Figure 7
shows a rotational cycle corresponding to the synthesis or hydrolysis of one ATP, and the
three β subunits of the ATP synthase are drawn for each step of the cycle. The color and
shape of the subunits correspond to their conformational states, which mediate substrate
binding. The conformational changes of the β subunits are induced by the rotation of the γ
subunit (whose orientation is depicted in the schematic), the rotation of which is driven by
the proton-motive force [151].
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Figure 7. Schematic of the reaction cycle of the F1 subcomplex for ATP synthesis and hydrolysis. The sequence of ATP
synthesis is shown by red arrows, and ATP hydrolysis is indicated by blue arrows. After one cycle, the ATPase returns to an
equivalent configuration but is rotated by 120◦. The color and shape of each catalytic binding site indicate their structure
with dark blue, orange, green, and light blue corresponding to structures βTP, βDP, βE, and βHC, respectively [14]. The
sequence of ATP synthesis is shown by red arrows, and ATP hydrolysis is indicated by blue arrows. The orientation of the γ
subunit is depicted at the center of the synthase.

Several partial high-resolution crystal structures of the mitochondrial F1F0-ATPase
have been found for yeast and bovine heart [154–158], making possible molecular dynamics
(MD) simulations that can help elucidate the workings of the ATPase in atomistic detail.
MD simulations of the F1 subcomplex have provided insight into the transfer of mechanical
energy by applying rotations on the γ subunit [159,160]. Simulations of the c10 ring of the
F0 subcomplex provided insight into the proton binding mechanism [161,162]. Several
simulations of the F0 motor investigated the ATP synthase’s relation to MPTP. An MD
study of the c10 ring concluded that the lumen of the ring cannot be occupied by water
and so it cannot be the MPTP [163]. However, a Ca2+ binding site on the β subunit of
mitochondrial ATPase has been identified which could induce a conformational change
transmitted to the lateral stalk and cause the permeability transition [164]. Recent advances
in membrane molecular simulations using multi-scale methods have allowed simulations
of a whole mitochondrial membrane [165], with promising future applications.

3.2. Application of Mitochondrial Modeling in Neurodegenerative Diseases

Computational modeling has been used to understand the roles of mitochondria in
neurodegenerative diseases, including AD and PD (Figure 8) [49,166–169]. Among the
computational studies of AD, the model of Hao et al. considered the effect of ROS, yet
detailed mitochondrial ROS production mechanisms were omitted [170]. Their model of
AD included neurons, astrocytes, microglia and peripheral macrophages, as well as amyloid
beta aggregation and hyperphosphorylated tau proteins. The model was used to simulate
the effect of drugs, which requires many resources to test without computational model, and
suggested the efficient therapy for slowing the progression of AD. Ranjan et al. developed
a computational model for the interaction among amyloid-beta, calcium signaling, and
mitochondrial permeability transition pore (mtPTP) related cell apoptosis in AD [171]. The
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model was used to simulate calcium dynamics in the presence of amyloid beta and showed
the increased concentration of intracellular calcium ions and dysregulation of Ca2+ channel
receptors on the endoplasmic reticulum.
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the disease condition are colored in blue, while the diminished are colored in red. Pathways in a single mitochondrion
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oxidative phosphorylation; mtPTP, mitochondrial permeability transition pore; mα-Syn, mutant α-synuclein; DA, dopamine;
TCA, tricarboxylic acid; mHTT, mutant huntingtin; 3NP, 3-nitropropionic acid; mSOD1, mutant superoxide dismutase 1.

Raichur et al. developed in 2006, one of the earliest computational models of PD focus-
ing on the aggregation and clearance of mα-Syn as influenced by the ROS generation [166].
They showed that increased oxidative stress can generate a result similar to 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is known to induce PD. Cloutier et al.
also developed the computational models of PD, of which the relation between mitochon-
drial ROS generation and α-synuclein aggregation was investigated [167,169]. They further
extracted an equivalent two-state feedback motif from the model and proposed a principle
for PD pathogenesis in the form of the two-state transition between “healthy” and “disease”
states.

Accumulating evidence indicates that mitochondria may play an important role in
HD and ALS [48,172] in addition to AD and PD as discussed above. Among them, au-
tophagy is one of the most important and versatile mechanisms to understand the onset
and progression of neurodegenerative diseases. Therefore, the computational modeling
of autophagy [173–177] should be further developed to include detailed mitochondrial
mechanisms. Further studies for computational modeling of the interaction between
Aβ/mHTT/mSOD1/mα-Syn and mitochondria would offer a useful framework to under-
stand the complex dynamics of the brain disease.

4. Conclusions

The energy transfer from non-living things to living organisms occurs through catabolism
and anabolism of organic carbon molecules. Though the generation of ROS is an inevitable
cellular event that happens during the catabolism in the mitochondria, apparently they
become harmful factors to the brain, ultimately exacerbating neurodegeneration. By under-
standing how ROS-mediated oxidative stresses damages the brain, it will be possible to
develop therapeutic strategies and antioxidant drugs to prevent neurodegeneration. To do
so, future research will need to address several challenges as identified below.
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First, it will be important to define the brain cell-type specific mechanisms of oxidative
stress. Considering the fact that the brain consists of many different cell types such as
neurons (excitatory neurons versus inhibitory neurons) and non-neuronal cells (astrocyte,
microglia, oligodendrocyte, endothelial cells, pericytes, and ependymal cells), it is proposed
that oxidative stress-responses are various and signal transduction pathways are differen-
tially regulated in a brain cell type- and region-specific manner. In this paradigm, oxidative
stress can be toxic or become pro-death signals to neurons while it can be pro-survival
signals to non-neuronal cells. Indeed, gliogenesis, the generation of new astrocytes and
microglia, is commonly found under oxidative stress-induced pathological conditions [178].
Accordingly, future study is required to determine what exact molecular pathways are
triggered by oxidative stress and how these pathways influence the fate of neuron and glia
selectively and respectively. It is also important to identify the threshold level of oxidative
stress that ultimately causes autonomous cell death versus non-cell autonomous cell death
in the brain. A growing body of evidence has proven that ROS from reactive astrocytes
and microglia are detrimental to pyramidal neurons in the hippocampus, motor neurons
in the spinal cords, medium spiny neurons in the striatum, and dopaminergic neurons in
the substantia nigra [179].

Second, identification of bona fide early oxidative stress markers in the brain will
expedite the diagnosis and treatment of neurodegenerative processes. Not only is the
identification of specific molecules and signaling cascades crucial for understanding the
pathogenesis of neurological disorders, but it is also pivotal in discovering treatments
for oxidative damages in the brain. Recent findings show that mitochondria-dependent
cellular events are emerging as potential therapeutic targets. The coping of acute oxidative
stresses at the earlier time point may protect brain cells more effectively than that at a
time point that is too late to balance the above threshold of oxidative damages, which
could then become irreversible and degenerative. Perhaps constitutive generation of ROS
can transform reactive glia to become foes of neurons and thereby propagate neuronal
cytotoxicity throughout the brain [179]. In this paradigm, any therapeutic approaches to
ameliorate oxidative stresses in neurodegenerative disorders should consider the time
window and cell-type/brain-region specificity of drug effects.

Lastly, as we summarized in Section 3, useful computational models of mitochondria
have been made over a wide range of scales. Some of these models have yet to be used
to observe the mitochondria-dependent mechanisms of neurodegenerative diseases. The
advance of computational modeling will expedite the understanding of the dynamic
function of mitochondria and oxidative stress in neurodegenerative diseases. Together, we
hope our review can accelerate modeling studies for the comprehensive understanding of
neurodegenerative diseases, as well as contribute towards the development mitochondria-
specific antioxidant therapeutics.
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