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Abstract 

Spatially resolved omics (SRO) technologies enable the identification of cell types while 

preserving their organization within tissues. Application of such technologies offers the 

opportunity to delineate cell-type spatial relationships, particularly across different length scales, 

and enhance our understanding of tissue organization and function. To quantify such multi-scale 

cell-type spatial relationships, we developed CRAWDAD, Cell-type Relationship Analysis 

Workflow Done Across Distances, as an open-source R package with source code and additional 

documentation at https://jef.works/CRAWDAD/.   

To demonstrate the utility of such multi-scale characterization, recapitulate expected cell-

type spatial relationships, and evaluate against other cell-type spatial analyses, we applied 

CRAWDAD to various simulated and real SRO datasets of diverse tissues assayed by diverse SRO 

technologies. We further demonstrate how such multi-scale characterization enabled by 

CRAWDAD can be used to compare cell-type spatial relationships across multiple samples. 

Finally, we applied CRAWDAD to SRO datasets of the human spleen to identify consistent as 

well as patient and sample-specific cell-type spatial relationships. In general, we anticipate such 

multi-scale analysis of SRO data enabled by CRAWDAD will provide useful quantitative metrics 

to facilitate the identification, characterization, and comparison of cell-type spatial relationships 

across axes of interest.  

 

Introduction 

Spatially resolved omics (SRO) technologies enable molecular profiling to facilitate the 

identification of distinct cell types while preserving their spatial organization within tissues, 

providing an opportunity to evaluate cell-type spatial relationships. Cell-type spatial relationships 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2023.10.05.560733doi: bioRxiv preprint 

https://jef.works/CRAWDAD/
https://doi.org/10.1101/2023.10.05.560733
http://creativecommons.org/licenses/by-nc-nd/4.0/


such as colocalizations, defined as which cell types are spatially near each other, and separations, 

defined as which cell types are spatially away from each other, may exhibit distinct trends relevant 

to healthy tissue function1 as well as disease2. As such, evaluating these cell-type spatial 

relationships provide an opportunity to advance our understanding of the association between cell-

type organization, tissue function, and disease.  

Cell-type spatial relationships can occur at different length scales, with some cell types 

colocalizing to engage in paracrine signaling and other close-range interactions at a fine, 

micrometer length scale3; others colocalizing into distinct environments and functional tissue units 

at a more meso-scale1; while others colocalizing into anatomical structures at a more macro-scale 

(Fig 1a-b). Whether we consider two cell-types as being colocalized is often a function of the 

spatial extent that we analyze (Fig 1b). For example, two cell types uniquely present in distinct 

layers of the brain may be considered separated if we consider only the spatial extent of the brain. 

However, we may consider these cell types to be colocalized in the same organ if we consider the 

spatial extent of the whole body. Thus, we sought to consider the effects of spatial extent by 

investigating cell-type spatial relationships across different length scales.  

To quantitatively evaluate such cell-type spatial relationships across length scales, we 

present CRAWDAD, Cell-type Relationship Analysis Workflow Done Across Distances. We 

demonstrate CRAWDAD on simulated as well as real SRO datasets for diverse tissues assayed by 

seqFISH4, Slide-seqV25, Xenium6, MERFISH7, and CODEX8, though CRAWDAD is amenable 

to any SRO data for which cell positions and cell-type annotations can be obtained. CRAWDAD 

is available as an open-source R package at https://github.com/JEFworks-Lab/CRAWDAD with 

additional documentation and tutorials available at https://jef.works/CRAWDAD/.  
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Results 

Overview of Method 

Given cell centroid positions and their cell-type annotations, CRAWDAD evaluates the 

statistical enrichment or depletion of each cell-type within the spatial neighborhood around cells 

of a reference cell-type at a particular spatial length scale. To achieve this, CRAWDAD first draws 

a neighborhood around cells of a reference cell type based on a user-defined neighborhood distance 

d and calculates the proportion of every cell type inside the neighborhood of this reference cell 

type, excluding the original reference cell that seeded the neighborhood (Fig 1c). Next, 

CRAWDAD creates a series of non-overlapping grids of tiles (square or hexagonal) where the 

side-length of each tile corresponds to a user-defined spatial length scale. Then, it shuffles the cell-

type annotations for all cells within each tile to create an empirical null background at the specified 

spatial length scale (Fig 1d). Lastly, given the observed and shuffled cell-type annotations, 

CRAWDAD uses a binomial proportion testing framework to evaluate if the observed cell-type 

proportions are significantly different from what is expected by chance based on the shuffled data. 

In this process, we obtain a Z-score for each neighbor and reference cell-type pair at the given 

spatial length scale. To assess statistical significance, we use default Z-scores of ±1.96 (p-value = 

0.05) with multiple testing correction based on the number of cell-type combinations evaluated. 

For a given cell-type pair, if their Z-score is above the positive significance threshold, we interpret 

the neighbor cell type as being enriched in the neighborhood of the reference cell type; if their Z-

score is below the negative significance threshold, we interpret the neighbor cell type as being 

depleted in the neighborhood of the reference cell type. In addition, we define colocalization as 

the mutual enrichment of cell types within each other’s neighborhoods. Alternatively, we define 

separation as the mutual depletion of the cell types within each other’s neighborhoods. 
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To evaluate spatial relationships with different spatial extents, CRAWDAD repeats this 

process for a series of spatial length scales. In this manner, we obtain a Z-score for each cell-type 

pair in each spatial length scale. We can visualize the results by plotting the Z-scores on the y-axis 

and the length scales on the x-axis, creating a multi-scale spatial relationship trend plot for each 

cell-type pair. Here, we refer to the scale of the relationship between two cell-types as the first 

evaluated spatial length scale in which the Z-score is above the significance threshold. To 

summarize spatial relationships across all cell-type pairs, we plot the scale of the relationships and 

associated Z-scores as a dot plot. To mitigate grid edge effects, CRAWDAD uses different random 

seeds and grid offsets to create multiple permutations of the shuffled data. The Z-scores obtained 

for each cell-type pair at each length scale are then averaged across permutations.  

 

CRAWDAD characterizes cell-type spatial relationships at multiple length scales in simulated data 

To highlight the utility of evaluating cell-type spatial relationships across multiple length scales, 

we first simulated 8,000 cells representing four cell types in a 2000µm-by-2000µm tissue sample 

(Methods). In this simulated dataset, cell-types B and C are spatially intermixed with one another, 

while cell-type A forms a distinct structure around cell-types B and C, that further isolate them 

from cell-type D (Fig 1b). We applied CRAWDAD to characterize the spatial relationships 

between each cell-type pair across length scales ranging from 100µm to 1000µm using a 

neighborhood size of 50µm (Methods). We found that the neighborhood around reference cell-

type C is significantly enriched with cells of cell-type B from a fine length scale of ~150µm (Fig 

1e,g). Likewise, we observed that the neighborhood around reference cell-type B is significantly 

enriched with cells of cell-type C from a similarly fine length scale (Supp Fig 1a). Given this 

mutual enrichment relationship, we interpret cell-types B and C to be spatially colocalized from 
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this fine length scale. In contrast, we noted cell-types A and B to be spatially colocalized from a 

comparably coarser length scale of ~800µm (Fig 1f-g, Supp Fig 1b).   

We note that some multi-scale cell-type spatial relationship trends will exhibit a monotonic 

behavior, tending towards only enrichment or depletion, while others might oscillate between 

enrichment and depletion. For example, the neighborhood around reference cell-type C exhibits 

an increasing Z-score with respect to neighbor cell-type B across length scales, resulting in a 

monotonically increasing spatial trend towards enrichment (Fig 1e). In contrast, the neighborhood 

around reference cell-type A exhibits an initially decreasing Z-score with respect to neighbor cell-

type B that eventually becomes a positive Z-score at larger length scales, resulting in an oscillatory 

spatial trend (Fig 1f). Such an oscillatory spatial trend better reflects how cell-types A and B are 

separated in different compartments but ultimately comprise the same structures evident only at 

larger spatial extents. Other methods that evaluate spatial relationships only at the whole tissue 

scale may miss these distinctions regarding monotonic and oscillatory spatial trends. For example, 

Squidpy’s neighborhood enrichment implementation of the approach described by Schapiro et al.9 

calculates an enrichment score based on the proximity of cell types from a spatial neighborhood 

graph created using a fixed distance10. Therefore, it does not capture the dynamics of such cell-

type spatial relationships (Supp Fig 1c). 

CRAWDAD’s quantified cell-type spatial relationships are also robust as the spatial extent 

is broadened to a larger tissue section inclusive of new cell types. To demonstrate this, we 

expanded the tissue in the simulated data to include another cell type, cell-type E, not present in 

the original tissue (Supp Fig 1d). When we apply CRAWDAD to this expanded tissue, the spatial 

relationships for cell-types A, B, and C in terms of the quantified Z-scores remain the same (Fig 

1e, Supp Fig 1f). In this manner, the spatial relationships for cell-types A, B, and C are robust to 
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the addition of the new cell type in expanded regions not considered in the original analysis. In 

contrast, when we apply Squidpy’s neighborhood enrichment implementation to the original 

versus the expanded tissue, the neighborhood enrichment metrics for cell-types A, B, and C are 

altered (Supp Fig 1c, e).  

To further benchmark and compare CRAWDAD’s functionality, we simulated a variety of 

SRO datasets using a previously developed simulation framework11 (Methods). Briefly, we 

simulated cells by sampling from a uniform distribution to create x-y positions. We split the cells 

into two groups, and, for each group, we associated a value to each cell using independent, 

autocorrelated Gaussian random fields (Supp Fig 2a). We binarized the values, splitting the cells 

into two cell-types based on the underlying simulated value (Supp Fig 2b). In this manner, we 

created a simulated dataset with four cell types (Supp Fig 2c) where we expect each cell-type to 

be enriched with itself due our use of spatially autocorrelated simulation values. Likewise, we can 

expect the two cell-types simulated from the same Gaussian random field to be spatially mutually 

exclusive and therefore identified to be separated. Additionally, we expect the cell-types from 

different random fields to exhibit no significant spatial relationship due to the Gaussian random 

fields being independent. We repeated this process to create a total of ten random simulated 

datasets.  

We used these simulated datasets to benchmark and compare CRAWDAD with two other 

spatial relationship analysis methods that also consider spatial length scales, Ripley’s K Cross12 

and Squidpy’s co-occurrence implementation of the approach described in Tosti et al.13 Although 

all evaluated methods perform cell-type enrichment analysis across length scales, their definition 

of length scales differs. Briefly, Ripley’s K Cross evaluates multiple length scales by increasing 

the neighborhood size while comparing the cell-type proportion in the neighborhood to the global 
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proportion. On the other hand, Squidpy’s co-occurrence implementation evaluates multiple length 

scales by increasing the size of an annulus neighborhood and calculating the conditional 

probability of the neighbor cell types given the reference cell type. In addition, as Ripley’s K Cross 

and Squidpy’s co-occurrence implementation do not present a threshold to determine statistical 

significance, for comparative purposes, we opted to assess each method’s ability to distinguish 

between cell-type spatial enrichment and depletion. Specifically, given a reference cell type, we 

considered a method as achieving a true positive prediction if the cell type identified with the most 

enriched relationship trend was itself. Alternatively, we also considered a method as achieving a 

true positive prediction if the cell type identified with the most depleted relationship trend was the 

other cell type from the same Gaussian random field. We identified the cell-type with the most 

enriched and most depleted spatial trend using their area under the trend curve value (Methods). 

Using this approach, we evaluated all four cell types across all ten simulated datasets using all 

three methods (Supp Fig 2d). Based on this simulation framework, we obtained a true positive rate 

of 0.95 for CRAWDAD, 0.86 for Squidpy’s co-occurrence implementation, and 0.8 for Ripley’s 

K Cross. In this manner, cell-type spatial relationships identified by CRAWDAD can more 

accurately distinguish between cell-type spatial enrichment and depletion compared to other 

evaluated methods based on simulated data.  

 

CRAWDAD recapitulates expected cell-type spatial relationships in the real spatial omics datasets 

of tissues 

We next applied CRAWDAD to evaluate cell-type spatial relationships in SRO datasets of 

real tissues. First, we analyzed a spatial transcriptomics dataset obtained from a highly spatially 

organized tissue, the mouse cerebellum, assayed by Slide-seqV25 and previously annotated by 
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RCTD14 (Fig 2a). Because Slide-seqV2 uses 10μm barcoded beads to profile the gene expression 

within tissues in a spatially resolved manner, spatially resolved measurements may not necessarily 

correspond to single cells. However, given that a typical animal cell is also roughly 10-20μm in 

size15, we assumed here that the observed spatial position and cell-type assignments associated 

with each bead generally reflects the spatial position and cell-type annotations of the cell within 

the immediate vicinity of that bead. As such, we treat Slide-seqV2 beads with non-doublet RCTD 

annotations as effectively single cells for CRAWDAD analysis. We applied CRAWDAD to 

evaluate 10,098 annotated cells representing 19 cell-types using a neighborhood size of 50µm 

across length scales ranging from 100µm to 1000µm (Fig 2b, Methods). Among the significantly 

colocalized cell-type pairs identified were Purkinje neurons and Bergmann glia (Fig 2b-c, Supp 

Fig 3a), which are known to interact at close distances within the Purkinje cell layer of the 

cerebellum16. Likewise, the neighborhood around Purkinje neurons was significantly depleted of 

oligodendrocytes and vice versa (Fig 2b-c, Supp Fig 3b). As such, we may interpret these cell-

types as being spatially separated, consistent with the known spatially distinct layer structure of 

the cerebellum. Additionally, we applied Ripley’s K Cross (Fig 2d) and Squidpy’s co-occurrence 

implementation (Fig 2e) to the same dataset. We find that these other methods do not as clearly 

distinguish these expected cell-type spatial relationships. Specifically, when analyzing cell-type 

spatial relationships with Purkinje neurons as the reference cell-type, we note that CRAWDAD’s 

Z-score trend for Bergmann glia increases as the length scale increases, crossing the upper 

significance threshold and defining an enrichment of Bergmann glia among the neighborhood of 

Purkinje neurons as expected (Fig 2c). Likewise, CRAWDAD’s Z-score trend for 

oligodendrocytes decreases as the length scale increases, crossing the lower significance threshold 

and defining a depletion of oligodendrocytes among the neighborhood of Purkinje neurons as 
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expected (Fig 2c). These two cell-type trends are further distinct from other cell-types in the 

cerebellum. This clear separation between these two cell-type trends is not observed in the other 

evaluated spatial analysis methods (Fig 2d-e).  

Next, we analyzed a single-cell resolution spatial transcriptomics dataset of a whole 

developing embryo assayed by seqFISH4 (Fig 2f). We applied CRAWDAD to evaluate cell-type 

spatial relationships for 19,416 cells representing 22 cell types using a neighborhood size of 50µm 

across length scales ranging from 100µm to 1000µm (Fig 2g, Methods). Consistent with the 

original publication’s observations, CRAWDAD identified significant spatial colocalization 

between the intermediate and lateral plate mesoderm cells and significant spatial separation 

between intermediate plate mesoderm and cardiomyocyte cells (Fig 2g-h, Supp Fig 3c-d). Again, 

such differences between cell-type spatial relationships are difficult to discern using on other 

evaluated spatial analysis methods (Fig 2i-j).  

 To further exemplify CRAWDAD’s applicability to potentially less well-organized tissues 

such as cancer tissues, we applied it to a breast cancer dataset assayed by Xenium6 (Fig 3a). We 

applied CRAWDAD to evaluate 162,107 annotated cells representing 19 cell-types using a 

neighborhood size of 100µm across length scales ranging from 100µm to 1000µm (Fig 3, 

Methods). CRAWDAD identified three groups of cell types based on their cell-type spatial 

relationships, corresponding to histologically distinct structures (Fig 3b-e).  

In general, we note that the cell-type spatial relationships identified in CRAWDAD are not 

always symmetric. Asymmetric results may be caused by two scenarios: location imbalance and 

density imbalance. In location imbalance, cells of the neighboring cell-type may be close to only 

some cells of the reference cell-type, but not all. For example, the neighborhood of UBCs is 

enriched with granule cells (Supp Fig 4a, c). However, UBCs are rare and present in only a small 
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proportion of the granule cells’ neighborhood and therefore does not represent a significant 

relationship (Supp Fig 4b, d). In density imbalance, cells from one type are highly concentrated in 

one region, with a few dispersed across other parts of the tissue. Therefore, the sparse cells will 

contribute to the creation of the neighborhood as the reference cell type but will not significantly 

contribute to the proportions as the neighbor cell type, due to their small number. For example, a 

large part of the presomitic mesoderm’s neighborhood is created by its sparse cells, which 

encapsulate spinal cord cells, creating a relationship of enrichment (Supp Fig 4e, g). On the other 

hand, most of the presomitic mesoderm cells are outside the spinal cord’s neighborhood creating 

a relationship of depletion (Supp Fig 4f, h). Such asymmetric cell-type spatial relationships may 

reflect non-exclusive cell-type interactions. For example, immune cells may infiltrate a focal tumor 

such that the neighborhood of tumor cells will be enriched with immune cells, but the 

neighborhood of immune cells might not be enriched by tumor cells given their widespread spatial 

distribution throughout the body, consistent with a non-exclusive cell-type spatial relationship at 

a whole-body spatial extent17. Therefore, CRAWDAD can quantitatively capture such asymmetric 

cell-type spatial relationships and effectively delineate cell-type spatial relationships across 

multiple length scales for diverse tissues and SRO technologies. 

 

CRAWDAD enables comparison of cell-type spatial relationships across multiple samples  

Beyond characterizing cell-type spatial relationships within a single sample, such multi-

scale characterization enabled by CRAWDAD can also be used to compare cell-type spatial 

relationships across samples spanning different conditions, such as health and disease, 

development, or replicates. To demonstrate this functionality, we applied CRAWDAD to nine 

mouse brain samples assayed by MERFISH comprised of three replicates from three distinct 
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Bregma locations7 with cell-type annotations obtained previously using unified clustering18 (Fig 

4a). We applied CRAWDAD to evaluate 734,693 annotated cells across all datasets representing 

14 cell-types using a neighborhood size of 50µm across length scales ranging from 100µm to 

1000µm (Methods). To compare multi-scale cell-type spatial relationships across samples, we 

calculated the signed area under the curve (AUC) for each Z-score trend for each cell-type pair. 

We then performed dimensionality reduction with principal component analysis (PCA) on all 

signed AUC values to find that cell-type spatial relationships of replicates from the same Bregma 

location are highly similar, as they are positioned closer together in PC space (Fig 4b). We likewise 

overall observed a smaller variance in the signed AUC values within replicates from the same 

Bregma location compared to across locations (Fig 4c). These results suggests that samples from 

the same Bregma location have cell-type spatial relationships that are more similar than those from 

different Bregma locations, as expected. Importantly, this similarity in cell-type spatial 

relationships is robust to tissue rotation and small local diffeomorphisms, as some of the brain 

tissue sections profiled are rotated with small tissue distortions compared to others. To investigate 

specific highly variable cell-type spatial relationships further, we visualized the spatial-

relationship trends for the cell-type pair with the highest signed AUC variance across locations: 

GABAergic Estrogen-Receptive Neurons as reference and Excitatory Neurons as neighbor (Fig 

4d). Despite its comparatively higher signed AUC variance across locations, samples from the 

same Bregma location still generally exhibited the same depletion trend whereas samples across 

Bregma locations varied (Fig 4d). Visual inspection of GABAergic Estrogen-Receptive Neurons 

and Excitatory Neurons also suggested high consistency in terms of spatial relationships within 

replicates from the same Bregma location compared to across locations (Fig 4e). As such, cell-

type spatial relationship trends quantified by CRAWDAD can be used to compare across samples 
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to confirm that cell-type spatial relationships in the mouse brain are generally highly consistent 

within replicates from the same Bregma location compared to across locations. 

 

CRAWDAD reveals functionally relevant cell-type spatial relationships in the human spleen 

Finally, we sought to apply CRAWDAD to characterize and compare cell-type spatial 

relationships in SRO datasets of the human spleen. The spleen is a highly structured organ where 

cell types interact to filter blood and initiate immune responses. Delineating the spatial 

organization of cell types in the spleen can provide insights into how these different cellular 

populations may achieve such diverse immunologic functions. Therefore, we focused on six 

single-cell resolution spatial proteomics datasets of the human spleen comprised of two replicates 

from three individuals each assayed by CODEX8 as part of The Human BioMolecular Atlas 

Program (HuBMAP)19. We first performed graph-based clustering for one representative section 

of a human spleen with 154,446 cells to identify 12 cell types based on 28 protein markers (Figure 

5a-c, Methods). Applying CRAWDAD with a neighborhood of 50µm and length scales ranging 

from 100µm to 1750µm, we observe cell-type spatial relationships to broadly recapitulate known 

splenic architecture. Cell-types primarily colocalized at a coarse length scale into two major 

compartments defined by follicle B cells and red pulp B cells corresponding to the white pulp 

(WP) and red pulp (RP), respectively20 (Fig 5d). Consistent with the functional roles of these 

compartments, cell types identified to colocalize with red pulp B cells include macrophages, 

neutrophils, and monocytes that may remove old and dead red blood cells within the RP21. 

Likewise, cell types identified to colocalize with follicle B cells include CD4+ memory T cells 

and podoplanin-expressing cells within the WP (Fig 5d). Podoplanin-expression has been 
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previously associated with T-cell zone reticular cells22 and observed to surround large arteries23 

within the WP.   

To determine whether such cell-type spatial colocalization relationships are consistent 

across tissue sections and individuals, we further repeated these analyses with 837,952 cells from 

five additional spleen samples both within and across individuals. To ensure all datasets were 

annotated in a uniform manner, we applied batch-correction24 and used a linear discriminant 

analysis model to transfer cell-type annotations to these new datasets (Methods, Supp Fig 5). We 

then applied CRAWDAD to identify similar cell-type spatial relationships corresponding to the 

WP and RP compartments both within and across individuals (Fig 5d, Supp Fig 6a). Further 

analyzing the variance of the relationship trend’s AUC values (Fig 5e), we noticed that most cell-

type spatial relationship trends were highly consistent across patients and samples, reflecting the 

ordered patterning of the functional tissue regions (Fig 5e-f, Supp Fig 7a). Select cell-type spatial 

relationship trends had patient-specific relationships, exhibiting consistent trends within replicates 

from the same patient but varying across patients, suggestive of potential patient-specific variation 

(Fig 5g, Supp Fig 7b). Other cell-type spatial relationship trends varied even within replicates, 

suggestive of potential tissue sample-specific patterns (Fig 5h, Supp Fig 7c). In general, we 

anticipate assessing these variations in cell spatial relationships can give insight into inter- and 

intra-individual variation linked to donor and tissue-specific features. 

Although our clustering analysis identified a cluster of cells highly expressing CD4 and 

CD45RO proteins, which we interpreted as CD4+ memory T cells, we were unable to distinguish 

follicular helper T cells, a specialized subset of CD4+ memory T cells that play a critical role in 

the adaptive immune response, due to limitations of our 28 protein-marker panel. However, we 

know that follicular helper T cells interact with B cells during the B cell maturation and 
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differentiation process within the B cell follicles. As such, we hypothesized that follicular helper 

T cells would represent a spatially-defined subset of these CD4+ memory T cells that are 

colocalized with follicular B cells25. To identify putative follicular helper T cells, we therefore 

applied the same binomial testing framework used in CRAWDAD’s pairwise spatial relationship 

testing to identify CD4+ memory T cells that are statistically enriched around follicle B cells (Fig 

5i, Supp Fig 6b, Methods). Briefly, for each given cell, we perform an exact binomial test to verify 

if the proportion of each cell type inside the cell’s neighborhood is significantly greater than the 

global proportion. We observed that the distribution of these putative follicular helper T cells as a 

percentage of all CD4+ memory T cells (37% to 52%, Fig 5j) is consistent with previous 

characterizations within the spleen from healthy donors achieved through orthogonal fluorescence-

activated cell sorting approaches26,27.  

 

Discussion 

In this paper, we present CRAWDAD, Cell-type Relationship Analysis Workflow Done Across 

Distances, to quantify cell-type spatial relationships across spatial length scales. We validated 

CRAWDAD by recapitulating expected cell-type spatial relationships in simulated and real SRO 

datasets of diverse tissues assayed by diverse SRO technologies. We demonstrated that our tool 

was able to provide distinct insights compared to existing spatial enrichment and multi-scale 

analyses. We emphasize that cell-type spatial relationships may vary across spatial scales and such 

multi-scale characterization enabled by tools like CRAWDAD can reveal distinct insights not 

apparent in evaluations of spatial relationships that consider only the whole tissue scale. 

Additionally, we emphasize that such quantified cell-type spatial relationships trends can be used 

to compare across SRO datasets and demonstrate its application in identifying consistent spatial 
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trends within mouse brain replicates that are distinct across Bregma locations. We further apply 

CRAWDAD to characterize cell-type spatial relationships to HuBMAP SRO datasets of the human 

spleen to identify generally consistent spatial trends reflective of the organization of the red and 

white pulp but also reproducible patient-specific variation, though the sample sizes evaluated here 

limit our ability to make general significant conclusions. As atlasing efforts such as HuBMAP19, 

the Human Cell Atlas28, and others continue to profile the spatial organization of cells within 

tissues, we anticipate identifying significant spatial variation across axes of interest will become 

more feasible in the future, though additional scalable, comparative meta-analysis tools to integrate 

statistics from many samples across multiple studies in a manner that is robust to batch effects may 

be then needed. We expect that the incorporation of quantitative spatial trend metrics such as those 

provided by CRAWDAD will be useful in such meta-analyses to ultimately facilitate in the 

identification and characterization of cell-type colocalization relationships in complex tissues to 

advance our understanding of the relationship between cell-type organization and tissue function. 

 Although we have demonstrated CRAWDAD to be a potentially useful tool in identifying, 

characterizing, and comparing cell-type spatial relationships, there are several considerations 

worth noting as they may influence interpretation. First, CRAWDAD results rely on a few user-

defined parameters. In particular, it uses a fixed neighborhood distance d to determine the size of 

the neighborhood used to consider neighboring cells. In the context of geospatial analysis, such 

sensitivity of results to the neighborhood distance has been previously characterized as the 

sensitivity to kernel bandwidth29. We note that if the defined d is too small, the neighborhood will 

only contain cells from the reference cell type. In such a scenario, the total number of neighbor 

cells would be zero, leading to non-significant results. Alternatively, if d is too large, the 

neighborhood will encompass all the cells in the sample. In this case, the proportions of cell types 
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within the neighborhood before and after shuffling will remain the same, leading to non-significant 

results. Generally, we recommend choosing d based on the biological constraints of the analysis. 

For example, to identify cell-type spatial relationships that may be relevant to cell-cell interactions, 

one may choose a neighborhood distance d up to 100 μm to reflect the limits of diffusion of 

epidermal growth factor that cells may use in paracrine signaling30. Additionally, visualizing the 

neighborhood may be used to guide the choice of d (Supp Fig 8). For example, for mouse 

cerebellum and embryo SRO datasets analyzed, we highlight how a neighborhood of 10μm would 

be too small as it does not enclose a significant proportion of the cells given the density of cells in 

the tissues. On the other hand, a neighborhood of 100μm would be too large as some of the cell 

types would incorporate all cells of other cell types inside the neighborhood buffer. Hence, a d = 

50μm was used for these SRO datasets. In general, the neighborhood distance should be chosen 

based on guidance from data visualization as well as biological prior knowledge.  

Second, to create empirical null backgrounds of cell-type spatial relationships, 

CRAWDAD shuffles cell-type labels within non-overlapping tiles to create different null 

backgrounds. Although square tiles are used by default, hexagonal tiles are also available. To 

evaluate the robustness of trends given these different grid shapes, we created hexagonal tiles in 

our simulated dataset and repeated analysis (Supp Fig 9a). Comparing the Z-scores obtained at 

each scale on the different tiles, we noted a high correlation (R = 0.99) across all evaluated scales 

(Supp Fig 9b), suggesting the shape of the tiles is likely not a key factor in identifying spatial 

relationships, though both are available as options. The choice of the length scales should reflect 

the biological analysis of interest. However, choosing values smaller than the neighborhood 

distance may lead to trivial insignificant results. 
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Third, since CRAWDAD takes annotated cell-type as input, the quality of the results 

directly depends on the quality of the annotation. Misannotated cell types could shift the 

proportions of other cell types inside spatial neighborhoods to alter the spatial relationships 

identified by CRAWDAD. Thus, cell-type annotations may be evaluated for robustness and 

cleaned if needed prior to CRAWDAD analysis31,32. Or alternatively, identified cell-type spatial 

relationships may be re-evaluated given multiple potential cell-type annotations to ensure the 

robustness of identified trends.  

Finally, although we have elected to demonstrate CRAWDAD analysis on datasets from 

select SRO technologies, in general, CRAWDAD is amenable to any SRO technology for which 

spatial positions and associated labels can be derived. However, we caution that for some multi-

cellular spot-based SRO technologies, additional deconvolution or processing may be needed to 

ensure appropriate interpretation of results. In general, we recommend applying CRAWDAD to 

datasets with single cell resolution to facilitate interpretation. 

Overall, when used appropriately, such cell-type spatial relationship analysis enabled by 

tools like CRAWDAD will provide another quantitative metric to facilitate the identification, 

characterization, and comparison of structural differences in tissues across axes of interest such as 

health and disease or development. Combined with the improvement in cell segmentation, we 

anticipate that future applications of spatial subsetting analysis such as that achieved with 

CRAWDAD can enable spatially-informed differential analysis to characterize subtle changes in 

cell state for cells of the same type colocalized within different microenvironment. Likewise, 

combined with other tools for identifying spatial niches or domains33–35, we anticipate such cell-

type spatial relationships may be characterized in a niche or domain-specific manner. Ultimately, 

we anticipate the analysis of SRO data with CRAWDAD can enable a more detailed quantitative 
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characterization of cell-type spatial organization to contribute to our understanding of how spatial 

context and tissue architecture vary across health, disease, and development.  

 

 

 

 

 

Methods 

CRAWDAD (Cell-type Relationship Analysis Workflow Done Across Distances) Overview 

CRAWDAD characterizes cell-type spatial relationship trends by comparing observed pairwise 

cell-type spatial relationships to a set of null distributions in which cell-type labels have been 

shuffled at different length scales. 

 

Creating null distributions at different length scales 

To generate empirical null distributions against which observed cell-type spatial relationships can 

be compared to evaluate for statistical significance, CRAWDAD employs a grid-based cell-type 

label shuffling strategy. Given a tissue containing cells represented by x-y spatial coordinates with 

cell-type annotations, we partition the tissue into non-overlapping side-by-side tiles. By default, 

tiles are squares of area r^2, where r is the size of the spatial length scale of analysis. Then for all 

cells that reside within the same square, cell-type labels are shuffled to create a null distribution 

for the given r. These shuffled null distributions are created for multiple rs to achieve a set of 

empirical null distribution at different length scales. We further create multiple permutations at 

each length scale by applying different random seeds and a grid-offsetting approach to mitigate 
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the influence of spatial patterns that would benefit specific grid divisions. Specifically, the offsets 

are calculated by creating a sequence from 0 to r, in equally spaced intervals of r divided by the 

number of permutations. In each of the permutations, a different offset of the sequence will be 

applied. In addition to square tiles, CRAWDAD allows the creation of side-by-side non-

overlapping hexagon tiles. In this case, the size of the scale is represented by length of the sides of 

the hexagon (Supp Fig 9a). 

 

Computing cell-type spatial relationship trends 

To evaluate the statistical significance of an observed pairwise cell-type spatial relationship, 

CRAWDAD uses a binomial testing framework. For a given reference cell-type, CRAWDAD 

defines neighboring cells as those within a Euclidean distance of a user-defined neighbor distance 

𝑑 (default: 50 units) of any reference cell-type cells. CRAWDAD then calculates the proportion 

of neighboring cells that are members of a given query cell-type: 

 

𝑝! =	
𝑦!
𝑛  

 

where 𝑛 is the total number of total neighboring cells for a given reference cell-type, and 𝑦! is the 

total number of cells of a given query cell-type that are neighboring cells for a given reference 

cell-type. By default, the reference cells, used to create the neighborhood, are removed from the 

proportion calculation.  

 

This proportion is also computed for the previously created null distributions:  
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𝑝" =	
𝑦"
𝑛  

 

where 𝑦" is the total number of cells of the query cell-type that are neighboring cells in the shuffled 

null distribution datasets. 

 

A two-sided binomial proportion test is then performed to test the equality of 𝑝! and 𝑝" 

against the alternative that they are not equal: 

 

𝐻#:	𝑝! =	𝑝" versus 𝐻$:	𝑝! ≠	𝑝" 

 

This is defined by a test statistic 𝑍, which is: 

 

𝑍 = 	
𝑝! −	𝑝"

,2𝑝(1 − 𝑝)𝑛

 

 

where: 

 

𝑝 = 	
𝑦! + 𝑦"
2𝑛  

 

 

Defining the significance threshold 
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We used a significance threshold of 5% (p-value < 0.05 or |Z-score| > 1.96) corrected for multiple 

testing (Bonferroni method by default) based on the number of unique reference-neighbor cell-

type pairs evaluated. In addition, when there were multiple permutations, we considered a Z-score 

significant if the mean value obtained across permutations is beyond the significance threshold. 

 

Summarizing and visualizing spatial relationship trends 

To visually summarize results for all cell-type pairs, CRAWDAD creates a dot plot to show the 

length scale at which the spatial relationship trend for each cell-type pair first becomes statistically 

significant, encoded as the size of dots, as well as the associated multiple-testing corrected Z-score, 

encoded as the color hue of dots. Notably, such summaries do not fully capture the dynamics of 

pairwise cell-type spatial relationships as a function of length scale. Specifically, if a pairwise cell-

type spatial relationship becomes significant at a scale of n, but not significant again at a scale of 

m (m > n), only the n scale will be represented in the plot. If a relationship is not significant, there 

will be no dot associated with it. 

To visualize the spatial relationship results for a particular cell-type pair across different 

spatial extents, CRAWDAD uses trend plots where the x-axis represents the length scale and the 

y-axis represents the Z-score such that the trend represents how the spatial relationship of the cell-

type pair changes as the spatial length scales increases. To summarize relationship trends across 

all evaluated cell-type pairs, CRAWDAD identifies the scale and value of the first Z-score of the 

trend that is above the significance threshold and plot them as a dot for each reference and neighbor 

pair and uses a dot plot where the Z-score value is represented by the color hue and the scale is 

represented by the size of the dot. Smaller scales are represented as larger dots to visually 

emphasize the potential importance of these small-scale colocalization relationships.  
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Therefore, to visualize results for a specific pairwise cell-type spatial relationship, CRAWDAD 

further creates trend plots that show the computed multiple-testing corrected Z-score value as a 

function of the evaluated length scales. When there are various permutations, the mean multiple-

testing corrected Z-score across all permutations and +/- an error bar of one standard deviation is 

visualized. 

 

Spatial subsetting of cells 

CRAWDAD can further assign cells of a given cell-type to subsets based on the enrichment or 

depletion of cell-types within their neighbors using the same binomial testing framework. Given a 

tissue containing cells represented as x-y spatial coordinates with cell-type annotations, we again 

define a neighbor distance d. Given a reference and a query cell type, for every cell of the reference 

cell-type we perform a one-sided binomial exact test to assess if the proportion of query cell-type 

among the cell’s neighbors are significantly greater than the proportion of the query cell-type in 

the population. Cells of the given reference cell-type with a p-value below a certain user-defined 

significance threshold can then be further subtyped as cells of the reference cell-type that are 

enriched with cells of the query cell type. 

 

Creating, analyzing, and comparing simulated data across methods 

 

Simulating SRO data with manually defined spatial patterns 

To simulate a spatially resolved omics dataset, we created 8000 cells randomly positioned from 0 

to 2000 microns in the x and y coordinates. We chose four points P = [(250, 250), (250, 750), (750, 
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250), (750, 750)] to be the centers of the circular neighborhoods defining the cell populations, 

where d(P) represents the distance from a cell to its closest point in P. We labeled the cells with 

d(P) <= 100 microns as cell types B or C (50% chance each). Then, we labeled the cells with 100 

< d(P) < 300 microns as cell type A. Finally, all the other cells were labeled cell type D. For 

CRAWDAD, a set of shuffled null distribution were created at length scales of 100 to 1000 

separated by 50 microns for 10 permutations. To identify significant trends with multiple testing 

correction, we used a Z-score threshold of 2.96. 

To extend the simulated dataset and incorporate cell-type E, we copied the original cell 

positions, changed the labels to cell-type E, and placed one copy on the right, one on the top, and 

one on the top right of the original data. Therefore, the extended dataset has 32000 cells, 24000 

from cell type E, and ranges from 0 to 4000 microns in both x and y coordinates. We applied 

CRAWDAD to this dataset using the same parameters as those from the original simulated dataset 

analysis but increased the Z-score threshold to 3.09.  

 

Simulating SRO data using Gaussian random fields 

To create the simulated datasets with self-enrichment patterns, we followed the procedure 

previously described11. First, we simulate the position of 2000 cells by sampling from a uniform 

distribution ranging from 0 to 1 for both x and y axis. Then, we randomly split the cells in two 

groups of 1000 instances each. Using the Matern function with nugget variance of 0.1, shape 

parameter of 0.5, and smoothness parameter of 0.3, we created a covariance function to generate 

a Gaussian random field for each group. We binarize each field by assigning positive cells to one 

cell type and negative cells to the other. Finally, we merge both groups and scaled the cells’ 
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positions to 1000 microns. To generate all the ten datasets, we repeated this process using a 

different random seed for each. 

 

Comparing methods using simulated data 

To benchmark CRAWDAD without relying on a significance threshold we performed a relative 

comparison between the relationship trends. We classified a cell-type as enriched in the 

neighborhood of the reference cell type if it had the trend with the highest area under the curve 

(AUC) value in the reference cell-type trend plot. Likewise, we classified a cell type as depleted 

if it had the most negative AUC value. We focused on measuring each method’s capacity to 

distinguish trends, not the ability to identify statistically significant results. 

 

Analyzing real SRO data 

Analysis of the mouse cerebellum 

A pre-processed subset of a Slide-seqV2 dataset collected from a ~3000µm-by-~2500µm section 

of the mouse cerebellum was obtained from the original5. This dataset contained 10,098 beads 

with x-y coordinates and 19 cell-type annotations previously predicted by RCTD14. Poorly 

represented cell types defined as those being annotated in less than 20 beads (Choroid, 

Candelabrum, Ependymal, Globular, Macrophages) were not considered in the CRAWDAD cell 

type colocalization, resulting in 14 remaining cell types. 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100, 

200, 300, 400, 500, 600, 700, 800, 900, 1000 microns for 10 permutations. A neighbor distance of 

50 microns was used to evaluate every pairwise combination of cell-types at each length scale. To 

identify significant trends with multiple testing correction, we used a Z-score threshold of 3.81. 
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Analysis of the developing mouse embryo 

A pre-processed subset of the seqFISH data of an 8-12 somite stage embryo4 (Embryo 1) was 

obtained from the original publication. This ~1000µm-by-1600µm dataset contained 19416 cells 

with x-y coordinates and 22 cell-type annotations. Coordinates provided in nanometers were 

converted to microns by multiplying by 1000. 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100 to 

1000 by 50 microns for 10 permutations. A neighbor distance of 50 microns was used to evaluate 

every pairwise combination of cell-types at each length scale. To identify significant trends with 

multiple testing correction, we used a Z-score threshold of 3.88. 

 

Analysis of the human breast cancer 

We collected the 7520.95µm-by-5471.17µm Xenium breast cancer dataset (in situ sample 

1, replicate 1) and with annotated cell types from the original publication6. Supervised cell type 

annotations were used. We filtered the original data by removing cells with less than 3 gene counts, 

obtaining 162107 cells with x-y coordinates and 20 cell-type annotations. 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100 to 

a 1000 by intervals of 100 microns for 3 permutations. A neighbor distance of 50 microns was 

used to evaluate every pairwise combination of cell-types at each length scale. To identify 

significant trends with multiple testing correction, we used a Z-score threshold of 3.84. 

 

Analysis of the mouse brains 
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We obtained the nine MERFISH mouse brain datasets from the Vizgen Data Release V1.0. May 

20217 with cell types previously annotated through unified clustering18. We filtered the original 

data by removing cells with less than 3 gene counts and merging sub-cell types. The resulting 

number of cells and cell-type annotations by sample is provided below:  

 

Location Replicate Number of Cells Number of Cell Types Tissue Size 

1 

1 78329 13 9036.87x 6326.88 

2 88884 13 8060.09x 9936.43 

3 84635 14 8504.56x 8249.1 

2 

1 83546 14 8883.69x 7113.93 

2 84171 14 8867.34x 9316.67 

3 85957 14 9147.76x 6980.63 

3 

1 70844 14 7058.34x 7829.3 

2 83461 14 8952.54x 6747.24 

3 74866 14 8952.54x 6747.24 

 

For CRAWDAD, a set of shuffled null distributions were created at length scales of 100 to a 1000 

by intervals of 100 microns for 3 permutations. A neighbor distance of 50 microns was used to 

evaluate every pairwise combination of cell-types at each length scale. 

 

Analysis of the human spleen 

Pre-processed and compensated Akoya CODEX datasets of 6 human spleens tissue sections 

ranging from 3550.24µm-by-3423.43µm to 4564.7µm-by-3423.43µm in size from 3 different 
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donors were downloaded from the HuBMAP Data Portal (https://portal.hubmapconsortium.org/) 

corresponding to dataset IDs: HBM389.PKHL.936, HBM772.XXCD.697, HBM556.KSFB.592, 

HBM825.PBVN.284, HBM568.NGPL.345, and HBM342.FSLD.938. These datasets contained 

protein expression for 28 markers, x-y coordinates, and cell segmentation area measurements for 

154,446, 150,311, 152,896, 130,584, 177,777, and 226,384 segmented cells, respectively. Protein 

expression was normalized by cell area and log10 transformed with a pseudocount of 1.  

 

Unified clustering and cell-type annotation 

Using dataset HBM389.PKHL.936, cells were clustered via Louvain graph-based clustering36 

based on a nearest neighbor-graph with k = 50. Protein expression values were summed together 

for cells assigned to each cluster, and then the values were scaled across protein expression 

measurements within each cluster. The scaled expression values were used to assign cell-type 

annotations, which initially resulted in 13 cell types and one unlabeled group. Outer and inner 

Follicular B cells annotations were combined into a single Follicular B cells annotation. Linear 

discriminant analysis (LDA) was performed to transfer cell-type labels between the datasets. Prior 

to label transfer, paired donor datasets HBM556.KSFB.592 and HBM568.NGPL.345, and 

HBM825.PBVN.284 and HBM342.FSLD.938 were harmonized37 due to observed batch effects. 

LDA cell-type label transfers were done between the following reference and query datasets: 

HBM389.PKHL.936 -> HBM772.XXCD.697, HBM389.PKHL.936 -> HBM556.KSFB.592, 

HBM389.PKHL.936 -> HBM825.PBVN.284, HBM556.KSFB.592 -> HBM568.NGPL.345, 

HBM825.PBVN.284 -> HBM342.FSLD.938. 

 

CRAWDAD analysis of the human spleen 
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For CRAWDAD, a set of shuffled null distributions were created at resolutions of length scales of 

100 to a 1750 by intervals of 50 microns for 10 permutations. A neighbor distance of 50 microns 

was used to evaluate every pairwise combination of cell-types at each scale. The corrected Z-score 

threshold used was 3.58. 

 

Spatial subsetting of the human spleen 

CD4+ memory T cells were further subsetted based on their proximity to Follicle B cells using a 

one-sided exact binomial test, a neighbor distance defined as 50 microns and a p-value threshold 

of 0.05. With the subsets, we calculated the proportion of CD4+ memory T cells near Follicle B 

cells with respect to all CD4+ memory T cells and compared across datasets. 

 

Comparing across different samples 

To compare different samples, we opted to use the area under the curve (AUC) of the Z-score trend 

to represent each relationship instead of the scale of when the relationship reaches significance as 

not all of them do. We represented each sample by the AUC values of each cell-type pair, creating 

an AUC high-dimensional space. By applying principal component analysis to this space, we used 

the first two components to visualize the samples. In this case, instances that are similar in the 

high-dimensional space should also be similar in the low-dimensional one. Additionally, we 

investigated the variance of AUC across samples by plotting the variance for each cell-type pair 

in a dot plot. Lastly, we visualized the relationship trends for the cell-type pair with highest AUC 

variance across conditions. 

 

Analysis with other methods 
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Ripley’s Cross-K Analysis 

Ripley’s Cross K function draws a circular neighborhood around each reference cell, counts the 

number of cells of each type inside this region, and divide it by the cell-type density. This value is 

compared to the theoretical K. The multi-scale aspect of this analysis comes from varying the 

neighborhood size. Additionally, cells in the border of the tissue will consider areas that do not 

present any cell, requiring the application of border correction methods to mitigate this effect. 

We used the spatstat (version 3.0-6) package38 to compute different Ripley’s Cross-K values for 

each pairwise combination of cell types. To compare with the theoretical K and perform border 

correction, we subtracted the theoretical K for a Poisson homogeneous processes from the isotropic 

edge corrected Ripley’s Cross-K. For consistency in visualization, we set the maximum radius size 

to be the same as the maximum length scale evaluated in CRAWDAD. 

 

Squidpy’s Neighborhood Enrichment 

We used Squidpy10 (version 1.2.3) to apply its neighborhood enrichment implementation of the 

approach described by Schapiro et al.9 We defined the spatial neighbors using a radius of 50 and 

calculated Squidpy’s neighborhood enrichment using default parameters. The results were plotted 

as a heatmap of Z-scores. 

 

Squidpy’s Cooccurrence Probability 

Squidpy10 implements the co-occurrence probability method originally presented in Tosti et al.13 

The function works by drawing annular neighborhoods around each cell of the reference cell type. 

Then, it calculates the probability of a cell type being enriched in that region. The multi-scale 

aspect of this analysis comes from varying the neighborhood size.  
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Using Squidpy (version 1.2.3) and its co_occurrence function, we calculated the co-

occurrence probability of clusters for each cell type. For consistency in visualization, we set the 

maximum distance to be the same as the maximum length scale evaluated in CRAWDAD. 

 

Code availability 

CRAWDAD is available as an open-source R package at https://github.com/jefworks-lab/crawdad 

with additional documentation and tutorials available at https://jef.works/CRAWDAD/. Code to 

reproduce the analyses and results of this study is available on GitHub at  

https://github.com/rafaeldossantospeixoto/crawdad_revision_analysis.   
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Figure 1. Motivating Cell-type Relationship Analysis Workflow Done Across Distances 

(CRAWDAD) using simulated data. a. Illustration of the cell-type spatial relationships found at 

different length scales. b. Simulated spatial omics tissue data, visualized at different scales. Each 

point is a cell, colored by cell type. Scale bars correspond to 250μm. c. Representation of the 

creation of the neighborhood and the null background. CRAWDAD draws a circle (neighborhood 

distance as the radius) around each cell of the reference cell type and merges them into one 

neighborhood. d. CRAWDAD creates a grid of side-by-side tiles (length scale defined as the side 

length for square pixels and the distance between opposite edges for hexagonal pixels) and shuffles 

the labels inside each tile to create the null background. e. The multi-scale spatial relationship trend 

plot for reference cell-type C and neighbor cell-type B. The horizontal dotted lines represent the 

z-score significance threshold corrected for multiple testing (Z-score = ±2.96). The red bars denote 

the standard error for the z-score estimated using permutations. f. The multi-scale spatial 

relationship trend plot for reference cell-type A and neighbor cell-type B. g. Summary 

visualization all cell-type spatial relationships. The size of the dot represents the scale in which a 

neighbor cell-type first reaches a significant spatial relationship with respect to a reference cell-

type. The color of the dot is the z-score at such scale.  
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Figure 2. CRAWDAD characterizes cell-type spatial relationships in the mouse cerebellum 

assayed by Slide-seqV2 and the mouse embryo assayed by seq-FISH. a. Spatial visualization of 

cell type annotations from RCTD in the cerebellum. Scale bars correspond to 250μm. b. Summary 

visualization all cell-type spatial relationships in the cerebellum data. Select cell types highlighted 

to correspond with (c-e). c-e. The multi-scale spatial relationship trend plot for Purkinje neurons 

as the reference cell type for (c) CRAWDAD, (d) Ripley’s K Cross and (e) Squidpy co-occurrence 

implementation of Tosti et al. with neighboring cell-types Bergmann glia and Oligodendrocytes 

highlighted in red and blue respectively. All other neighboring cell-types in grey. f. Spatial 

visualization of annotated cell types in the embryo data. Scale bars correspond to 250μm. g. 

Summary visualization all cell-type spatial relationships in the embryo data. Select cell types 

highlighted to correspond with (h-j). h-j. The multi-scale cell-type spatial relationship trend plot 

for Endothelium cells as the reference cell type for (h) CRAWDAD, (i) Ripley’s K Cross and (j) 

Squidpy co-occurrence implementation of Tosti et al. with neighboring cell-types Cardiomyocytes 

and Lateral plate mesoderm highlighted in red and blue respectively. All other neighboring cell-

types in grey. 
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Fig 3. CRAWDAD characterizes cell type spatial relationships in breast cancer assayed by 

Xenium. a. Spatial visualization of annotated cell types (left) with corresponding histology image 

(right). b. Summary visualization all cell-type spatial relationships in the breast cancer data. Select 

groups of consistently colocalized cell-types is outlined by a unique color. c. Spatial visualization 

of the consistently colocalized cell-types. Plots for each tissue structure are outlined by the 

corresponding color in (b). Scale bars correspond to 250μm. 
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Figure 4. CRAWDAD enables comparison of spatial relationships across different tissue sections 

of the mouse brain assayed by MERFISH. a.  Spatial visualization of annotated cell types in each 

sample. Scale bars correspond to 1000μm. b. Visualization of each sample in the principal 

component space with the first two principal components calculated using the standardized AUC 

of each multi-scale cell-type spatial relationship trend. c. Variability of multi-scale cell-type spatial 

relationship trends calculated as the variance of the AUC values across replicates (top) and 

locations (bottom). d. The multi-scale cell-type spatial relationship trend plot of GABAergic 

Estrogen-Receptive (ER) Neurons as reference and Excitatory Neurons as neighbor for samples of 

replicates from the same location (top) and different locations (bottom). e. Spatial visualization of 

the GABAergic ER Neurons and Excitatory Neurons in replicates from the same location (left) 

and different locations (right).  
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Figure 5. CRAWDAD characterize cell-type spatial relationships in the human spleen assayed by 

CODEX. a. Heatmap of marker protein expression for annotated cell types. b. UMAP reduced-

dimensional visualization of annotated cell-types. c. Spatial visualization of annotated cell-types 

in one representative tissue section. Scale bars correspond to 250μm. d. Summary visualization of 

the multi-scale cell-type spatial relationship analysis for tissue sections PKHL and XXCD from 

patient HBM966.VNKN.965. Cell types consistently colocalized in the white and red bulk are 

highlighted with small and large squares respectively. e. Variability of multi-scale cell-type spatial 

relationship trends calculated as the variance of the AUC values across samples. The multi-scale 

cell-type spatial relationship trend plots are shown for select cell-type pairs exhibiting f. low 

variability across different samples, g. high variability across patients but low variability within 

replicates, and h. high variability across samples including within patients. i. Subset of CD4+ 

Memory T cells near Follicle B cells. The number of CD4+ Memory T cells (n) and the proportion 

of subsets (left) and spatial visualization of subsets (right) in tissue sections PKHL and XXCD 

from patient HBM966.VNKN.965. j. Proportion of CD4+ Memory T cells near Follicle B cells 

over all CD4+ Memory T cells in each sample.  
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Supplementary Figures 

 

Supplementary Figure 1. CRAWDAD and Squidpy’s neighborhood enrichment implementation 

on simulated data. CRAWDAD’s multi-scale spatial relationship trend plot for a. reference cell-

type B and neighbor cell-type C and b. for reference cell-type B and neighbor cell-type A. c. 

Squidpy’s neighborhood enrichment analysis on the simulated data. d. New simulated data that 

included cell-type E contouring the previous original dataset. e. Squidpy’s neighborhood 

enrichment analysis on the new simulated data in (d) shows changing cell-type relationships 

compared to (c). f. Summary visualization of CRAWDAD’s multi-scale cell-type spatial 

relationship analysis of the new simulated data. The yellow box highlights that the cell-type 

relationships found in the analysis of the original simulated data were maintained. 
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Supplementary Figure 2. Creation of the simulated dataset. a. Two independent Gaussian random 

fields with uniformly sampled spatial positions representing 1000 cells. b. These spatial positions 

are assigned a cell type based on the random field’s value. c. Both fields are combined to generate 

one dataset with 4 cell-types. d. Relationships trends obtained by each method using cell-type A 

as the reference cell-type. 
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Supplementary Figure 3. Complementary CRAWDAD analysis of the mouse cerebellum and 

mouse embryo datasets. a-d. The multi-scale spatial relationship trend plot for (a) reference cell-

type Bergmann glia and neighbor cell-type Purkinje neurons; (b) reference cell-type 

Oligodendrocytes and neighbor cell-type Purkinje neurons; (c) reference cell-type lateral plate 

mesoderm and neighbor cell-type intermediate plate mesoderm; (d) reference cell-type 

cardiomyocyte and neighbor cell-type intermediate plate mesoderm. 
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Supplementary Figure 4. Sample asymmetric cell-type spatial relationships. Spatial visualization 

of cells in the cerebellum with the neighborhood of UBCs (a) and Granule cells (b) outlined. 

CRAWDAD’s multi-scale spatial relationship trend plot for UBCs and Granule cells with UBCs 

as the reference cell-type and Granule cells as the neighboring cell-type (c) and vice versa (d). 

Spatial visualization of cells in the embryo with the neighborhood of presomitic mesoderm cells 

(e) and spinal cord cells (f) outlined. CRAWDAD’s multi-scale spatial relationship trend plot for 

presomitic mesoderm cells and spinal cord cells with presomitic mesoderm cells as the reference 

cell-type and spinal cord cells as the neighboring cell-type (g) and vice versa (h). Scale bars 

correspond to 250μm. 
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Supplementary Figure 5. CODEX Human Spleen Samples. a. Reduced-dimension visualization 

of the samples. b. Spatial visualization of cell types in the different samples and patients. c. 

Heatmaps visualizing transcriptional correlations between label-transferred cell-types in spleen 

samples and the originally annotated cell-types in reference spleen sample PKHL. Scale bars 

correspond to 250μm. 
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Supplementary Figure 6. Analysis of other spleen samples. a. Summary visualization of the 

multi-scale cell-type spatial relationship analysis for datasets FSLD and PBVN from patient 

HBM245.ZWNT.288 and for datasets KSFB and NGPL from patient HBM298.KGNJ.374. b. On 

the left, the spatial visualization of the subsets of CD4+ Memory T cells near and not near Follicle 

B cells and Follicle B cells. On the right, the number of CD4+ Memory T cells (n) and the 

proportion of those that are near Follicle B cells. Scale bars correspond to 250μm. 
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Supplementary Figure 7. Spatial visualization of selected cell types in the spleen samples. a. 

Visualization of Neutrophils/Monocytes and Podoplanin-enriched cells, exemplifying cell-type 

spatial relationship patterns consistent across all samples. b. Visualization of Ki67 and Follicular 

B cells, exemplifying cell-type spatial relationship patterns consistent across patients. c. 

Visualization of Blood endothelial and Follicular B cells, exemplifying non consistent cell-type 

spatial relationship patterns. Scale bars correspond to 250μm.  
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Supplementary Figure 8. The effects of the neighborhood size. a-c. Histogram of the cell-type 

proportion of cells from the neighbor of each cell type given neighborhood sizes of 10, 50 and 100 

μm (top). Corresponding spatial visualization of the neighborhood as a black outline for chosen 

cell type (bottom). (a) Visualization of the cerebellum proportions and spatial visualization 

Granule neighborhoods. (b) Visualization of the embryo proportions and spatial visualization of 

the Endothelium neighborhoods. (c) Visualization of the PKHL spleen proportions and spatial 

visualization of the Neutrophils/Monocytes neighborhoods. Scale bars correspond to 250μm.  
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Supplementary Figure 9. a. Visualization of the shuffled labels using the square and hexagonal 

grid tiles on simulated dataset for finer and coarser scales. b. Consistency of Z-scores and scales 

for the different grid tile shapes. The x-axis represents the Z-score obtained using the square grid 

tiles and the y-axis represents the Z-score obtained using the hexagon grid tiles. The color 

saturation represents the scale in which the value was obtained. The red line represents the 

correlation of the values. 
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