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A B S T R A C T   

Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its 
structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a 
biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In 
this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the 
mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen 
different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug syner-
gism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper 
cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical 
equation determined possible doses to be used in human beings, supporting that sertraline could be explored in 
clinical trials as a TCTP-inhibitor.   

Introduction 

About nine million people die from cancer each year, being consid-
ered the second leading cause of death in the world [1]. In this context, 
non-cancer drugs are thoroughly reviewed for possible effects on cell 
proliferation, aiming to reposition them for therapeutic use in clinical 
practice [2,3]. A group that has been recurrently the target of studies 
with encouraging results are the psychotropic drugs [4–7]. Among them, 
the selective serotonin reuptake inhibitor (SSRIs) sertraline stands out 
[8,9]. 

Sertraline hydrochloride was approved in 1991 for the treatment of 
various psychiatric disorders [10], nowadays it is considered first-line 
for managing depression in America [11]. Afterwards, it was in 1993 
that Adam Telerman and Robert Amson set the starting point for 
discovering the anti-tumor properties of this antidepressant [12]. 
Structurally, its molecule was found to be similar to other drugs capable 
to inhibit Translationally Controlled Tumor Protein (TCTP), a biological 
compound present in eukaryotic stem cells in varying amounts [13]. A 
great number of biological activities are credit to TCTP, including 

anti-apoptotic action and involvement in cell stress pathways [14]. 
Furthermore, years after its discovery, Telerman et al. [12] identified 
this protein as an important protagonist in the tumor reversal process. 

Because of the importance of this protein in maintaining cell death 
and survival pathways in addition to evidence linking it to cancer 
pathophysiology [15–18], it was proposed that reducing TCTP levels 
could be a promising target in cancer therapy [19]. Because of it ability 
of secreting histamine, antihistamines and other structuraly simmilar 
molecules such as antipsychotics and antidepressants were used in an 
attempt to inhibit TCTP. Of the drugs tested, sertraline obtained the best 
results, increasing the number of reversible clones in tumor lines by 
30%, a result attributed to the down-regulation of TCTP [19]. In addi-
tion, experimental studies support that the antidepressant is effective in 
neoplasms therapeutics as it has specific antitumor characteristics [8, 
20, 21] whereas case reports suggested that the use of sertraline could 
improve the clinical status of patients and even induce tumor remission 
[9,22]. 

Therefore, with evidence that sertraline can play an important role as 
a chemotherapeutic agent, the present study aimed to provide a short 
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overview of the four decades of tumor reversal studies, including the 
discovery of TCTP, and to map and synthesize the mechanisms of anti-
tumor action attributed to sertraline, a known TCTP-inhibitor, which are 
essential to support future drug repositioning trials. 

TCTP: a viable target for cancer treatment 

TCTP is a protein which gene (tpt1) is composed of approximately 
4000 nucleotides [23] and is present in eukaryotic stem cells [13]. It’s 
structure was first described by Susan MacDonald in 1995, being called 
the histamine-releasing factor (HRF), because of its ability to release 
histamine [24]. Subsequently, other biological activities were identified: 
maintenance of homeostasis and cell survival (anti-apoptotic action and 
involvement in cell stress pathways), cell cycle and development (action 
on microtubules and embryonic development), regulation of cell 
growth, protein synthesis and degradation, as well as extracellular ac-
tions as a signaling molecule in immunological reactions [14]. Few years 
later, Telerman et al. [12] identified TCTP and SIAH-1 as important 
protagonists in the tumor reversal process - characterized by the ability 
of some neoplastic cells to revert their malignant phenotype to one 
closer to normal. The tumor reversion triggered by such molecules can 
be summed upby three distinct mechanisms: (1) inhibition of tpt1/TCTP 
expression, (2) activation of the SIAH-1 pathway and (3) inhibition of 
messenger RNA synthesis in genes that decode ribosomal proteins [25]. 

TCTP is linked to apoptosis thought the following mechanisms: (1) 
cooperation with other proteins, (2) prevention of apoptosis and (3) p53 
antagonism [14] First, the cooperation occurs due to the interaction of 
TCTP with proteins of the Bcl-2 family (such as Bcl-xl), inhibiting the 
apoptosis of cells [26–30]. The prevention of apoptosis occurs by 
binding a specific TCTP site to a receptor on the mitochondrial surface, 
which competes with another pro-apoptotic protein, called Bax. Thus, 
TCTP antagonizes Bax and prevents activation of apoptosis [31]. In 
addition, TCTP can also activate Apaf-1, a protease of the apoptotic 
pathway that exhibits a site for protein binding, which would lead to 
inhibition of caspase-9 release, normally triggered by the stimulus of 
Apaf-1 [32]. 

TCTP is also related to p53 through a reciprocal antagonism [13]. 
TCTP reduces intracellular levels of p53 by modulating the activity of 
NUMB and MDM2, leading to proteasomal degradation of p53. Several 
forms of its regulation can occur as transcriptional repression, activation 
of protein kinase K (PKR) by the structure of TCTP RNA, followed by 
inhibition of TCTP synthesis, transcriptional activation of TSAP6 by p53, 
which leads to extracellular secretion of TCTP [13,18]. (See Fig. 1). 

Sertraline as a promising TCTP-inhibitor 

Because of the importance of TCTP for the maintenance of the path of 
cell death and survival and the evidences that links this protein to the 
pathophysiology of cancer [15–18], it was proposed that reducing its 
levels could be a promising target in cancer therapy [19]. Antihista-
mines and structurally similar molecules, such as antipsychotics and 
antidepressants were used to verify whether inhibition of TCTP 
expression would induce changes in the malignant phenotypes of 
different strains (colorectal, pulmonary and melanoma). Of the drugs 
tested, sertraline was the one that obtained the best results, therefore, it 
became one of the most studied drugs in tumor reversal models [19]. 

A specific lock-and-key interaction between sertraline and tpt1/ 
TCTP was described by Amson et al. [18], in which the antidepressant 
would directly bind to tpt1/TCTP, avoiding its interaction with MDM2. 
Thus, promoting the interaction of TCTP autoubiquitination with MDM2 
and p53, leading to MDM2 autoubiquitination and restoring p53 levels. 
Consequently, the reinstitution of p53 levels prevents its degradation 
[13,33–35]. 

Most of these findings were obtained during experimental studies, 
which sought to determine the antitumoral mechanisms and outcomes 
of administrating the antidepressant in tumor models. Fig. 2 and Table 1 

summarizes available studies, including research countries, types of 
neoplasm tested, settings and methods. Thirteen different types of 
neoplasms were assessed, on in vitro, in vivo, or observational studies. 
Breast cancer was the most investigated, representing 46.15% [13,21, 
35–38], whilst experimental studies with in vitro or in vivo approaches 
prevailed. Only one case report and one cohort study are published [22, 
39]. 

Sertraline antitumor action mechanisms 

Three proposed mechanisms are raised: apoptosis, autophagy, and 
drug synergism. Fig. 3 summarizes the mapping of these mechanisms 
from the studies, including the types of neoplasms and outcomes pre-
sented by them. 

Apoptosis 
By definition, it is the process of controlled cell death that physio-

logically regulates cell populations through intracellular activation of 
enzymes that degrade their own DNA [40]. Two pathways are described: 
intrinsic - which involves the B-cell lymphoma 2 (Bcl-2) family and the 
initiating caspases 2, 8, 9 and 10 [41,42]; and extrinsic - death initiated 
by receptor followed by the activation of the initiating caspases and 
finally the executors (3, 6 and 7) [43–45]. Different mechanisms and 
findings were related to it, including the inhibition of TCTP [13,19, 
33–35,46], interactions on the mTOR/Akt pathway [20,21,47,48], 
increased caspase-3 levels [26,33,46,49,50], increase on caspase-7 
levels [50], ionic changes related to Ca2+ [33,51], increased expres-
sion of tumor protein P53 (p53)[33, 52], inhibition of breast tumor 
initiating cells (BTIC)[36, 37] and decreased expression of Bcl-2 [26]. 

Autophagy 
Autophagy is considered a survival mechanism in times of nutrient 

deprivation when the cell undergoes continence stress, survives by 
cannibalizing itself and recycling the digested content through lyso-
somal enzymes [53]. The administration of sertraline was reported to 

Fig. 1. Sertraline-TCTP binding results in apoptosis and tumor reversal. 
Caption: Antitumoral mechanism of action of sertraline by preventing the 
degradation of p53 by TCTP and suppression of TCTP leading to tumor rever-
sion. Sertraline binds directly to tpt1/TCTP, avoiding its interaction with 
MDM2 and, thus, promoting the interaction of TCTP autoubiquitination with 
MDM2 and p53, leading to MDM2 autoubiquitination and thus, restoring p53 
levels. Consequently, restoring p53 levels prevents its degradation. TCTP en-
hances cell survival though cooperation with Bcl-xl (a protein from the Bcl-2 
family) and competition against Bax (pro-apoptotic protein which synthesis is 
coordinated by p53, the same way as TSAP6). Other regulatory pathways are 
represented: (1) transcriptional repression of TCTP by p53; (2) transcriptional 
activation of Siah1b by P53; (3) degradation of NUMB by the Siah1b-E3; and 
(4) modulation of NUMB though TCTP. Bcl-2, B-cell lymphoma 2; TCTP, 
translationally controlled tumor protein. 
Font: The Authors (2021). 
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induce autophagy in AML, lung, and prostate cancer [46,47,49] 

Drug synergism 
It is a drug interaction that increases the individual effect of a 

medication when taken together with another one. Regarding sertraline, 
15 different medications are cited as synergistic: doxorubicin [21,26, 
54], docetaxel [36,37], pterostilbene [55,56], the Coordinated Survival 
Paths Protocol (CUSP9) which involves nine medications (aprepitant, 
artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ri-
tonavir, sertraline) [22,34], thimerosal [38], dacarbazine [33], erlotinib 
[47], etoposid [21], olaparib [21], sorafenib [57], vilazodone [37], 
vincristine [26], TNF-related apoptosis-inducing ligand (TRAIL) [58] 
and XL413 [48]. 

As for the type of synergism mechanism, summation (additive) and 
potentiation are reported. Concerning summation mechanisms cyto-
toxicity [26,46, 56] mTOR action [21] and the inhibition of BTIC’s [36] 
are highlighted. These, taken together with chemotherapeutic drugs, 
would act in an additive manner aiming to destroy tumor cells. For 
potentiation, Drinberg et al. [54] suggested that sertraline inhibits 
ATP-binding cassette transporters (ABC), a family of proteins which are 
supposed to decrease intracellular concentrations of chemotherapies. 
Further interactions are still to be detailed. 

Outcomes of sertraline administration in tumor settings 

The most remarkable outcome of the administration of sertraline in 
tumor models is the reduction in tumor cell counts after sertraline 
intervention (Fig. 3). Other results are decreased sphere forming assay 
(SFA)[33, 35–37, 46, 50, 52, 55], shrunk of tumor masses [8,19,20,22, 
33,36,37], decreased relapse [21,36,54], decreased Marker of Prolifer-
ation Ki67 (MKi67) levels [33,37] and near complete remission of tumor 
[22]. 

At the present, only one study associated the administration of the 
SSRI with a decrease in time to relapse and an increase in MKi67 levels 
in ovarian cancer [39]. However, the population at this observational 
stage was composed mostly of patients with high-grade carcinoma with 
serous histology (76%), characteristics linked to the worst prognosis of 
the disease, whereas information on the period of administration or 
dosage of the drug were not provided. 

Discussion 

Drug repositioning offers the opportunity to identify new uses for 
substances already well established in clinical practice. Based on new 
tests and experimental research, they can reveal new targets and path-
ways to be explored further in clinical trials. When successful, this 

Fig. 2. Overview of included studies. 
Caption: (a) Study setting; (b) Neoplasm submitted to intervention with sertraline; (c) Population according to the approach; (d) Method. AML, acute myeloid 
leukemia; E, experimental; DMG, diffuse midline glioma; GBM, glioblastoma multiforme; OS, osteosarcoma. 
Font: The Authors (2021). 
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process can benefit the therapeutic field by saving time and resources, as 
well as providing a new therapeutic option for a particular disease. Our 
proposal was to map evidence that sertraline has the potential to be 
repositioned as a chemotherapeutic agent as for the probable antitumor 
action proposed by several studies. 

From the available literature, 13 different neoplasms exposed to 
sertraline on experimental or observational studies presented three main 
mechanisms of action: apoptosis, autophagy, and drug synergism. The 
antidepressant played an important role in shrinking tumor masses and 

reducing tumor cell counting. In this context, decades of tumor reversal 
studies stress that these findings are reliable, as the antidepressant has 
shown ability to inhibit TCTP (leading to increased p53 levels and tumor 
reversal) [12,19,25,33], modulate chemotherapeutical resistance [54] 
and exhibit proper cytotoxicity [59]. A timeline was drawn to illustrate 
the evolution of these decades of studies aiming to repurpose the anti-
depressant (Supplementary Material 1). 

As for the published studies, these generally involved some in vitro 
experimental stage, whereas the most reported outcome of that point 

Table 1 
Characteristics of included studies.  

N Citation Study aims Cell type Intervention Outcomes 

1 Amit et al. 
(2009) [23] 

Evaluate the effects of SSRIs compared 
to chemotherapy on human cells of 
lymphoma and AML 

Human cells of lymphoma 
and AML 

Cells were exposed to sertraline, doxorubicin 
vincristine and cyclophosphamide 

Synergism with doxorubicin 
and vincristine and 
apoptosis 

2 Amson et al. 
(2011) [13] 

Compare the effects of antihistamines 
drugs and SSRIs on human tumor cells 

Human cells of breast cancer Cells were exposed to antihistamines and 
SSRIs and had their growth rates and TCTP 
levels rated 

Apoptosis by TCTC 
inhibition 

3 Boia-Ferreira 
et al. (2017)  
[41] 

Evaluate the effects of sertraline on 
TCTP levels of melanomas 

Human cells of melanoma; 
rats 

Exposition of cells to sertraline, followed by in 
vivo evaluation 

Lower tumoral growth 
though apoptosis by TCTC 
inhibition 

4 Chinnapaka 
et al. (2020)  
[51] 

Evaluate the anti-prostate cancer 
steam cells (PCSC) targeting effects of 
sertraline on PCSC 

Human cells of PCSC Cells were cultured with sertraline at various 
doses. Then, cell studies were performed 

Apoptosis and autophagy by 
free radicals of H2O2, 
decreased TCTP and 
increased caspase 3 

5 Christensen 
et al. (2016)  
[49] 

Evaluate the effects of SSRIs on 
ovarian cancer cells and on overall 
survival of patients diagnosed with 
ovarian cancer 

Human cells of ovarian 
carcinoma mice; 733 
patients diagnosed with 
ovarian cancer 

Cells were subjected to a sertraline therapy, 
followed by in vivo evaluation. A retrospective 
analysis based on medical records checked the 
use of SSRIs and evaluated the progression of 
ovarian cancer on patients 

Cell proliferation of ovarian 
tumor cells and MKi67 
levels. SSRIs users had a 
shortened time until relapse 

6 Di Rosso et al. 
(2018) [38] 

Evaluate the effects of sertraline and 
fluoxetine on lymphomas growth in 
vivo 

Animal cells of lymphomas; 
mice 

Cells were injected subcutaneously on mice 
and drugs were administered 

Shrink palpable tumor 
masses through apoptosis 

7 Drinberg et al. 
(2014) [48] 

Evaluate the effects of sertraline on 
ovarian cancer 

Human cells of ovarian 
adenocarcinoma; mice 

Cells were injected subcutaneously on mice 
and drugs were administered 

Synergism with doxorubicin; 
tumor regression and 
increased survival 

8 Geeraerts et al. 
(2021) [36] 

Repurpose sertraline and thimerosal as 
inhibitors of tumoral growth 

Human cells of breast cancer 
and animal cells of AML; 
mice 

Exposition of cells to sertraline and thimerosal, 
followed by in vivo evaluation 

Synergism with thimerosal; 
inhibited tumor growth 

9 Gil-Ad et al. 
(2008) [8] 

Evaluate the effects of sertraline and 
paroxetine on colorectal cancer 
growth in vivo 

Human cells of colorectal 
cancer; mice 

Cells were inoculated on mice and drugs were 
administered 

Apoptosis by caspase-3 
pathway; shrink palpable 
tumor masses 

10 Gwynne et al. 
(2017) [34] 

Evaluate the effects of SSRIs on human 
cells of breast cancer 

Human cells of breast cancer; 
mice 

Exposition of cells to sertraline, followed by in 
vivo evaluation 

Synergism with docetaxel 
and vilazodone increasing 
apoptosis; inhibited tumor 
growth 

11 Hallett et al. 
(2016) [33] 

Evaluate the effects of SSRIs on animal 
cells of breast cancer 

Animal cells of breast cancer; 
rodents 

Cells were inoculated on rodents and SSRIs 
were administered 

Apoptosis through BTIC’s, 
leading to inhibited cell 
proliferation 

12 Huang et al. 
(2011) [50] 

Evaluate the effects of sertraline on 
human cells of prostate cancer 

Human cells of prostate 
cancer 

Cells were treated with sertraline and cell 
studies were performed 

Increased calcium influx, 
leading to apoptosis 

13 Jiang et al. 
(2018) [39] 

Evaluate the effects of sertraline on 
animal cells of lung cancer 

Animal cells of lung cancer; 
mice 

Cells were inoculated on mice and drugs were 
administered 

Increased tumor cells 
apoptosis though mTOR 
pathway and autophagy 

14 Kast et al. 
(2014) [42] 

Check new approaches to GBM, 
according to CUSP9 protocol 

Human cells of GBM Exposition of cells to drugs, followed by in vitro 
evaluation 

Increased life expectancy in 
GBM patients 

15 Kuwahara et al. 
(2015) [45] 

Compare the antitumor effects of SSRIs 
to SNRIs 

Human cells of liver cancer Cells were treated with SSRIs and SNRIs Apoptosis; reduced cell 
proliferation 

16 Li et al. (2017)  
[35] 

Identify the role of TCTP on tumor 
cells and mechanisms of inhibition 

Human cells of cervix cancer 
and breast cancer 

Cells were submitted to drugs and/or 
radiotherapy 

Apoptosis and decreased cell 
survival rate on cells treated 
with etoposide and sertraline 

17 Lin et al. (2010) 
[24] 

Verify if sertraline has antitumoral 
action 

Human cells of breast cancer 
and lymphoma; mice 

Exposition of cells to sertraline, followed by in 
vivo evaluation 

Synergism with doxorubicin; 
increased apoptosis through 
mTOR pathway 

18 Lin et al. (2013) 
[52] 

Evaluate the effects of sertraline on 
human OS cells 

Human cells of osteosarcoma Exposition of cells to sertraline Apoptosis through 
cytotoxicity 

19 Reddy et al. 
(2008) [22] 

Evaluate the effects of sertraline on 
human melanoma cells 

Human cells of melanoma; 
rats 

Exposition of cells to sertraline, followed by in 
vivo evaluation 

Apoptosis; shrinking of 
tumoral masses 

20 Salacz et al. 
(2017) [25] 

Report a novel anti-cancer treatment 
utilizing repurposed drugs (modified 
CUSP/MTZ) in a patient with H3 
K27M mutated diffuse midline glioma 
(DMG) 

Patient with H3 K27M 
mutated DMG 

First, laser thermotherapy was performed, 
followed by standard concurrent radiotherapy 
and temozolomide, followed by a modified 
CUSP including sertraline 

Near complete remission of 
enhancing tumor and steady 
clinical improvement 

21 Schmidt et al. 
(2013) [44] 

Investigate protocols that could 
benefit the treatment of GBM 

Human GBM cells Cell lines were tested with 465 pairs of drugs Synergism with 
pterostilbene  
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Fig. 3. Mapping of mechanisms of action, types of neoplasms and outcomes. 
Caption: Mapping of mechanisms of action including (a) drug synergism, (b) apoptosis, (c) autophagy; (d) Types of neoplasms submitted to intervention with 
sertraline; (e) Outcomes of the intervention. AML, acute myeloid leukemia; BTIC, breast tumor initiating cell; Bcl-2, B-cell lymphoma 2; CUSP9, Coordinated Survival 
Paths Protocol; DTIC, dacarbazine; GBM, glioblastoma multiforme; mTOR/Akt, mammalian target rapamycin/ protein kinase B; OS osteosarcoma; SFA, sphere 
forming assay; TCTP, translationally controlled tumor protein. 
Font: The Authors (2021). 
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was a diminished cell counting in comparison to the control group after 
sertraline intervention, as indicated by the reduction in SFA. This result 
was primarily related to apoptosis and has been directly attributed to 
TCTP antagonism in breast [35, 52], cervical cancer [35], colorectal 
cancer [19], GBM [34] leukemia [19], lung [19], melanoma [19,33] and 
prostate [46]. Another mechanism of action that supports this outcome 
was autophagy, reported in AML [49], on lung [47] and prostate [46]. 
Furthermore, several studies reported synergism between sertraline and 
other drugs in in vitro experiments in AML [26], breast cancer [21, 
35–38], cervix cancer [35], GBM [55,56], glioma [22], liver cancer [22, 
48], lung cancer [50,58], lymphoma [26], and melanoma [33]. Curi-
ously, Amit et al. [26] reported that sertraline revealed a superior 
antitumor effect in comparison to doxorubicin, vincristine, and cyclo-
phosphamide (p<0.015). However, the best outcomes were registered 
with the combination of the antidepressant with doxorubicin [26]. 

On the other hand, of eleven in vivo experimental models eight re-
ported that sertraline-treated animals had smaller tumor masses when 
compared to the control group [8,19–21,33,36,38,60]. In addition, three 
studies agreed with minimization of relapse in breast cancer [36], 
lymphoma [21], ovarian cancer [54], while two show a decrease in cell 
count when compared to the control group in lung cancer [47] and 
lymphoma [60]. The mechanisms of these results have been attributed 
to apoptosis through TCTP inhibition [19,33,46], regulation of TCTP 
levels through PI3-quinase/Akt/mTORC1 pathway [20,21,47,48], 

activation of apoptotic pathways [8], BTIC’s inactivation [36,37], 

autophagy [47] and drug synergism [8,19–22,33,36–38,47,48,50,54, 
57,58]. 

Regarding drug synergism, there are many reports that highlight 
superior outcomes of tumor cell counting reduction and tumor mass 
shrinkage in mixed schemes. Unfortunately, most of them do not 
describe the exact mechanism by which the synergism followed [21,26, 
35,47,56]. All in all, Kast et al. [34] and Salacz et al.[22] reported that 
repositioning the empirical use of sertraline in therapeutic regimens for 
GBM (such as CUSP9) was beneficial, attributing the increase in pa-
tient’s survival rates to these synergistic mechanisms. 

Apart from its mechanism of action, the repositioning of sertraline as 
a therapeutic assistant in the treatment of neoplasms depends on its 
precise concentration in humans and on a safe toxicological profile. The 
concentrations administered on in vivo experimental studies ranged from 
1 mg/kg/day [20] to 60 mg/kg/day [36], with an average of 22.14 
mg/kg/day, mostly based on the IC50 of sertraline obtained in pre-
liminary tests. When extrapolating the doses used by the authors on in 
vivo models, we obtain a variation of doses to be administered per day in 
humans between 9.13 mg/day to 913.2 mg/day [61], with average of 
233.9 mg/day, being within the therapeutic range, which varies from 50 
to 400 mg/day [62]. Only two concentrations were above 400mg: 547.9 
mg/day [36] and 913.2 mg/day [47] as presented in Table 2. Therefore, 
we believe that the effective therapeutic regimens in reducing tumor cell 

Table 2 
Equivalence between doses performed in vivo and their substantial extrapolation on human beings [32].  

N Author In vivo 
neoplasms 

Cell Line Animal Therapeutics Dose performed In vivo Outcome Extrapolation 

1 Tuynder et al. 
(2004) [1] 

Breast MDA-MB231 Scid/Scid 
Mice 

Injection once a day for 60 
days 

Sertraline (18 mg/kg), 
Promethazine (22.5 mg/ 
kg) and Thioridazine 
(6.75 mg/kg) 

Shrinking of tumor 
palpable masses 

164,4 mg/day 

AML U937 Injection once a day for 28 
days 

2 Reddy et al. 
(2008) [2] 

Melanoma A375 Mice Single injection Sertraline (1 mg/day) Shrinking of tumor 
palpable masses 

9,13 mg/day 

3 Gil-Ad et al. 
(2008) [3] 

Colorectal HT-29 Mice CD1 Injection twice a week for the 
first 3 weeks followed by 3 
times a week from the third 
week ahead 

Sertraline (15 mg/kg) Shrinking of tumor 
palpable masses 

137,8 mg/day 

4 Lin et al. 
(2010) [4] 

Lymphoma Pten+/− Eμ- 
Myc, Eμ-Myc/ 
Bcl-2, and Eμ- 
Myc/eIF4E 

Mice 
C57BL 

Injection of doxorubicin 
(single dose), rapamycin 
(daily for 5 days) and 
sertraline (daily for 5 days) 

Sertraline (20 mg/kg), 
Doxorubicin (10 mg/kg) 
and Rapamycin (4 mg/ 
kg) 

Reduced relapse; 
increased survival rate; 
inhibited tumoral 
growth 

182,6 mg/day 

5 Drienberg 
et al. (2014)  
[5] 

Ovarian OVCAR-8 Athymic 
Nude Mice 

Intravenous for 3 days, 4 
times a day 

Saline and Doxorubicin 
(2 mg/kg) 

Reduced relapse; 
increased survival rate 

18,2 mg/day 

Gavage for 3 days Sertraline (2 mg/kg) 
6 Christensen 

et al. (2016)  
[6] 

Ovarian SK-OV-3 Athymic 
Nude Mice 

Single injection Sertraline (10 mg/kg) Increased cell 
proliferation and 
increased Ki67 levels 

91,3 mg/day 

7 Hallet et al. 
(2016) [7] 

Breast MMTV-Neu Mice FVB/ 
N 

Intravenous for 7 days, once 
a day 

Sertraline (60 mg/kg) Shrinking of tumor 
palpable masses; 
decreased Ki67 levels; 
reduced relapse 

547,9 mg/day 

Intravenous sertraline for 7 
days (single daily dose) and 
single docetaxel dose on the 
first day 

Sertraline (60 mg/kg) 
and Docetaxel (10 mg/ 
kg) 

8 Boia-Ferreira 
et al. (2017)  
[8] 

Melanoma B16-F10 Mice 
C57BL/6 

Intraperitoneal daily for 12 
days 

Sertraline (10 mg/kg) Shrinking of tumor 
palpable masses; 
decreased Ki67 levels 

91,3 mg/day 

9 Rosso et al. 
(2018) [9] 

Lymphoma EL4 Mice 
C57BL/6 J 

Gavage for 5 weeks Sertraline (20 mg/kg/ 
day) 

Reduced tumor cells 
counting, reduced risk 
of developing a tumor 

182,6 mg/day 

Jiang et al. 
(2018) [10] 

Lung A549-luc Mice 
NSCLC 

Per oral for 6 months Sertraline (50 mg/kg) Reduced tumor cells 
counting 

913,2 mg/day 
10 Per oral for 6 months Sertraline (50 mg/kg) 

and Erlotinib (50 mg/kg/ 
day) 

11 Geeraerts et al. 
(2021) [11] 

Breast MDA-MB-231, 
MDA-MB-468, 
MCF7 and 
HCC70 

Mice NOD- 
SCID/ 
IL2γ-/- 

Intraperitoneal injections on 
days 7, 9, 11, 13, 15, 20 and 
24 

Sertraline (2.5 mg/kg), 
Artemether (40 mg/kg) 
or both 

Inhibition of tumor 
growth 

22,7 mg/day 

Caption: Eight articles 1,2,3,4,5,6,8,9 performed doses that are equivalent to the standard approach on psychiatric disorders, whereas two articles 7,10 performed 
doses that exceed that therapeutic index; AML, Acute Myeloid Leukemia. 
Font: The Authors (2021). 
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count, reducing palpable tumor masses, and decreasing recurrences are 
practicable in humans. 

Apart from the expected side effects of SSRI [63] and “serotonin 
toxicity” (provoked by up to 30 times the common daily dose) [64,65] 
data can be variable regarding severe symptoms, with reports of 
decreased level of consciousness, electrocardiographic changes, and 
seizures with overdoses greater than 75 times the recommended daily 
dose [65]. Specifically with sertraline, studies state that overdosing was 
not related to greater complications or morbidity, with side effects being 
the same as those reported with usual doses [66]. Recent reports indi-
cate that severe cases of overdose with SSRI are increasing, but 
frequently happen during multiple drug abuse, especially mixed to 
alcohol [65,67]. Other side effects such as inhibition of platelet secre-
tion, aggregation, and blood plug formation are under investigation, 
nevertheless, it is presumed, that patients with thrombocytopenia or 
platelet disorder could benefit from higher doses. [68] 

To overcome this impasse, Lei et al. [69] synthesized a nanoliposome 
containing sertraline and indocyanine green (ICG), called Ser / ICG @ 
Lip, with the aim of increasing the concentrations administered and 
avoiding undesirable side effects. This technology offers a new drug 
delivery pathway in reason of it’s targeted-specific pharmacodynamics 
and simplified pharmacokinetics that may improve the therapeutic ef-
fect towards tumor therapy [70,71] In addition, here we have identified 
more than thirteen instances of synergism with other drugs that could 
improve therapeutic regimens, reducing toxicity and side effects. 

Conclusions 

We conclude by suggesting that the direct action of sertraline on 
components linked to cellular dynamics can signal an active interference 
of this drug in tumor biogenesis. Evidence confirms that its repositioning 
could be explored, with probable safety and synergistic potential with 
other chemotherapeutic drugs currently available. We have also iden-
tified a Phase I clinical study (NCT02891278) which proposes the 
determination of the feasibility, safety, and toxicity of administering 
sertraline in combination with timed-sequential cytosine arabinoside 
(ara-C) in adults with relapsed and refractory acute myeloid leukemia 
(AML). The results will be decisive for the usefulness of repositioning 
sertraline in chemotherapy regimens in humans. 
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kindly reviewed an earlier version of this manuscript and Dr. Zeynep 
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