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Abstract: Senescence is the end point of a complex cellular response that proceeds through a set of
highly regulated steps. Initially, the permanent cell-cycle arrest that characterizes senescence is a
pro-survival response to irreparable DNA damage. The maintenance of this prolonged condition
requires the adaptation of the cells to an unfavorable, demanding and stressful microenvironment.
This adaptation is orchestrated through a deep epigenetic resetting. A first wave of epigenetic changes
builds a dam on irreparable DNA damage and sustains the pro-survival response and the cell-cycle
arrest. Later on, a second wave of epigenetic modifications allows the genomic reorganization to
sustain the transcription of pro-inflammatory genes. The balanced epigenetic dynamism of senescent
cells influences physiological processes, such as differentiation, embryogenesis and aging, while its
alteration leads to cancer, neurodegeneration and premature aging. Here we provide an overview of
the most relevant histone modifications, which characterize senescence, aging and the activation of a
prolonged DNA damage response.
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1. Introduction

Aging is a physiological condition characterized by the functional deficit of tissues and organs
due to the accumulation of senescent cells [1]. The key role of senescence in aging is well-established.
Clearance of senescent cells in mouse models delays the appearance of age-related tissue and organ
disfunctions [2,3]. Senescent cells are characterized by the permanent cell-cycle arrest sustained
by the accumulation of cyclin-dependent kinase inhibitors/CDKi), like p16, p21 and p27, as well as
by the release of cytokines, chemokines and soluble factors. This modified microenvironment is
known as senescence-associated secretory phenotype (SASP) [4]. The senescence state is triggered
by different stimuli/stressors. These include the shortening of the telomeres (replicative senescence),
the oncogene-induced replication stress, the oncogene-induced senescence (OIS), the accumulation of
misfolded protein and/or oxidative stress (stress-induced premature senescence, SIPS) [5].

The impairment of the non-homologous end joining (NHEJ) and homologous recombination (HR)
repair mechanisms are common traits of senescent cells [6–9]. Moreover, a widespread epigenetic
resetting characterizes senescent cells and sustains cell-cycle arrest and cellular survival, through
the activation of (i) CDKi [10,11], (ii) tumor suppressors [12], and (iii) secretion of chemokines and
cytokines, as well as the remodeling of the microenvironment [13].

Macroscopically, senescent cells are characterized by the formation of peculiar areas of
heterochromatin, named as SAHF (senescence-associated heterochromatin foci), mainly at E2F loci [14].
However, SAHF do not characterize all senescent cells [15] and are not causally linked to the onset
of senescence [16]. Other epigenetic features, like the distension of satellites (senescence-associated
distension of satellites, SADS) [17], the re-activation of transposable elements, and of endogenous
retroviruses (ERV) [18,19], seem to better qualify different types of senescence. Finally, aging appears
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to be marked by substantial re-arrangements of the nucleosomes, with the loss of histones H3 and
H4 [20,21].

During senescence the epigenome undergoes temporal and sequential modifications that are
mandatory to accomplish different cellular adaptations. Initially, this epigenetic resetting is mainly
due to the accumulation of irreparable DNA damage. After this first wave of epigenetic modifications,
the epigenome is remodeled and fixed in order to sustain the permanent cell-cycle arrest and to
modulate the microenvironment.

2. The Epigenome of Replicative Senescence (RS)

The telomeric TTAGGG repeats at chromosome ends protect the genome from degradation and
distinguish natural chromosomes ends from double-strand breaks (DSBs) [5,22,23]. Histone and
non-histone (Shelterin) proteins sustain the folding of telomeric repeats in high-order chromatin
structures that acquire a G-quadruplex shape as a consequence of Hoogsteen base pairing between
consecutive guanines [24]. The loss of active telomerase complexes in somatic human cells blocks
the lengthening of the telomeric ends. As a consequence, for each successful cell division, telomeres
get shorter and cell proliferation is restricted. This phenomenon is defined as replicative senescence
(RS) [25]. The accumulation of irreparable DNA damage triggered during RS leads to permanent
cell-cycle arrest and is considered among the main driving forces of aging [22].

2.1. Histone Variants

The progressive accumulation of double-strand breaks (DSBs) at the chromosome ends is coupled
with a deep epigenetic resetting that can be observed in pre-senescent cells, even distal from telomeres.
This epigenetic repertoire builds up an epigenetic clock that dictates the replicative potential of human
cells [26]. Late passage IMR90 and WI38 human fibroblasts are characterized by a reduced expression
of core histone H3 and H4 [21], of the linker histone H1 [27] and of the histone chaperons ASF1A/B and
CAF1-p150/p60 [28]. While the decreased levels of H3 and H4 are due to reduced neosynthesis and
increased mRNA degradation [21,29], H1 is post-translationally regulated [27]. Moreover, alternative
spliced histone mRNAs belonging to the HIST1 cluster are reported to be accumulated in quiescent
and RS-arrested human fibroblasts [30].

The epigenome of RS cells is also characterized by the deposition, at certain genomic loci, of the
histone variants H3.3 [31], H2A.J [32] and by the release of genomic DNA from H2A.Z [33–35]
(Table 1). This redistribution results in chromatin remodeling and promotes the transcription of (i)
tumor suppressors [30,31], (ii) inflammatory genes marking the SASP, [32] and iii) the cleavage of H3.3,
which mediates the repression of E2F/RB target genes [31]. While in senescence, the HIRA-mediated
deposition of H3.3 sustains cell-cycle arrest [31], and in embryonic stem cells ATRX and DAXX recruit
H3.3 to repress the transcription of endogenous retroviruses (ERVs) [36].

It is possible that the redistribution of H3.3 between the proliferating and senescent cells, which
depends on the detachment from ATRX/DAXX and the complexing to HIRA, is at the basis of the
activation of ERVs observed in senescence [37] and aging [38].

The regulated deposition of all these histone variants is necessary [30] and sufficient to sustain
cell-cycle arrest [31]. Interestingly, genes encoding these histone variants are frequently mutated in
cancer, in confirmation of their tumor-suppressive properties [30,39].

2.2. SAHF an Open Question?

The HIRA chaperone complex (HIRA/UBN1/CABIN1) controls both the deposition of H3.3 [30]
and SAHF formation [40]. SAHF accumulation of H3K9me3/H3K27me3/macroH2A blocks on E2F loci
characterizes OIS and cells undergoing oncogene-induced replication stress [15]. However, RS is not
uniformly characterized by the formation of SAHF [41]. In fact, focused heterochromatinization of E2F
loci maintains cell-cycle arrest, also in cells described as SAHF-negative (e.g., BJ and MEFs) [41,42].
SAHF are defined as DAPI-dense nuclear regions characterized by the presence of a central core of
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condensed chromatin, enriched for H3K9me3 and macroH2A. This core is surrounded by a peripheral
ring of H3K27me3 [43,44]. SAHF formation requires p16/INK4 and consists of a deep and focused
heterochromatin re-organization [45]. This reorganization is HMGA1/ASF1/HIRA-dependent [40,46]
and is triggered by the GSK3β-mediated HIRA re-localization at PML bodies [47]. Even though SAHF
dismantling, achieved through HMGA1 [46], ASF1 [40] or GSK3β knockdown [48], allows senescence
escape, BJ fibroblasts and Hutchinson–Gilford progeria syndrome (HGPS) cells enter senescence with
minimal or no signs of SAHF formation. On the opposite, the SAHF formation in HMEC and MCF10A
mammary cells in response to H-RAS/G12V over-expression fails to bring the cells to senescence [15].
Whether SAHF formation is only due to the arising of replication stress and could act as a barrier
to DNA double-strand breaks spreading [15], or could mark chromatin regions stitched between
remodeled LAD domains [45], needs further investigation. It is possible that a better definition of the
SAHF, achieved through the improvement of the resolution of confocal nanoscopy and of ChIP-seq
histone mapping, will clarify the debated role played by SAHF in senescence.

2.3. Histone Modifications

A global decrease in H3K9me2/3 and H4K20me but increase in H3K9me1 levels in gene bodies
characterize RS in human fibroblasts [49,50]. By contrast, the heterochromatin marker H3K27me3 and
the euchromatin marker H3K4me3 are mostly redistributed with respect to proliferating cells (Table 2).

This redistribution correlates well with the expression profile of senescent cells [51–53]. A different
behavior was reported for the repressive mark H4K20me3 and the activating mark H4K16ac. Although
they are enriched in the regulative elements of genes modulated during RS, they do not correlate
with gene expression changes observed in senescent cells [30,54]. This apparent paradox could stem
from the masking effect imposed by the senescence-specific activation of super-enhancers (marked by
H3K27ac/H3K4me1) and the activation of neighbor genes involved in SASP and metabolism [55].

A detailed comparison of H3K4me3 and H3K27me3 levels in proliferating and senescent human
fibroblasts evidenced large-scale chromatin modifications during RS [56]. In senescent cells the augmented
levels of H3K4me3 and H3K27me3 frequently co-localize in areas defined “mesas” that extend for
hundreds of kilobases. Larger domains of RS genome (up to 10Mb) and defined “canyons” are
characterized by decreased levels of H3K27me3 [56]. H3K4me3 and H3K27me3 mesas colocalize in
LMNB1-associated domains and overlap DNA hypomethylation. Instead, canyons are enriched in gene
bodies and enhancers and H3K27me3 loss correlates with the up-regulation of senescent transcriptional
programs [56].

2.4. Nuclear Lamins

The loss of LMNB1 typifies all senescence conditions [57] and triggers a deep re-modelling of
lamina-associated domains (LADs) [44,56]. LADs re-modelling contributes to re-organizing not only
heterochromatin and SAHF [44], but also euchromatin (eLADs) [58]. Moreover, the knockdown
of LMNB1 in proliferating cells promotes the premature senescence and gives rise to a H3K4me3
/H3K27me3 re-organization similarly to what observed in RS, OIS and HGPS [56]. However, LMNB1
re-expression in RIS senescent cells does not overcome the proliferation of arrest and does not repair
nuclear membrane blebbing [59]. It is still unknown if the re-expression of LMNB1 in senescent
cells is strong enough to re-establish normal LAD domains or if the co-expression of an epigenetic
regulator is needed. Similarly, the ectopic expression of lamina-associated polypeptide 2α restores the
proliferation of HGPS cells [60], characterized by the expression of the progerin form of LMNA [61,62].
Unfortunately, the impact of LAP2α expression on LAD domains has not been explored yet. The
re-localized LAD domains in RS are characterized also by a general DNA hypomethylation that affects
LINE and SINE repetitive elements and pericentromeric satellites [17]. This hypomethylation triggers
the general distension of the chromatin associated to these genomic regions (senescence-associated
distension of satellites or SADS) and their de-repression [17]. The activation of centromeric and
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pericentromeric satellite repeats is associated with their exclusion from nucleoli compartments, while
all the other nucleoli-associated domains (NADs) are significantly altered in senescent cells [63].

Despite LADs redistribution, 3D chromatin organization of human dermal fibroblasts (HDFs) is
only partially altered when proliferating, quiescent and senescent cells are compared. A modest gain of
short-range and the loss of long-range intra-chromosome interactions in permanently arrested cells was
observed [64]. More evident in quiescent and senescent cells is the switch of topologically associated
domains (TADs) from euchromatin areas (Hi-C compartment A) to heterochromatin (Hi-C compartment
B) and vice versa. This remodeling reflects the transcriptional status of cell-cycle-associated
genes [64]. Most of the heterochromatinization is due to condensin mobilization [65] and PRC2
(EZH2) deposition [66], while MLL1 plays a role in mediating euchromatinization [67,68]. Moreover,
RS cells lose the TADs associated to the telomeres [69].

2.5. The CpG Methylation Clock

In general, DNA methylation during aging progressively involve both hypomethylation and
hypermethylation events. Importantly, the methylation status of a limited number of well-defined CpG
islands associate well with human aging [26]. The quantification of the methylation rate of these CpG
island allows a good prediction of human biological age [26,70–72]. According to these estimations, the
methylome of men ages 4% faster than women [70]. Moreover, the methylation clock is accelerated in
patients affected by neurodegenerative diseases [73–75], chronic stress and insomnia [76], as well as in two
premature aging disorders like Werner’s syndromes and Hutchinson–Gilford Progeria syndrome [76,77],
while it is subverted in cancer [78,79].

Aging is characterized by enhancer hypomethylation [41] and this correlates with the loss-of-function
of stem cells [80]. Similar changes in the methylation prolife also characterize RS [81], and global
hypomethylation characterizes both genomic and mitochondrial DNA [82]. CpG hypermethylated
regions are associated with H3K27me3, H3K4me3 and H3K4me1, whereas hypomethylation is observed
in the constitutive heterochromatin and lamina-associated domains (LADs) [83].

3. The Epigenome of Oncogene-Induced Senescence (OIS)

The expression of a certain number of oncogenes (K-RAS and H-RAS, BRAFV600E, myrAKT1,
STAT5, nuclear HDAC4, N1ICD, ERBB2 and β-catenin) [84–92] or ablation of tumor suppressors
(PTEN, APC and AXIN) in normal cells triggers a permanent and premature cell-cycle arrest defined as
OIS [93,94]. OIS can occur also in the presence of ectopic TERT expression [6]. The most studied model
of OIS is the RAS-induced senescence (RIS), obtained by over-expressing oncogenic mutants of RAS in
fibroblasts, melanocytes and retinal pigment epithelial cells. The consistency of the RIS model has
been validated in mice, after conditional induction of the monoallelic expression of K-RAS/G12V. Mice
develop lung adenomas characterized by the accumulation of senescent cells [95]. Similarly, premature
senescence blocks the spreading of oncogenic lesions in BRAF/V600E expressing melanocytic nevi [89].
Curiously, RAS fails to induce senescence in immortalized human mammary epithelial cells (HMECs),
even after the ectopically expression of p16/INKa [96,97]. This failure has been associated to defects in
the TGFβ signaling pathway [97].

It is generally accepted that the premature cell-cycle arrest characterizing OIS is elicited by the
accumulation of irreparable DNA damage. In fact, the abrogation of ATM signaling allows senescence
escape [6]. It is important to note that the DDR dependence was observed for RAS but its involvement in
the case of other oncogenes, such as NOTCH and AKT1, needs further validations [90,98]. As explained
above, RIS is characterized by the accumulation of SAHF [14]. However, the oncogenic activation
of AKT1 and NOTCH or the knockdown of PTEN trigger OIS without SAHF formation [85,86,98].
In the case of NOTCH, this is due to the repression of HMGA1 [90]. Differently, in the case of AKT1
it was hypothesized a mechanism operating through GSK3β inhibition. In fact GSK3β controls the
phosphorylation-dependent HIRA sub-compartmentalization [99]. In this respect, a similar defect in
HIRA signaling prevents SAHF formation in senescent murine embryonic and skin fibroblasts expressing
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RAS, but not to the accumulation of nuclear macroH2A.1 [42]. The deposition of the histone variant
macroH2A.1 is not only required for SAHF formation. It also sustains a chromatin re-organization
that allows the focused histone acetylation and the expression of the typical SASP cytokines and
chemokines [100]. Moreover, the knock-down of macroH2A.1 in H-RAS/V12 IMR90-expressing cells not
only blunts SASP, but also decreases the phosphorylation of γH2AX [100].

A common property of OIS cells is the loss of LMNB1 [57]. This causes a deep re-organization
of LAD domains [44], similarly to what was observed during RS [56]. As a consequence, OIS
is characterized by the re-localization and re-organization of LAD-associated heterochromatin
domains [43,101]. This re-organization is sculptured in the distribution of H3K4me3 and H3K27me3
“mesas” and H3K27me3 “canyons”, as described above for RS cells [56]. Interestingly, the expansion of
H3K27me3 “canyons” achieved though EZH2 repression sustains OIS by promoting the expression of
cytokines [56] and of CDKi [66,102,103].

Similarly to RS, the histone variant H3.3 [31,104] and its Cathepsin L-mediated cleavage product
H3.3cs1 [104] are deposited in RIS cells in the regulative elements of RB/E2F target allowing the
permanent removal of H3K4me3 [31] and the increase in H3K9me3 levels [14]. Contemporary, the
removal of H2A.Z and the de-methylation of H3K27me3 at tumor suppressor loci sustains cell-cycle
arrest [33,66]. The inflammatory response is achieved through the deposition of the histone variant
H2A.J [32] and the binding of HMGB2, which excludes these loci from SAHF [41]. HMGB2 also
allows the H3K4 trimethylation mediated by the methyltransferase MLL1 [53]. Moreover, SASP loci
are localized in newly formed super-enhancers that require the binding of BRD4 to promote their
transcription [105,106].

Finally, OIS in human fibroblasts is characterized by the spatial rearrangement of pre-existing
heterochromatin that give rise to SAHF [45]. Differently, HGPS cells are refractory to SAHF
formation [45,107,108] and to heterochromatin focusing [45], probably because the huge alterations in the
lamina compartment of these cells prevents the proper heterochromatin 3D-structure organization [109].
A similar displacement of H3K9me3 from LADs is observed in OIS, but it is followed by an increase
in local interactions between H3K9me3 domains and sharp heterochromatinization [45]. Curiously
and differently from RS and aging, OIS cells do not display any changes in CpG island methylation
levels [110].

Different Types of OIS?

While studies are increasingly describing RIS epigenetics, detailed data about the epigenetic
modifications in other types of OIS are unavailable. Additional data are desirable since increasing
evidences highlight the key roles played by epigenetic regulators in maintaining OIS and counteracting
oncogenic transformation [84,111–116]. For example, in melanomas the activation of H3K9me3
demethylases (LSD1 and JMJD2C) selectively de-represses E2F target genes, allowing senescence
escape and tumorigenesis [117]. This result reinforces the idea that a better investigation of the
epigenetic mechanism that sustains the early step of tumorigenesis is desperately needed.

4. The Epigenome of Stress Induced Premature Senescence (SIPS)

SIPS is characterized by the accumulation of ROS (reactive oxygen species), due to mitochondrial
disfunctions, ER stress or the exogenous administration of oxidative compounds [118–120]. Even though
SIPS onset is independent from telomere attrition, ROS accumulation can cause telomere disfunction
and fusion in primary cells, thus sustaining cell-cycle arrest [120,121]. Accordingly, murine embryonic
fibroblasts (MEFs) cultured in normoxia undergo premature senescence due to the accumulation of
ROS-induced DNA damage, while the same cells cultured in hypoxia tend to indefinitely proliferate in
virtue of the long telomeres [122].

When human cells are exposed to oxidative stress in vitro, they undergo stochastic transcriptional
changes which resemble aged tissue. Recently, it has been demonstrated that oxidative stress contributes
not only to aging but also to age-related diseases [123]. Moreover, the accumulation of 8-oxo-7,8-dihydro-
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2′-deoxyguanosine (8-oxodG) has been observed in the liver of aged mice [124]. Global histone
methylations of H3K4, K27 and K9 are increased when BEAS-2B cells are exposed to H2O2, and
preincubation with ascorbate reverse these changes [125]. These evidences are confirmed also in other
contexts [126]. The general heterochromatinization observed after H2O2 treatment is achieved in two
steps. Firstly, by reducing acetylation (H3K9ac, H4K8ac, H4K16ac) [125,127] in a HDAC-dependent
manner [127,128]. Secondly, by recruiting histone methyltransferases (HMTs) and inducing H3K27me3,
H3K9me3 and H4K20me3 [127,129]. Chromatin condensation is an attempt to preserve the DNA from
genotoxicity [130].

The downstream pathways that lead to cell-cycle arrest in cells exposed to oxidative stress imply
the up-regulation of CDKi, the DDR response and SASP production, similarly to cells undergoing
RS [131,132]. In addition, mitochondrial dysfunctions in IMR90 human fibroblasts lead to the ROS–JNK
retrograde signaling pathways, which promote SASP and drive cytoplasmic chromatin fragments
(CCFs) [133]. Importantly, the epigenetic homeostasis perturbation, achieved through HMTs or HDACs
inhibition [129], is reported to expose cells to endogenous ROS production [134] or to trigger and sustain
the senescence induced by the treatment with oxidative compounds [135]. In particular, some ROS
generators inhibit PRC2 methyltransferases to allow the focused demethylation and transcriptional
activation of CDKi [132]. Similarly, the senescence entry of PAK2 knocked-down MEFs cultured in
normoxia is delayed because of the decreased deposition of H3.3 on CDKi loci [136]. At the DNA
level, SIPS is characterized by a global DNA hypomethylation that only partially overlaps with the one
observed during RS [81].

The altered expression and activation of epigenetic regulators allows cancer cells to escape
cell-cycle arrest and to proliferate even in the presence of high levels of oxidative and replication
stress, perpetuating the accumulation of DNA damage from generation to generation [137]. In short,
histone variants and histone posttranslational modifications taking place during senescence are listed
in Tables 1 and 2.

Table 1. Histone variants that characterize senescence. RS: Replicative senescence; OIS: Oncogene
induced senescence; SIPS: Stress induced premature senescence; SASP: Senescence associated secretory
phenotype; ↑: Increased expression; ↓: Decreased expression;→: No change; NI: Not investigated.

Histones and
Histone
Variants

Role during
Senescence

Changes
during RS

Changes
during OIS

Changes
during SIPS References

H1 Chromatin
condensation
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Table 1. Histone variants that characterize senescence. RS: Replicative senescence; OIS: Oncogene 
induced senescence; SIPS: Stress induced premature senescence; SASP: Senescence associated 
secretory phenotype; ↑: Increased expression; ↓: Decreased expression; →: No change; NI: Not 
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Table 2. Histone post-translation modifications (PMTs) observed in senescence. RS: Replicative
senescence; OIS: oncogene induced senescence; SIPS: Stress induced premature senescence; SASP:
Senescence associated secretory phenotype; ↑: Increased expression; ↓: Decreased expression;→: No
change; NI: Not investigated.
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5. The Epigenome at DSBs and during DDR: Early Epigenetic Events in the Senescent Response

Double-strand DNA breaks cause massive epigenetic changes. Immediately, at the damaged sites,
the DNA unwraps from the histones and the chromatin undergoes a de-structuration, thus losing
compactness [138]. This response is achieved mainly through the chaperone-mediated nucleosomes
disassembly [139]. Functionally, it allows the recruitment of proteins involved in DDR. Structurally
it causes significant topological alterations in the DNA fiber. These modifications are limited by the
subsequent heterochromatinization upstream and downstream from the damage site, which restrains
relaxation [140].

The phosphorylation by PIKK kinases (ATM, ATR and DNA-PK) of ser 139 of H2AX (γH2AX) is the
widespread histone modification that extends for megabases around a DSBs. γH2AX acts as a platform
for the recruitment of MDC1 and 53BP1. This recruitment is sustained by the accumulation at the
damaged site of DDR RNAs [141]. The general relaxation of the chromatin is achieved through different
mechanisms, which include (i) the RNF8/Ubc13/HUWE1 ubiquitylation of Histone H1 [142,143], (ii) the
RNF168 mediated K63-ubiquitylation of H2A/B and H2AX [144], and (iii) the PARylation-dependent,
proteasomal degradation of H1.2 [145].

In addition to these huge chromatin remodeling, local histone modifications surrounding the
DSBs take place in cells undergoing NHEJ or HR, thus sculpturing an epigenetic pattern specific for
each of the two repair mechanisms [138]. The activation of NHEJ is supported by a general chromatin
expansion around the DSBs, by the deposition of the histone variants H3.3 [146] and H2AZ [147] and by
the monoubiquitylation of H2BK120. This monoubiquitylation promotes the appearance of H3K4me3
and the binding of the SWI/SNF remodeling complex. Moreover, the TIE2-mediated phosphorylation
of H4Y51 [148], as well as the RNF20/40-mediated H2BK120ub [149] and the RNF168-mediated
H2AK15ub [144] act as platforms to recruit DDR proteins, like ABL1 [148], Ku70/80 [149] and
53BP1 [150,151]. The latter modification and the successful recruitment of 53BP1, which controls
end re-sectioning, dictate the choice of the NHEJ pathway in spite of HR [152,153]. H4K20me2 is
another anti-resection modification that reinforce 53BP1 binding to the chromatin [154]. However, the
co-presence of H2AK15Ub and H4K20me2 in the proximity of the DSBs buffers NHEJ processing by
recruiting the HAT Tip60/KAT5, which triggers H2AK15ac and 53BP1 displacement. An activity that
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favors the establishing of HR [155]. 53BP1 displacement seems to occur during S/G2 transition, as in G1
cells 53BP1 stably occupying the HR sites [156]. The general loss of nucleosome occupancy achieved in
proximity to DSBs is counterbalanced by the distal accumulation of H3K36me3 [156]. This PTM can be
used as a scaffold for the binding of HDACs, thus ensuring the transcriptional silencing of genomic
loci affected by DSBs [157,158].

A different epigenetic environment is associated to the activation of the HR pathway [158].
In this context, macroH2A is found to be more abundant than H2AZ, the acetylation of H2BK120
overcomes ubiquitylation in a SAGA complex-dependent manner [159] andγH2AX is more spread [156].
As explained above, Tip60/KAT5 acetylates H2AK15, thus displacing 53BP1 [155]. Tip60/KAT5 also
maintains the acetylation of H4K16, which is required for keeping an open chromatin status [160] at
the damaged site. An opposite epigenetic mark, H3K9me2, is required for the BARD1/HP1γ mediated
retention of BRCA1 [161] and to allow the loading of the pro-resection factor CtIP [162]. In active genes
affected by DSBs, the loss in H3K79me2 and of H4 acetylation levels [156], as well as the recruitment
of macroH2A [163] and of repressive protein complexes (HP1,KAP1,SUV39H1,PRDM2,HDACs),
seems to compensate for the general loss of histones that characterizes the damaged sites [164].
The spatio-temporal regulation of chromatin remodeling at DSBs is achieved and sustained also by the
deposition of other histone variants, like the HIRA-assisted H3.3 and the CAF-1-mediated H3.3 [23].

In summary, from the literature emerges a bleeding/vasoconstriction model in which the
chromatin expands and becomes flexible at the damaged sites to accommodate the repair complexes,
but heterochromatinization and the creation of a transcriptional repressive environment is required
later on to allow the repair before restarting the transcription. The successful prediction of DSBs by
looking at the histone positioning and PTMs [165], the emerging roles played by epigenetic regulators
in DDR as well as the impact of epigenetic drugs on DDR [166] confirm that the epigenetic status of the
chromatin not only identifies sites of genome fragility, but it is also causally linked to the successful
repair [23].

6. An Anti-Apoptotic Response Sustains the Survival of Damaged Cells Exposed to Irreparable
DNA Damage

Senescent cells display an increased resistance to pro-apoptotic stimuli that is achieved through the
up-regulation of the pro-survival gene Bcl2 and Bcl-XL and the down-regulation of the pro-apoptotic
genes Bid and Bax [127]. The TP53-dependent up-regulation of the CDKi p21 plays a key role in
sustaining the survival of damaged cells [167], while DNMT3a and HDAC1 are recruited on the
p21 promoter to switch off its expression during apoptosis [168]. The increase in p21 promotes the
cell-cycle arrest allowing the activation of DDR; cellular proliferation is subsequently permanently
locked through the activation of INK4 CDKi (mainly p16 and p15) [169]. Many of the anti-apoptotic
functions of p21 are achieved through the modulation of TFs (p300, STAT, JUN and TP53) [170] and
are sustained by an epigenetic reprogramming [127]. In senescent cells, high levels of H4K20me3
and low levels of H4K16ac keep down the transcription of pro-apoptotic genes, while the increased
acetylation of H4K16 characterizes pro-survival loci [127]. The heterochromatinization that surrounds
and borders DSBs enhances these pro-survival responses and any relaxation of these structures,
obtained for example through HDAC inhibition, triggers apoptosis [6]. Finally, the mTORC1 and
PGC-1β dependent metabolic reprogramming [171] observed in senescent cells and in different models
of aging [5] ensures energy supply.

Since the epigenetic regulators require cofactors that are produced in a large majority in
mitochondria [172,173], any mitochondrial dysfunction can affect both the transcriptional and the
metabolic fitness of the cells and lead to senescence even in absence of DNA damage (MiDAS,
mitochondrial dysfunction-associated senescence) [171].

Severe and acute stresses induce cell death, while prolonged and mild insults lead to cellular
senescence and survival, probably because the cells have the time and a not completely compromised
ability to mount the epigenetic, transcriptional and metabolic responses that characterize them [174].
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7. Final Considerations: The Link between Senescence, Aging, Epigenetics and DDR

The accumulation of DSBs is a general hallmark of senescence and aging [6]. The main endogenous
sources of DSBs are telomere attrition and replicative stress. Replication stress is commonly observed
in RS, OIS and aging. In all these conditions cells slow down DNA synthesis and replication fork
progression. However, the reduced replication fork speed activates dormant origin to preserve
replication timing during replication stress [175]. This adaptive response allows the maintenance of
an unaltered replication timing also in cells entering senescence [176]. On the other side it exposes
common fragile sites (CFSs), which are genomic loci more prone to breakage after DNA polymerase
inhibition, and the accumulation of genomic alterations. CFS alterations are typically observed in
pre-neoplastic lesions [177]. Similarly, cells exposed to genotoxic agents (e.g., chemotherapeutic agents,
pollutants and toxins) or to oxidative stress activate the DDR that frequently leads to cell-cycle arrest.

Whatever the origin, the accumulation of irreparable DNA damage gives rise to a univocal
response characterized by the activation of tumor suppressors and CDKi and by the release of
pro-inflammatory cytokines [5].

Global histone loss, as well as the focused deposition of histone variants (H2AX, H2AZ, H2AJ,
H3.3 and macroH2A) and the redistribution of H3K4me3, H3K27me3 and H3K36me3 characterize
both DDR, DSBs and senescence. The chromatin remodeling observed in different senescence models
seems to represent a temporal and spatial evolution of what is observed after a short-time treatment of
the cells with DNA damaging agents. Although it is clear that an altered epigenome can expose cells
to DSBs [134] and that epigenetic regulators control the fate of damaged cells [15,55,66,115,178–180],
investigations on the epigenetic inheritance in daughter cells coming from DNA-damaged cells are
still in their infancy [177].

Cancer cells appear as forgetful cells that have lost the epigenetic memory of a healthy genome.
Aging seems to be predisposed to this memory loss. One of the major challenges of the future regarding
the treatment of aging and cancer, will be the identification of the framework of epigenetic changes
that can restore this memory.
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