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Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its
clinical features are the proliferation of joint synovial tissue, the formation of pannus and the
destruction of cartilage. The global incidence of RA is about 1%, and it is more common in
women. The basic feature of RA is the body’s immune system disorders, in which
autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines,
chemokines and autoantibodies abnormally increase in the body of RA patients B cell
depletion therapy has well proved the important role of B cells in the pathogenesis of RA,
and the treatment of RA with B cells as a target has also been paid more and more
attention. Although the inflammatory indicators in RA patients receiving B-cell depletion
therapy have been significantly improved, the risk of infection and cancer has also
increased, which suggests that we need to deplete pathogenic B cells instead of all B
cells. However, at present we cannot distinguish between pathogenic B cells and
protective B cells in RA patients. In this review, we explore fresh perspectives upon the
roles of B cells in the occurrence, development and treatment of RA.

Keywords: B cells, rheumatoid arthritis, ACPA, RF, autoreactive, therapeutic approaches
B CELLS IN THE SYNOVIUM OF RA PATIENTS

The synovial tissue of RA patients can be regarded as tertiary lymphoid tissues (TLTs) or ectopic
lymphoid structures. Its structure is similar to secondary lymphoid tissue, with T cell and B cell
differentiation sites. TLTs are correlated with autoantibody titers, inflammatory cytokine levels, and
disease severity in RA patients, indicating that TLTs are related to the continuous inflammation in
RA (1). In addition, accumulation of B cells in TLTs is related to the increase of radiographic scores
and T cell activation in RA patients (2). There are abundant chemokines and inflammatory factors
(LTa, LTb, CXCL13, CCL20, CCL21, and CXCL12) in TLTs. These cytokines promote the
infiltration of inflammatory cells into joints and the production of TLTs, which aggravates the
formation of pannus and synovial hyperplasia (3). LTa and LTb secreted by B cells are very
important for maintaining the aggregated T cell and B cell infiltrate in TLTs (4). There are also
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plasmablasts that produce autoantibodies in TLTs, and even
long-lived plasma cells (usually only in the bone marrow and are
the main source of ACPA) (5). Interestingly, RA patients treated
with etanercept (combined with TNF and LTa) had significantly
fewer new TLTs in the synovium, which further illustrates the
importance of B cells for TLTs production (6). TLTs have part of
the functions of secondary lymphoid tissues, support B cell antigen
presentation and interaction with T cells, and are conducive to the
furtherdifferentiationandmaturationofBcells. Studieshave shown
that B cells accumulated in the synovial membrane of RA have
undergone somatic hypermutation (7). Activation-induced
cytidine deaminase (AID) plays a major role in B cell somatic
hypermutation and class switching recombination in TLTs (7). In
addition to plasma cells, TLTs also have a large number of anti-
citrullinated protein antibodies (ACPA) and rheumatoid factor
(RF), so TLTs contribute to the production of autoantibodies in the
synovium (8, 9) (Figure 1).

The results of single-cell sequencing showed that the ratio of
double negative (CD27-IgD-) and class-switched memory
(CD27+IgD-) B cells in the synovium of RA patients was
significantly higher than that of peripheral blood, which shows
these two types of B cell subgroups may play a key role in the
pathogenesis of RA (10). Compared with other B cell subgroups,
class-switched memory B cells (CD27+IgD-) are particularly
Frontiers in Immunology | www.frontiersin.org 2
prone to express RANKL after activation (11). Double-negative
B cells often highly express miR-155, which is essential for B cells
to produce autoantibodies (12, 13). In addition, there is a type of
CD21-/low B cells in the synovial fluid of RA patients with serum
ACPA positive. CXCR3 is expressed on the surface of these cells,
and RANKL can be secreted under the stimulation of IL-6 to
induce osteoclast differentiation and ultimately cause bone
destruction in RA patients (14). Obviously, CD21-/low B cells
belongs to pathogenic B cells and can be used as a potential target
for the treatment of RA in the future.
B CELL CHECKPOINTS IN RA

B cell checkpoints refer to a series of sites that affect the
proliferation, differentiation, apoptosis and other physiological
processes of all B cells during their development. These sites
include receptors on the surface of B cells and their ligands
(Figure 2).

BCR, TLR, and CD40
Two signals are usually needed to activate B cells: BCR signal and
costimulatory signal. The combination of antigen and BCR
provides the first signal for B cell activation, and the
FIGURE 1 | B cells in the synovium of RA. LTa and LTb secreted by B cells are very important for maintaining the aggregated T cell and B cell infiltrate in the
synovial tissue of RA patients. FcRL4+B cells, CD27+IgD-B cells and CD21-/low B cells are prone to produce RANKL, which are pathogenic B cells in the synovium of
RA patients. LTa, lymphotoxina; LTb, lymphotoxinb; AID, Activation-induced cytidine deaminase; CXCL, C-X-C motif chemokine ligand; FcRL4, Fc receptor-like 4.
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costimulatory signal is important for B cells to overcome
inhibitory checkpoints. TLR and CD40 on B cells are mainly
responsible for providing costimulatory signals. In RA, BCR
signaling has been proved to be involved in the development of
autoreactive B cells (15). CD40L (CD40 ligand) on the activated
T cell membrane will promote the formation of memory B cells
and long-lived plasma cells. Without the co-stimulation of CD40
or other receptors, only activating the BCR signal will lead to B
cell apoptosis. CD40L is significantly up-regulated in T cells in
RA, and the level of soluble CD40L is correlated with
autoantibody titers and disease activity in RA patients (16, 17).
Clinical trials have shown that VIB4920 (a CD40L inhibitor) can
inhibit the activation and differentiation of B cells and reduce the
disease activity of RA patients (18). In addition, B cells can be
activated in a T cell-independent manner by dual stimulation of
BCR and TLR. TLR recognizes pathogen-associated molecular
patterns (PAMP) and damage-associated molecular patterns
(DAMP). TLR-7 and TLR-9 are necessary for the production
of anti-RNA and dsDNA autoantibodies, respectively (19, 20).
Studies have confirmed that the expression of TLR10 on B cell
subsets in RA patients is related to disease activity, but the effect
of TLR-10 on B cells needs further research (21).

BAFF and APRIL
B-cell activating factor (BAFF) and A proliferation-inducing
ligand (APRIL) are two members of the TNF superfamily.
They have similar structures and are necessary for the growth
and development of B cells (22, 23). BAFF and APRIL
correspond to three types of receptors: B cell maturation
antigen (BCMA), transmembrane activator and CAML
interactor (TACI), BAFF-receptor (BAFF-R). BAFF-R is
Frontiers in Immunology | www.frontiersin.org 3
expressed on almost all B cells, and its importance for the
survival of B cells is far greater than the other two receptors.
Excessive BAFF in peripheral blood promotes the survival of
autoreactive B cells and the production of autoantibodies (24).
Studies have shown that compared with healthy individuals, the
levels of BAFF and APRIL in the peripheral blood of RA patients
are significantly higher; the levels of BAFF and APRIL in the
synovial fluid of RA patients are also higher than those in the
serum (25). BAFF and APRIL are constitutively expressed by
various types of cells (including neutrophils, follicular dendritic
cells, macrophages, and fibroblast-like synoviocytes) in RA
patients, and their expression will be significantly increased in
the inflammatory environment (25). The serum BAFF level of
RA patients is positively correlated with the RF titer of
seropositive RA patients, indicating that BAFF plays a key role
in the occurrence or continuation of the disease (26). In the
presence of BAFF, TLR ligands will promote B cell activation,
class switching, somatic hypermutation and differentiation into
plasma cells, leading to the production of harmful autoantibodies
(27, 28). As a homologous of BAFF, APRIL can cause the
accumulation of plasma cells in the joints and further increase
the production of inflammatory cytokines such as TNF-a, IL-1
and IL-6 (29). Zhang LL et al. found that BAFF can promote B
cell activation and differentiation through the NF-kB pathway,
leading to the production of autoantibodies and inflammatory
cytokines, and ultimately causing bone erosion and destruction
in RA patients (26). In addition, inhibiting the expression of
BAFF receptors will significantly reduce the proportion and
number of B cells and the level of anti-collagen IgG in
collagen-induced arthritis (CIA) mice, ultimately leading to a
reduction in joint inflammation (30).
A B

FIGURE 2 | B cell checkpoints in RA. B cell checkpoints provide signals for the survival, development, differentiation, inhibition and other physiological processes of
all B cells. (A) stimulatory checkpoint. (B) inhibitory checkpoint. BCR,B cell receptor; CD40L, CD40 ligand; BAFF, B cell activating factor; BAFFR, B cell activating
factor receptor; DAMP, damage- associated molecular pattern; PAMP, pathogen- associated molecular pattern; FcgRIIb, Fc gamma receptor IIb; IL-21R, IL-21
receptor; IL-6R, IL-6 receptor; PD1, programmed cell death 1; CTLA4, cytotoxic T lymphocyte-associated antigen-4.
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IL-6
IL-6 was initially identified as a B cell growth factor and plasma
cell differentiation factor, and was mainly produced by B cells
and macrophages in the synovial fluid of RA patients (31, 32).
Compared with healthy individuals, the concentration of IL-6 in
serum and synovial tissue of RA patients is increased. In RA,
increased serum concentration of IL-6 is associated with joint
damage, which may be because IL-6 is involved in the promotion
of osteoclast formation (33). Blocking IL-6 with tocilizumab
(anti-IL-6 receptor (IL-6R) monoclonal antibody) can inhibit
IgD-CD27- memory B cells and significantly improve the clinical
symptoms of RA patients (34, 35).

IL-21
The cytokine IL-21 is produced by multiple helper T cell subsets,
and has key functions in B cell activation, proliferation,
differentiation, affinity maturation and antibody production. IL-
21 drives the pro-inflammatory response by promoting B cell
activation and expansion. Compared with healthy individuals, the
concentration of IL-21 in the synoviumand serumofRApatients is
significantly increased (36). In addition, the proportion of IL-21R+

B cells inRApatients is also significantly higher than that in healthy
people (37). In germinal center, IL-21 secreted byT follicular helper
cells (Tfh) activates AID to regulate class switching of B cells and
promote their differentiation into memory B cells and plasma cells
(38). Therefore, blocking IL-21 will lead to the reduction of T cell-
induced B cell proliferation and differentiation, and reduce the
inflammatory response. In addition, IL-21R knockout mice are
resistant to induction of CIA, indicating that IL-21 signaling in B
cells is essential for the development of CIA (39). Treatment of CIA
mice with IL-21R.Fc fusion protein can reduce their clinical signs,
antibody levels and IL-6 levels, which also proves the important role
of IL-21 in the development of CIA (40). New research shows that
IL-21 can increase the binding of specificity protein 1 and IL21R
promoter in B cells, leading to enhanced B cell response in RA
patients (41). Since IL-21 promotes the function of B cells in RA
patients through multiple mechanisms, targeting IL-21 as a
treatment for RA may be valuable in the future.

FcgRIIb
Fc gamma receptor IIb (FcgRIIb) is an inhibitory receptor that can
inhibitBCR-mediated signal transductionandavoidexcessiveBcell
activation (42). When BCR signal is activated by antigen, FcgRIIb
bound to BCR can further activate tyrosine kinase (Lyn) and
immunoreceptor tyrosine based inhibitory motif (ITIM), and
then recruit tyrosine phosphatase-1 (SHP-1) to inhibit signal
downstream of BCR (43). Related studies have shown that
FcgRIIb helps prevent autoimmunity, and mutations in its genetic
locus are related to RA (44). Hu C et al. found that YSTB (Yishen-
tongbi decoction) can inhibit the excessive activation of B cells by
activating the FcgRIIb/Lyn/SHP-1 pathway, thereby reducing the
joint inflammation in CIA rats (45).

Other Checkpoints
Other checkpoints, such as CD19, cytotoxic T lymphocyte-
associated antigen-4 (CTLA4), programmed cell death 1
Frontiers in Immunology | www.frontiersin.org 4
(PD1), also play important roles in the pathogenesis of B cells
in RA (2, 46). As our understanding of their pathogenic
mechanism gradually improves, these receptors can provide
new targets for the future treatment of RA.
B CELL TOLERANCE CHECKPOINTS

B cell tolerance checkpoints are mainly used to study self-reactive
B cells, which refer to sites that regulate B cell tolerance and
control the number of self-reactive B cells in the body during the
development of B cells. These sites are distributed in the bone
marrow, peripheral blood and germinal centers, but they have
not been studied clearly. First of all, when the pre-B cells of the
bone marrow develops to the immature B cells, they will be
checked by the first tolerance checkpoint. Through clonal
deletion, receptor-editing, anergy and other mechanisms, most
of the autoreactive B cells in the bone marrow are eliminated
(47). After immature B cells leave the bone marrow, they
undergo a second tolerance checkpoint when they differentiate
from new emigrant/transitional B cells into mature naive B cells
in the blood and spleen Inspection. Through regulatory T cells to
provide inhibitory signals and other mechanisms, the number of
self-reactive B cells is further reduced (48). The mature naive B
cells are activated after being stimulated by antigens, and the
activated autoreactive B cells are corrected through co-
stimulatory signals provided by T helper cells (T helper cells)
and follicular dendritic cells (FDC) or somatic hypermutation
(SHM) in the germinal center, thereby further reducing the
production of autoreactive memory B cells and plasma cells
(49, 50). However, some autoreactive B cells in RA patients have
not been corrected after SHM. After they differentiate into
plasma cells, they will secrete high-affinity ACPA and other
autoantibodies, so they are more pathogenic (50, 51). The study
found that compared with healthy individuals, the proportion of
autoreactive new emigrant/transitional B cells and mature naive
B cells in the peripheral blood of RA patients was significantly
increased, indicating the central and peripheral B cell tolerance
checkpoints of RA patients have been impaired (Figure 3).

Current research shows that ACPA-specific B cells and RF-
specific B cells are the two main types of autoreactive B cells in
RA (52). Mahendra et al. successfully isolated CCPpos and
CCPneg B cells in the peripheral blood of RA patients and
performed transcriptome sequencing (53). They found that
compared with CCPneg B cells, CCPpos B cells highly expressed
IL-15Ra, which may be a future therapeutic target for
autoreactive B in RA patients (53). Germar et al. found that
compared with CCP2neg B cells, CCP2pos B cells express high
levels of CD40 and C5aR1 on the surface (54). C5aR1 may also
be the surface markers of ACPA-specific B cells, but the sample
size needs to be expanded for further confirmation. Tetramer
technology is currently a good method for isolating autoreactive
B cells in RA patients, which is beneficial to further research on B
cell tolerance in RA patients in the future. The current research
progress is limited to several mechanisms of how B cells escape
the peripheral B cells tolerance checkpoint. The future research
September 2021 | Volume 12 | Article 750753
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direction is to further clarify the mechanism of B cell tolerance
checkpoint damage and to find biomarkers that distinguish
between autoreactive B cells and non-autoreactive B cells,
which will provide the basis for precise depletion of self-
reactive B cells to treat RA.
B CELLS IN THE PATHOGENESIS OF RA

The functions of B cells, including antigen presentation, cytokine
secretion and autoantibody production, are all related to the
pathogenesis of RA (Figure 4).

Antigen Presentation
There are three main types of antigen-presenting cells in the
human body: dendritic cells (DC), macrophages, and B cells.
APC can rapidly endocytose, process and present antigens to
CD4 + helper T cells to cause related immune responses. B cells
are essential APCs in proteoglycan-induced arthritis (PGIA). In
the early stage of CIA, autoreactive B cells may trigger or
exacerbate the disease by activating autoreactive T cells. As the
number of autoreactive B cells increases during inflammation,
these B cells may play an increasingly important role in the
activation of autoreactive T cells. In the PGIA model, PG-specific
B cells are necessary to activate autoreactive T cells. In the
Frontiers in Immunology | www.frontiersin.org 5
absence of PG-specific B cells, the PG-specific T cells in the
modeled mice cannot be activated, and eventually arthritis will
not develop (55). Besides, citrullinated proteins are also major
autoantigens that affects RA disease progression. Previous
studies indicated that HLA-DRB1 alleles may bind citrullinated
peptides and present them to T helper cells specific for
citrullinated proteins (56). However, further researches show
increased citrullination of self-antigens do not improve binding
affinity for HLA-DR alleles and there is no evidence shows that
citrullinated peptides preferentially bind to HLA-DR alleles (57,
58). Auger et al. found HLA-DR alleles could bind to PAD4 (an
enzyme that binds and citrullinates multiple proteins) and use it
as a carrier to internalize and process the PAD4-citrullinated
protein complex, and present the PAD4 peptides to T helper
cells, which could eventually lead to the production of IgG
antibodies to multiple citrullinated proteins (59).

In RA, B cells, as APCs, mainly present their own antigens to
CD4+T helper cells. CD4+ helper T cells are divided into
follicular helper cells (Tfh) and peripheral helper cells (Tph).
Compared with healthy individuals, Tfh cells and Tph cells in the
synovium and peripheral blood of RA patients are significantly
increased. Tfh cells and Tph cells can secrete CXCL13 and IL-21,
and the latter is very important for the differentiation of B cells
and the production of autoantibodies (60–62). After B cells
present antigens to Tfh cells, Tfh cells can promote the affinity
FIGURE 3 | B cell tolerance checkpoints in RA. B cell tolerance checkpoints are “checkpoints” to reduce the number of autoreactive B cells in RA patients. After
these checkpoints are impaired, a large number of autoreactive B cells will accumulate in RA patients and cause the production of autoantibodies such as RF and
ACPA. HSC, hematopoietic stem cells; PC, plasma cells.
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maturation of B cells. Several studies have observed that the
proportion of CD4+ Tfh cells is positively correlated with serum
ACPA titer in RA patients (63–65).

Cytokine Secretion
In the synovium of RA patients, there is a complex network of
cytokines, which are closely related to the occurrence of the
disease. B cells in the peripheral blood of RA patients can secrete
a variety of different cytokines to participate in bone destruction,
including: TNF-a, IFN-g, IL-6, IL-1b, IL-17 and IL-10 (66).
Compared with ACPA negative RA patients, ACPA positive RA
patients have significantly higher levels of IL-1b, CCL20, IL-17F
and IL-10 in synovial fluid (67). After TLR9 and CD40 are
activated, the amount of TNF-a produced by the B cells of RA
patients is higher than that of healthy individuals (68). TNF-a
can increase the expression of RANKL by B cells in the presence
of IL-1b, thereby promoting the formation of osteoclasts (69).
Sun W et al. found that B cells can also inhibit the differentiation
of osteoblasts by producing TNF-a and CCL3 to inhibit bone
Frontiers in Immunology | www.frontiersin.org 6
formation in RA patients (70). IL-6 derived from B cells can
promote its own proliferation and exert pleiotropic effects on T
cells and other cells (71). RANKL is mainly secreted by memory
B cells expressing Fc receptor like 4 (FcRL4) in the joints of RA
patients, but these cells have low plasma cell differentiation
potential (72, 73). In vitro experiments have shown that
RANKL secreted by B cells can promote the differentiation of
monocytes into osteoclasts, leading to bone damage in RA (11).
IFN-g secreted by B cells can maintain PGIA by promoting the
production of autoreactive T cells and Tfh (74, 75). Kristyanto H
et al. found that ACPA-positive B cells in the blood and synovial
fluid of RA patients could secrete the chemokine interleukin 8 to
attract neutrophils to the site of inflammation (76).

Regulatory B (Breg) cells are a type of B cells that exert
immunosuppressive functions. In contrast to pro-inflammatory
B cell responses, Breg cells are mainly responsible for the
production of anti-inflammatory cytokines such as IL-10, TGFb
and IL-35. Breg cells can inhibit disease progression in RA, and the
decrease in their number is related to the increase in disease
FIGURE 4 | The immunopathogenic role of B cells in rheumatoid arthritis. During the onset of RA, B cells can promote the activation, proliferation, and differentiation
of other cells such as T cells, monocytes, and osteoclasts in the synovium by providing cytokines, autoantibodies and other mediators. TCR, T cell receptor; MHC II,
major histocompatibility complex class II; TNF-a, tumor necrosis factor-a; FcgR, Fcgamma receptors; AREG, amphiregulin; RANKL, receptor activator of nuclear
factor kappa-B ligand; Pg, Porphyromonas gingivalis; Aa, Aggregatibacter actinomycetemcomitans; Pm, Proteus mirabilis; EBV, Epstein-Barr virus; PC, plasma cells.
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activity of RA patients (77, 78). Human Breg cells are mainly
enriched in transitional (CD19+CD24hiCD38hi) and memory
(CD19+CD24hiCD27+) B cells (79). CD19+CD24hiCD38hi B cells
can inhibit the production of inflammatory factors such as IFN-g
and IL-21 by T cells in RA patients, while reducing the production
of ACPA (80, 81). In addition, CD19+CD24hiCD27+ B cells
derived from peripheral blood also play an important role in
immune regulation and participate in inflammatory response (82).
TGFb is produced by some other Breg cells and also regulate T cell
activity (83). In 2014, Shen P et al. described a group of Breg cells
that suppress autoimmunity and secrete IL-35 (84, 85). There are
two main regulatory B cell populations in mice: transitional B cells
(CD19+CD21hiCD23hiCD1dhi) have been shown to prevent
arthritis (86), and B10 B cells (CD19+CD5+CD1dhi) has been
shown to maintain immune tolerance by inhibiting Th1/Th17
response and promoting Treg cell production in murine arthritis
(87). Breg cells play an important role in alleviating the
inflammatory response in RA patients, and how to restore or
enhance the immunosuppressive function of Breg cells in RA
patients still needs further research.

Autoantibody Production
Autoantibodies are mainly secreted and produced by
autoreactive B cells after they differentiate into plasma cells.
The cross-reactivity of some post translational modification
proteins and foreign antigens may drive the expansion of
autoreactive B cells in RA (88). Current studies have confirmed
that microorganisms from the intestines and lungs may induce
the onset of RA. These microorganisms include Porphyromonas
gingivalis (Pg) (89, 90), Aggregatibacter actinomycetemcomitans
(Aa) (91), Proteus mirabilis (Pm) (92) and Epstein-Barr virus
(EBV) (93). The autoantibodies of RAmainly include RF, ACPA,
anti-modified citrullinated vimentin antibody, anti-
carbamylated protein antibody, anti-PAD-4 antibody, anti-GPI
antibody and so on (94). Many years before the onset of RA,
autoantibodies such as RF and ACPA appeared in the patient’s
serum (95). However, ACPA-specific B cells and RF-specific B
cells have different developmental trajectories: ACPA-specific B
cells undergo more rounds of germinal center reactions than RF-
specific B cells (96). Compared with RF-specific B cells, ACPA-
specific B cells have a higher proportion of somatic
hypermutation and class switching (96). ACPA is present in
approximately 70% of RA patients (97, 98), and compared with
seronegative RA patients, patients positive for RF or ACPA have
more severe disease progression (99, 100). ACPA is not limited
to recognize citrullinated protein, but can also cross-react with
acetylated and carbamylated proteins (88, 101, 102).

Autoantibodies such as RF and ACPA participate in the
pathogenesis of RA through multiple mechanisms. In RA,
immune complexes containing RF or ACPA activate the
complement pathway, leading to the production of C5a and
membrane attack complex, both of which can cause damage to
the joints (103). The immune complex formed by RF and
autoantigens can also induce osteoclast differentiation through
Fcg receptors (FcgR) to mediate bone destruction in RA patients
(104). ACPAs are serum markers for the diagnosis of RA, and
Frontiers in Immunology | www.frontiersin.org 7
Approximately 90% of ACPA-IgG molecules carry N−glycans on
the Fab-domain (105). In contrast to Fc glycans, these N−glycans
on the Fab-domain are highly sialylated (106). N−glycans on the
Fab-domain of ACPA-IgG can reduce the affinity to non-self
antigens to provide survival advantages for autoreactive B cells
(107). Sehnert et al. found that increasing the sialylation of IgG
antibodies can reduced the number of CD138+/TACI+ plasma
cells and CD19+ B cells in CIA mice to relieve their joint
inflammation (108). In addition, the ACPA response in RA
patients was characterized by extensive somatic hypermutation
and limited avidity maturation (109, 110). Despite these
advances, we are still uncertain how these characteristics are
related to the process that eventually leads to arthritis. Mahendra
et al. found that the combination of amphiregulin (AREG)
produced by B cells and ACPA will further lead to osteoclast
differentiation, which is the first comprehensive study on the
transcriptome profile of ACPA-specific B cells and will serve as a
resource to further investigate the role of autoreactive B cells in
RA (53). Understanding the role of ACPA Fab-domain glycans
in the development of ACPA-expressing B cells, together with
the transcriptional profile of ACPA-specific B cells, will help us
develop new therapies targeting autoreactive B cells in RA.
B CELLS IN THE PREVENTION OF RA

In addition, we must be aware that not all B cells can promote the
pathogenesis of RA, and that some antibodies produced by B
cells have a preventive and protective effect on RA, such as
naturally arising antibodies (NAbs) (111, 112), therapeutic anti-
citrullinated protein antibodies (tACPAs) (113). In patients with
autoimmune disease, higher levels of NAbs correlate with fewer
cardiovascular events (114). A study in 2012 pointed out that
compared with RA patients with high levels of IgM anti-
phosphorylcholine NAbs, patients with low levels of NAbs had
higher frequency of cardiovascular events within 5 years (112). In
the experimental models, IgM NAbs can significantly reduce the
clinical scores of their damaged joints and even prevent the
development of inflammatory arthritis (114). The above studies
fully demonstrate that antibodies produced by some B cells have
a protective effect on RA. The capacity for NAbs influence
pathogenesis of RA in people has not yet been directly
examined and it remains to be further studied. tACPAs are
also protective antibodies that specifically bind to citrulline at
position 3 (Cit3) in histone 2A (citH2A) and 4 (citH4) (113).
Compared with pathological ACPAs, tACPAs are extremely rare
and extremely inferior in number (115). Therefore, ACPAs in
RA patients mainly play pathogenic roles. A new research shows
that tACPAs can diminish NET (neutrophil extracellular traps)
release and potentially initiate NET uptake by macrophages in
vivo, thereby reducing joints damage and disease progression in
CIA mice (115). tACPAs opens up new avenues for the therapies
for RA, but we still don’t know the difference between the B cells
that produce pathological ACPA and tACPA, which may be very
important for us to understand the role of B cells in
RA development.
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THE PROSPECT OF TREATING RA WITH B
CELLS AS A TARGET

Targets B cell Surface Receptors
The use of Rituximab to deplete B cells is currently the most widely
used treatment for treating RA with B cells as a target. CD20 is
specifically expressed on the surface of 95% of human B cells.
Rituximab targeting CD20 can deplete all B cells except pro-B cells
and plasma cells (116, 117). RA patients treated with Rituximab
showed positive clinical responses such as decreased synovial B
cells, plasma cells, and IgG (118). However, pathogenic B cells and
protective B cells treated with rituximab have been eliminated,
which will cause a huge immunosuppressive effect in RA patients
(Figure 5).

CD38 is mainly expressed on plasmablasts and plasma cells. In
vitro experiments show that Daratumumab (an anti-CD38
Frontiers in Immunology | www.frontiersin.org 8
monoclonal antibody) removes plasma cells and plasmablasts in
PBMC of RA patients in a dose-dependent manner (119). Studies
have reported that daratumumab has been successful in the
treatment of 2 patients with refractory systemic lupus
erythematosus, but the efficacy and safety of Daratumumab in the
treatment ofRApatients still need tobe confirmed (120).Abatacept
(CTLA-4Ig) has been successfully used to treat autoimmune
diseases and has been approved for the treatment of RA. By
binding to CD80 and CD86 on the surface of B cells, abatacept
inhibits the co-stimulation and activation of T cells, leading to the
down-regulation of inflammatory mediators. Studies have shown
that Abatacept can inhibit the expression of CD80/CD86 on the
surface of B cells in the peripheral blood of RA patients, while
reducing the number of plasma cells and the level of serum IgG
antibodies (46). In addition, the proportion of B cells in the
synovium and ACPA-specific switched memory B-cells in the
FIGURE 5 | Targeting B cells for current and potential therapeutic approaches in RA. (A) Therapeutic approaches already approved in human. (B) Therapeutic
approaches under evaluation in human. (C) Potential therapeutic approaches (only tested in mouse model of CIA or in experiments in vitro). Figure 5
summarizes the drugs or cells that target B cells to treat RA. These drugs or cells are either approved in the clinical trial phase of RA, or we believe that they
may be used for RA treatment. Jaks, Janus kinases; IL-21R, IL-21 receptor; IL-6R, IL-6 receptor; BAFFR, B cell activating factor receptor; BCMA, B cell
maturation antigen; TACI, transmembrane activator and calcium modulator; BTK, Bruton’s tyrosine kinase; anti-FITC CAR-T cell, antifluorescein isothiocyanate
chimeric antigen receptor T cells.
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blood serum of RA patients decreased significantly after receiving
Abatacept treatment (46, 121). ACPA-specific B cells are the main
type of autoreactive B cells in RA patients. Co-culture experiments
in vitro have shown that anti-FITC CAR-T cells can eliminate
FITC-labeled ACPA-specific B cells (122). Whether this clearance
effect exists in the body remains to be confirmed, but that study
provides a new idea for the future use of CAR-T cell therapy to
deplete autoreactive B cells to treat RA.

Targeted B Cell Checkpoints
Bruton’s tyrosine kinase (BTK) is a cytoplasmic tyrosine kinase
expressed in B cells, which plays a key role in BCR signal
transduction and in the development and maturation of B cells
(123). In the model of arthritis, BTK-deficient mice and BTK
inhibitor-treated rodents showed reduced RA progression (124).
A randomized, double-blind, phase II clinical trial of the BTK
inhibitor Fenebrutinib in the treatment of RA patients (n = 578)
showed that compared with the placebo group, the Fenebrutinib
treatment group (1×150 mg/day, 2×200 mg/day) has a significant
clinical effect (125). Other BTK inhibitors, such as Branebrutinib,
are in phase 2 clinical trials for the treatment of RA patients.
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor
that plays an important role in cell resistance to oxidative
damage. Moon et al. found that sulforaphane can inhibit B cell
differentiation and antibody formation to reduce joint
inflammation after activating Nrf2 in CIA mice (126).

Mesenchymal stem cells (MSCs) are a type of stem cells that
have a wide range of sources, multiple differentiation potentials
and immunomodulatory functions. They have been used in
multiple clinical trials to treat RA (127). Experiments in vitro
show that adipose tissue-derived MSCs co-cultured with
peripheral blood B cells of RA patients can inhibit the
proliferation of B cells and reduce the secretion of ACPA (128).
Clinical trials have shown that MSCs can reduce joint
inflammation by reducing the proportion of CD19+B cells and
serum BAFF, APRIL and RF levels in RA patients (129). MSCs
mainly act by secreting extracellular vesicles (including exosomes,
Exos and microvesicles, MVs). Exos andMVs reduce the potential
immune-related risks ofMSCs and are a good substitute forMSCs.
Cosenza et al. observed thatMSC-derived Exos (with a diameter of
less than 150 nm) can effectively reduce joint inflammation in CIA
mice, including reducing the proportion of plasma cells and
increasing the proportion of Breg cells in the peripheral blood,
while reducing the level of IL-6, IL-1b, autoantibodies and
increasing the level of IL-10 in the serum (130). Whether Exos
derived from MSC has a similar effect on B cells in RA patients
remains to be confirmed. In short, MSCs and Exos derived from
MSCs have broad application prospects in reducing joint
inflammation and repairing the immune function of B cells in RA.

Targeting B Cell Related Cytokines
The use of TNF inhibitors can significantly reduce the level of IgD-

CD27- B cells, while increasing the level of Breg cells in RA
patients (35, 131). Belimumab and Tabalumab are two anti-BAFF
biological agents. Clinical studies have shown that, compared with
the placebo group, Belimumab shows better efficacy in the
treatment of RA patients with RF+, ACPA+, DAS28>5.1 (132).
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In addition, compared with the placebo group, the number of RA
patients treated with 120 mg of Tabalumab was significantly
higher when the ACR20 and ACR50 response rates were
reached (133). Long-term treatment with Tabalumab can cause
a decrease in total B cells, mature naive B cells, and switched
memory B cells in RA patients (134). However, the phase III
clinical trial of Tabalumab in the treatment of RA was forced to
stop because the interim results did not meet the expected efficacy
(135). RA patients who received Atacicept (a biological agent that
blocks the combination of BAFF/APRIL and TACI) showed a
significant reduction in serum anti-RF levels, but in phase II
clinical trials, Atacicept did not show significant clinical
improvement compared with the placebo group (136).

Targeting IL-6 has shown efficacy in the treatment of various
autoimmune diseases. At present, the anti-IL-6R monoclonal
antibodies (tocilizumab and sarilumab) have been approved for the
treatment of RA and have shown good efficacy (137). Tocilizumab
may reduce the serum ACPA titer of RA patients by increasing the
ratio of post-switch memory B cells (IgD-CD27+)/mature naive B
cells (138, 138). In a randomized, double-blind clinical trial for RA,
NNC114-0005 (anti-IL-21 Monoclonal antibodies) can reduce the
disease activity of RA patients and neutralize IL-21 in their bodies
(139). Based on the results of that clinical trial, we can further explore
the effects of IL-21 as a target in the treatment of RA.

Janus Kinase (JAK) mediates signal transduction through IL-6R
and many other transmembrane receptors (cytokine receptors, G
protein-coupled receptors, receptor tyrosine kinases). JAK
inhibitors can block the effects of pro-inflammatory cytokines on
B cells (140), and five JAK inhibitors (tofacitinib, upadacitinib,
baricitinib, peficitinib, filgotinib) have been approved for the
treatment of RA. Tofacitinib and upadacitinib inhibit B cell
proliferation and activation by blocking signal transduction
mediated by JAK1 and JAK3 (141–143). The use of tofacitinib
significantly reduce the levels of RF in the peripheral blood of RA
patient (144). Baricitinib can inhibit the differentiation of B cells into
plasmablasts and inhibit the production of IL-6 (145). Similar to
tofacitinib, baricitinib reduces the expression of BAFF in RA
synovial fibroblasts, thereby locally inhibiting B cell activation in
joints (146). Filgotinib directly inhibits human B cell differentiation
and IgG production. After RA patients received filgotinib treatment,
the representative of B cell chemotaxis [chemokine (CXC motif)
ligand 13, CXCL13], survival and activation (BAFF), differentiation
(IL-2, IL-5, IL-7, IL-21) are significantly reduced (147). In short,
JAK inhibitors can treat RA by inhibiting B cell activation,
proliferation and differentiation, but further studies are still
needed to clarify the exact mechanism of action of JAK inhibitors
on B cells and other immune cells.
CONCLUSION

More andmore data show that B cells promote the pathogenesis of
RA through a variety of mechanisms. As our understanding of B
cells in the pathogenesis of RA gradually improves, we must realize
that not all B cells in RA patients are pathogenic. On the one hand,
we need to continue to study themechanism bywhich autoreactive
B cells escape the B cell tolerance checkpoints, so as to further
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understandhowpathogenicB cells are produced inRApatients.On
the other hand, how to distinguish between pathogenic B cells and
protective B cells will become an important direction for precise
treatment of RA. In the future, it is very likely that therapies against
B cells that produce autoantibodies will be developed to precisely
target pathogenic B cells.
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