
1Scientific RepoRts | 6:27940 | DOI: 10.1038/srep27940

www.nature.com/scientificreports

Multimodal Correlative Preclinical 
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Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem 
for quantitative image analysis in preclinical research. This paper presents a novel approach for whole 
body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The 
algorithm integrates multiple imaging sequences into a machine learning framework, which generates 
supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN 
classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate 
results showing segmentation of mice images into several structures including the heart, lungs, liver, 
kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on 
a large set of mice and organs, indicated that our system outperforms alternative state of the art 
approaches. The system proposed can be generalized to various tissues and imaging modalities to 
produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical 
studies of small animal imaging.

Small animal in-vivo imaging plays an essential role in preclinical research aimed at understanding physiological 
processes as well as progression of disease and development of therapies. Imaging across multiple modalities, 
Magnetic Resonance (MR), computed tomography (CT), and optical imaging modalities, such as biolumines-
cence imaging (BLI) and fluorescence imaging (FLI) provide valuable complementary information for dynamic, 
structural, functional and molecular identification in preclinical studies1. Even within a single modality regis-
tration can be important, for correction of motion in longitudinal scans. Specifically for MRI, field dependent 
effects provide incentive for registration of data acquired at different field strength. Magnetic relaxation rates (R1 
and R2) of many endogenous proteins and exogenously delivered contrast media show unique dependence on the 
magnetic field. Similarly, magnetic field affects contrast in arterial spin labeling (ASL) measurements of blood 
flow; chemical exchange saturation transfer (CEST) for detection of contrast agents and endogenous metabolites; 
blood oxygenation dependent (BOLD) contrast for detection of functional activity in response to hemodynamic 
challenges; and others. This magnetic field dependence creates a unique opportunity for another dimension of 
molecular imaging, but requires registration of MRI data acquired at different fields.

Segmentation of anatomical tissues is fundamental for accurate and robust multi-modal correlative imaging 
and quantitative analysis in preclinical research. The goal of image segmentation is the identification and deline-
ation of coherent structures in the image. Manual delineation is difficult and time consuming and does not meet 
the accuracy, reproducibility and efficiency demands. Automatic segmentation of anatomical structures in medi-
cal images remains challenging due to issues such as noise, intensity non-uniformity, partial volume effect, shape 
complexity of the various structures, natural tissue intensity variations, and the overlap in intensity characteristics 
between the anatomical structures. Specifically, the difficulty in whole body small animal image segmentation 
stems from the small size of the structures, the variability in the structure types, and the need to compensate for 
cardiac and respiration motion artifacts.
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Segmentation of Whole body Small Animal Images
Computational algorithms for whole body small animal image segmentation are typically guided by an anatomi-
cal atlas reference image. Below we review prominent atlas based approaches designed for small animals.

One of the earlier whole body mouse atlases presented is the MOBY phantom. MOBY2 is a four-dimensional (4D) 
whole body anatomical mouse model including cardiac and respiratory motion models. The three-dimensional  
(3D) anatomy of the phantom was based on the Visible Mouse3 a 110 micron resolution magnetic resonance 
microscopy (MRM) volume image of a normal 16 weeks old male mouse data obtained from Duke University. 
The anatomical structures were manually segmented using the SURFdriver10 software and the organ phantom 
was built by fitting 3D non-uniform rational B-spline (NURBS) surfaces to each segmented structure.

The Digimouse atlas4 was generated by constructing a 3D volumetric whole body mouse atlas from coregis-
tered x-ray CT and cryosection data of a normal nude male mouse. The images were acquired post mortem from 
a single mouse placed on a frame with fiducials and the segmentation was performed using interactive editing 
tools on a wide range of anatomical structures. The atlas includes the segmentation with coregistered PET, x-ray 
CT and cryosection images.

In5 the authors used three publicly available small-animal atlases (Sprague–Dawley rat, MOBY, and 
Digimouse), to build three articulated skeleton atlases. Major bone groups were manually segmented for each 
atlas skeleton. Then, a kinematic model for each atlas was built: each joint position was identified and the cor-
responding degrees of freedom were specified. Similarly, in6–8 an atlas based registration method was presented 
warping the digimouse atlas to a surface of optical imaging data. The authors in9 proposed a non-rigid whole 
body skeleton registration for mice, based on 3D shape context model of point based surface registration.

Baiker et al.10,11 presented an atlas based approach for whole body segmentation of mice from low-contrast 
Micro-CT acquired in-vivo. The authors combine atlas-based registration utilizing high-contrast organs in 
Micro-CT (skeleton, lungs and skin) and then soft tissue approximation. The registration involves global align-
ment followed by registration of the individual bones as well as the lungs of the MOBY atlas by defining a hier-
archical tree model. The abdominal organs are interpolated from the atlas to the subject domain based on a 
Thin-Plate-Spline (TPS) approximation12. Their approach was validated for registration on 26 non-contrast 
enhanced Micro-CT mice and the organ interpolation was evaluated using 15 contrast enhanced Micro-CT 
images. This approach was later applied by13 for super-resolution reconstruction of MRI in whole-body mouse 
data in studies of tumor metastases. Recently14,15 developed an automatic statistical atlas (multi-subject) approach 
to registration of micro-CT images in mice. The statistical atlas shape model registration first registers high con-
trast organs, and then estimates low contrast organs based on the first set of registered organs. To register the high 
contrast organs, the authors utilized a 2D-registration-back-projection scheme that deforms the 3D atlas based 
on an anterior–posterior X-ray projection and a lateral optical photo of the mouse silhouette.

Atlas guided approaches are a useful tool for medical image segmentation when a standard atlas is available16. 
Yet, different studies require significantly diverse data acquisition protocols. Differences may occur in terms of 
strain of the mouse, positioning variability, size, gender, age, the type of organs defined, resolution and modalities 
involved. The segmentation is limited by the ability of the atlas to represent the type of images under considera-
tion. Specifically, all the previous atlases are typically based on normal male mice data4. Additionally, while high 
accuracy has been shown with skeleton and bones, segmentation accuracy for abdominal organs has been quite 
limited due to the poor soft tissue contrast in micro-CT17. The approach we present is utilized with data acquired 
in-vivo, including abdominal organs and can be adapted to a wide range of modalities and structures making 
it useful for automatic segmentation, future atlas constructions. The ability to automatically segment the data 
without the need for a reference atlas enables the study of organs and tissues that change between animals or 
between time points. Important examples include pathologies, such as growth of tumors, as well as physiological 
remodeling of tissues: for example the ovarian cycle and its effects on the uterus and ovaries, embryo implantation 
and multi fetal pregnancy.

Related Segmentation methods
Superpixel segmentation is a common preprocessing step in many computer vision applications. The term “super-
pixel”/“supervoxel” refers to grouping the image pixels/voxels, into uniform atomic regions enclosed in structures18.  
The main advantage is the complexity reduction due to the smaller number of primitives compared to the number 
of pixels. Recent superpixel algorithm examples include reliance on meanshift19, minimum spanning trees20 k 
means clustering21, gradient ascent based approaches22–24 or graph representation of the25,26.

Graph-based segmentation techniques represent the image as a graph with vertices, edges and weights. Local 
variation by20 is a graph based approach such that each superpixel is the minimum spanning tree of pixel elements 
with complexity of O(nlogn) where n is the number of voxels. Shi and Malik26, proposed a spectral analysis tech-
nique to partition the image graph, based on finding the optimal cut. They introduced the normalized cuts crite-
rion, which examines the similarities between neighboring pixels taking into account self-similarities of regions 
being separated. Once the two sets yielding the optimal cut have been found the procedure can be repeated 
iteratively until a desired number of superpixels is reached24. The complexity of the normalized-cut is O(n3/2) . 
The segmentation by weighted aggregation (SWA)27 approach is an effective acceleration of the normalized cut 
approach inspired by algebraic multigrid28. Alpert et al.29 further developed a probabilistic formulation based on 
the SWA algorithm. Additionally30, incorporated a Bayesian model into the calculation of affinities of the SWA 
algorithm and applied the model to the problem of brain tumors and edema segmentation in MR data. Applying 
this approach to different structures would require designing different parametric models and it is not clear 
whether the unified probabilistic framework would scale up to the case of multiclass whole body segmentation 
with a wide range of shapes and appearances.
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Machine learning methods have been extensively used for medical image segmentation31,32 and can be divided 
to parametric and nonparametric methods. Parametric methods include for example decision trees33 artificial 
neural networks34 and Support Vector Machines (SVM). SVM’s were introduced by35 and have obtained suc-
cessful performance in many pattern recognition applications. Nonparametric methods, do not require learning 
parameters and instead rely on the data directly36. The nearest neighbor (NN) method is a common nonpara-
metric algorithm in which given a collection of training objects and a query object, builds a data structure which 
classifies according to the training object that is most similar to the query37. The simplicity of the NN algorithm 
avoids the common parameter overfitting problem and allows working with any distance function and number 
of classes.

In this work we propose a machine learning approach to compose the supervoxels into segmented structures. 
The use of machine learning is justified because of its ability to learn robust models with a small set of labeled 
images. Our method incorporates a bottom-up hierarchical agglomerative strategy based on pixel similarities 
in a graph-based approach. Although any supervoxel technique can be considered, we adapt SWA as a rapid 
and effective way to obtain a full hierarchy of superpixels in O(n). Then inspired by the work of38 and motivated 
by physiological and computational models of humans39, we utilize a joint SVM-kNN approach constrained to 
multiple heatmap bounding box (BB) regions. The key idea of constrained SVM-kNN is that a query is compared 
to all training examples in the region to obtain the “k-nearest neighbors” (kNN), and then a refined classification 
of SVM is performed amongst these neighbors to classify the query. The integration of the two methods, which 
operate on the same distance measure allows combining the advantages of both methods, avoiding the kNN prob-
lem of high variance (in bias-variance decomposition) and improving the time optimization of SVM.

Novelty of this contribution
In previous work, a multiscale method for automated segmentation of multiple sclerosis in brain MR images 
that extended the Segmentation by Weighted Aggregation (SWA) to 3D and multi-modal data was developed40. 
Building on that study we report here a novel application for multimodal body imaging, overcoming multiple 
challenges relative to previous studies:

•	 First, the study focuses on small animals and abdominal organs and demonstrates results in a large mul-
ti-modal experiment combining information from MR, CT and optical imaging for small animals. To date 
advanced imaging and surgical technologies are becoming available in the case of clinical data for humans41, 
nevertheless existing segmentation methods developed for small animals are commonly designed for specific 
organ, modalities, or applications.

•	 Second, the algorithm does not rely on atlases. Existing approaches to whole body segmentation are based on 
atlases and are therefore usually tuned for specific set of structures, mouse models, mouse holders, gender, 
and modalities from which they were constructed. In contrast, the algorithm utilizes a heatmap based con-
straint relaxing the methods dependence on accurate registration of atlases while keeping the location prior 
knowledge and can therefore be applicable to wide range of problems. Moreover, studies producing atlases 
can benefit from our approach by employing an automatic segmentation approach rather than an interactive 
approach.

•	 Third, the system starts with an efficient supervoxel extraction based on SWA, where only intensity and loca-
tion feature statistics are accumulated followed by multiple SVM-kNN classifiers each constrained to high 
probability regions which are later composed to obtain the segments structures.

In summary, our approach makes the following contributions:

(i)   The development of an automatic segmentation method for a wide range of anatomical structures and ovar-
ian tumors incorporating a machine learning strategy to graph based supervoxels. To our knowledge there 
are few reports of methods with such a wide variety of structures and modalities that have been extensively 
validated for preclinical research (See Table 1).

(ii)   Propose an effective 3D registration approach of BLI to MR based on point set registration of the whole body 
mouse surface utilizing a Gaussian mixture models (GMM) formulation.

(iii)  Advance the state of the art significantly in (1) providing a novel in-vivo multimodal small animal bench-
mark experimental data set. (2) Obtaining improved accuracy results on a wide range of anatomies verified 
on an extensive dataset.

The remainder of this paper is organized as follows: section 2 describes the main steps of the system and seg-
mentation algorithm. Section 3 provides experimental results obtained by our approach in comparison to other 
approaches. Section 4 summarizes our conclusions and discusses future extensions of our approach.

Material and Methods
Animal experiments were approved by the Weizmann Institutional Animal Care and Use Committee and all 
experiments were performed in accordance with the approved guidelines.

The algorithm proposed is composed of several key steps: First, after performing the multi modal imaging 
with the designed bed and markers we register all imaging modalities to one pre-selected channel (in our exper-
iments the MR 9.4T T2w). In the second step we generate the graph pyramid based on the multi-modal data and 
extract supervoxels from intermediate levels of the multi-scale graph. In the third step a set of bounding boxes 
are determined automatically for each structure region by defining a coordinate systems on the mouse body and 
generating an average heat map per structure based on a the training set coordinates. In the fourth step, we apply 
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a machine learning approach to classify the supervoxels in each heat map region. Finally, we compose the results 
to obtain the segmentation output. Figure 1, shows a schematic representation of the algorithm.

The approach was validated using twenty datasets of mice bearing tumor (14, 6 datasets of larger and smaller 
mice respectively). Mice were anesthetized and placed on a custom-made cross-modality bed loaded with flu-
orescent markers, and imaged sequentially with high field MRI (9.4T Bruker), low field MRI (1T Aspect), opti-
cal imaging (IVIS, Caliper) for bioluminescence (BLI), and micro-CT (Tomoscope). Figure 2, illustrates the 
sequences acquired and used by the system.

Data acquisition and preparation. Bed manufacturing. An animal bed for multimodal imaging was 
specifically designed and manufactured for this project (see Fig. 3). Design guidelines were based on the specific 
requirements of each of the imaging modalities. Bed was made out of black plastic in order to minimize optical 
reflection and in order to be MR compatible. Bed size and design was matched to the available insert in the IVIS 
spectrum stag, holes were created at the bottom of the bed at the exact pattern found in the IVIS stage in order 
to enable the use of trans-illumination. Same holes were used for insertion of fiducial markers and insertion of 
small rubber bands used to fix the animal to the bed. Fiducial markers were created by small vials, with black 
walls and open top, positioned vertically next to the body of the mice. Vials were filled with a solution of 10 mg/ml 
dextran FITC (sigma) that was detectable by epi-fluorescence, MR and CT imaging. Finally, mice were secured to 
a portal bed using small rubber bands on limbs and teeth holder and imaged sequentially by different modalities 

Articles Our System Baiker et al.10 Khemlinski et al.5 Joshi et al.7 Wang et al.15 Xiao et al.9

#mice 20 15 3 1 14 13

Brain – 0.76 – 0.8273 0.66 ±  0.13 –

Heart 0.81 ±  0.05 0.62 0.73 ±  0.08 0.8161 0.72 ±  0.05 –

Lungs 0.77 ±  0.04 0.65 0.46 ±  0.09 – 0.63 ±  0.14 –

Liver 0.75 ±  0.05 0.67 0.65 ±  0.03 0.5899 0.69 ±  0.05 –

Kidneys 0.77 ±  0.15 0.85 0.62 ±  0.17 – 0.69 ±  0.09 –

Tumor* 0.42  ±  0.23 – – – – –

Stomach 0.76 ±  0.09 – – – – –

Vena cava 0.55 ±  0.17 – – – – –

Bladder 0.71 ±  0.16 – – 0.5481 – –

Spleen – – – – 0.32 ±  0.1 –

Table 1. Summary of the results obtained compared to state of the art techniques for internal set of 
structures. Average Dice similarity coefficients are presented to compare between the automatic segmentation 
and the ground truth segmentation. * Orthotopic ES2-Luc-DSRed Ovarian Carcinoma tumor xenograft.

Figure 1. System Outline. Input: Mouse is placed on bed and imaged sequentially across modalities. (a) The 
multimodal data obtained is aligned. (b) Graph pyramid construction. The image illustrates three graph levels 
above the input data blocks. (c) Regional bounding box based on structure prior map. (d) Supervoxels are 
classified to obtain the output of structure segmentation.
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while positioned on bed with markers detectable by CT, IVIS and MRI to ensure accurate alignment between 
modalities.

Animal preparation for imaging. All experiments were approved by the Institutional Animal Care and Use 
Committee of the Weizmann Institute of Science. Animals were purchased from Harlan Laboratories Ltd 
(Jerusalem, Israel). Orthotopic ovarian tumor model was studied in female CD-1 nude mice 2 weeks after initia-
tion of tumor. To generate the tumor, 6–8 weeks old mice were anesthetized with ketamine (100 mg/kg intraperi-
toneally; Fort Dodge Animal Health) and xylazin (20 mg/kg intraperitoneally; XYL-M2, V.M.D., Arendonk) and 
0.5 ×  106 ES2-Luc-DsRed cells were injected into the bursa of the ovary through a small 2–3 mm skin incision in 
the back of the animal. The incision was then sutured and the animals were allowed to recover on a warmed pad. 
ES2-Luc-DsRed ovarian carcinoma cells express luciferase (Luc) and red fluorescent protein (DsRed) that allow 
BLI and fluorescent imaging42.

On the day of imaging, the animals were anesthetized as described above, positioned on the specially designed 
bed and the tail vein was catheterized. In between imaging modalities, the depth of anesthesia was evaluated and 
additional half-dose of anesthetics was added subcutaneously if needed. Transferring between imaging modali-
ties was done while the animal was kept in the bed and with taking care not to change the position of the animal. 
Imaging order was: BLI, MRI 9.4T, MRI 1T and CT.

In vivo MR image acquisition on 9.4T magnet. MRI experiments at 9.4T were performed with a horizontal bore 
spectrometer (Bruker Biospec; Karlsruhe, Germany). A quadrature volume coil, with 72 mm inner diameter and a 
homogeneous RF field of 100 mm along the axis of the magnetic field, was used for both RF transmit and receive.

Coronal T2-weighted fast spin-echo images were acquired using RARE sequence with the following parame-
ters: TR =  3000 ms; effective TE =  40 ms; slice thickness =  1.0 mm; inter slice gap =  0.1 mm; FOV =  6.4 ×  6.4 cm2; 
matrix 256 ×  128, zero filled to 256 ×  256; rapid acquisition with relaxation enhancement (RARE) factor =  8; 
number of slices =  24; number of averages =  4.

Coronal 3D T1-weigthed gradient-echo images were acquired using MDEFT sequence with the follow-
ing parameters: pulse flip angle =  15°; TR =  10 ms; TE =  3 ms; slice thickness =  0.5 mm; no inter slice gap; 
FOV =  6.4 ×  6.4 cm2; matrix 256 ×  128, zero filled to 256 ×  256; number of slices =  48; number of averages =  2. 

Figure 2. Imaging Acquisition. Illustration of the experiment flow and sequences acquired and processed by 
the algorithm: (a) Optical imaging BLI; (b) MR 1T T2w; (c) MR 1T T1w; (d) MR 1T T2w; (e) MR 9.4T T2w 
(different TR, TE); (f) MR 9.4T T1w; (g) MR 9.4T T1w +  GdDPTA; (h) Micro-CT. The example demonstrates 
the benefit of multimodal imaging.

Figure 3. Animal Bed Design. 
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After the first acquisition of the T1-weigthed image, contrast material BSA-GdDTPA43 was injected through the 
tail vain catheter and imaging was repeated 3 times.

In vivo MR image acquisition on 1T magnet. MRI experiments at 1T were performed with a permanent magnet 
(Aspect, Israel).

Coronal T2-weighted fast spin-echo images were acquired using T2-FSE sequence with the following 
parameters: TR =  2791 (or 4335) ms; TE =  80 (or 40) ms; slice thickness =  1.0 mm; inter slice gap =  0.1 mm; 
FOV =  6.4 ×  6.4 cm2; matrix 256 ×  180, [zero filled to 256 ×  256]; number of slices =  20; number of averages =  2.

Coronal 3D T1-weigthed gradient-echo images were acquired using GRE-SP sequence with the follow-
ing parameters: pulse flip angle =  35°; TR =  10 ms; TE =  2.6 ms; slice thickness =  0.5 mm; no inter slice gap; 
FOV =  6.4 ×  6.4 cm2; matrix 256 ×  256; number of slices =  48; number of averages =  2.

Optical imaging. Tumor development was followed using bioluminescence imaging (BLI) on the IVIS spectrum 
imaging system (Caliper Life Sciences). For BLI imaging mice were given an intra-peritoneal injection of 1.5 mg 
of D-luciferin (Caliper Life Sciences), sequential imaging iterations of 1 min exposure were performed until sig-
nal reached maximal plateau (about 15 min post D-luciferin IP injection). A single mouse was imaged at a time, 
Signal was acquired in BLI mode for 60 sec’ (no excitation and open emission filter) field of view of 12.6 cm’, Field 
stop and binning were selected according to signal in order to enable maximal signal without saturation.

In vivo micro-CT. The set of mice were scanned using a micro-CT device TomoScope® 30S Duo scanner (CT 
Imaging, Germany) equipped with two source-detector systems. The operation voltages of both tubes were 40 kV. 
The integration time of protocols was 90 ms (360 rotation) for 3 cm length and axial images were obtained at an 
isotropic resolution of 80 μ . Due to the maximum length limit, to cover the whole mouse body, imaging was per-
formed in two parts with overlapping area and then all slices merged to one dataset representing the entire ROI. 
The radiation dose for each mouse was 2.2 Gy.

Image Preprocessing: Registration and Manual segmentation. The data set for the experiment includes 
multi-modal 3D images of twenty mice and their manual segmentation (will be available on our group site). For 
each mouse, all 3D images were brought into the same frame of reference of the T1w channel on the 9.4T magnet. 
The advantage of the selected mouse holder is the ability to transport a small size anaesthetized mouse on bed 
from one scanner to the other, allowing us to make simple rigid body assumptions for inter-modality images. 
Spatial registration of MR channels was performed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm)44, The 
registration of the CT was performed using ITK software. Several cases in which the registration did not succeed 
were manually corrected based on the circular fiducial markers. Figure 4, demonstrates the registration results.

The manual segmentation of MR mice data was performed using the itksnap software (www.itksnap.org)45, 
based on the MR soft tissue contrast in all organs. The manual ground truth segmentation included nine struc-
tures: heart, lungs, liver, stomach, left kidney, right kidney, tumor, vena cava and bladder (Fig. 1; See Materials 
and Methods for illustration). Manual segmentation for four additional classes was generated in the CT data by 
manually assigning bright supervoxels (above a predefined threshold) to one of the following categories (upper 
limbs, ribs, spine and lower limbs).

Segmentation methodology. In this section, we first briefly explain the SWA approach for generating supervox-
els together with our extensions40 (we refer the reader to the appendix for a detailed formulation) and then we 
explain the machine learning formulation.

Supervoxel extraction. The SWA algorithm uses a graph representation of the images and constructs a pyramid 
of graphs, which adaptively represents increasingly larger aggregates of voxels of similar properties. The nodes 
and the edge values of the initial graph are the voxels of the given images and similarity measures between neigh-
boring voxels, respectively. The algorithm recursively coarsens the graph, level after level, by softly aggregating 
several similar nodes of a finer level into a single node of the next coarser level. The edges of the coarser graph are 
based on statistical features which are computed throughout the coarsening process for each aggregate. At each 
coarse scale there are about half as many nodes as in the next finer scale. The algorithm produces a hierarchy of 
supervoxels, each larger segment possibly containing several smaller ones.

The limitation of the hierarchical supervoxel algorithms is that there is no guarantee that a structure will 
appear at any level of the tree. Commonly, fine levels lead to over segmentation (more segments than structures) 
and coarse levels lead to under segmentation (missing structures). Thus supervoxel extraction from intermedi-
ate levels of the pyramid aims to overcome this limitation. The intermediate levels allow supervoxels to gather 
enough statistics before they merge with other structures and are determined based on the volume characteristics 
of the anatomical structures (scales 4–6 of ~14). Figure 5, illustrates supervoxels extracted in intermediate levels.

Automatic weight selection. Generally segmentation results may depend critically on the proper assignment of 
parameter values. In cases where multispectral data is available one of the difficulties lies in integrating the infor-
mation into a combined similarity measure. Thus, in our approach the weight coefficient for each channel are 
determined automatically based on the gradient dominance of every channel. Such that given m =  6 channels 
= … …l i m{1, , }, we set the weights based on the average gradient proportion along the surface border of the 

manual segmentation for all structures. Two randomly chosen data sets were used to determine the weight coef-
ficient [0.14, 0.14, 0.13, 0.13, 0.23, 0.25] and these sets were not used later in either the training or testing 
experiments.

http://www.fil.ion.ucl.ac.uk/spm
http://www.itksnap.org
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Heatmap Computation. The heatmap for each mouse, is constructed based on affine co-registrations of the 
manually labeled training set data to the test subject. First, the training sets are aligned with the test set and then 

Figure 4. Alignment illustration. The columns present 2D slices of all MR and CT moving sequences post 
registration overlaid on the fixed reference (MR 9.4T T2w sequence). The rows (a–d) correspond to a different 
2D axial slice. Each row includes from left to right MR 1T T2w , MR 1T T1w; MR 1T T2w (different TR, TE); 
MR 9.4T T2w; MR 9.4T T1w; MR 9.4T T1w +  GdDPTA; Micro-CT (presented in green) and the fixed sequence 
(presented in magenta). The image was produced with the matlab imshowpair function. Since every sequence 
has a different intensity profile the amount of green in each anatomical structures varies between the sequences/
columns. The column of the reference MR 9.4T T2w is the only grey image.

Figure 5. Supervoxel Illustration (a–c): Typical supervoxels extracted from three intermediate scales, (d) 
corresponding slice of original image.
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the prior map is created by voxel-wise averaging of the tissue structures over the manually labeled training data 
sets. The probability function is formed by the frequency that each structure occurred at a voxel across the train-
ing sets. The map obtained, represents the prior probability of each voxel in the test set to belong to a particular 
structure. Due to the risk of biases of non-rigid deformation between mice the structure region map is defined by 
the bounding box (BB) of pixels with positive frequency.

Machine Learning Model. The unsupervised hierarchical supervoxel extraction process is integrated with an 
SVM-kNN heatmap constrained learning model. The heatmap BB constraint yields a fast coarse categorization 
followed by the kNN model obtaining a smaller focused NN set of training examples and completed by the SVM 
executing a fine discrimination of the test supervoxels.

Assuming a training set of q supervoxels, x R ,k
d  k =  1, … q extracted from intermediate levels of the pyramid, 

each represented by a d dimensional feature vector, the features are first normalized to zero mean and unit vari-
ance. The classifier is trained in a leave-one-out cross-validation strategy on the two sets of mice. The BB is used 
in the machine-learning model to split the training and testing supervoxels to regions. BB may overlap and class 
labels are not suppressed outside the regional BB. Training is performed on a multi-class problem using nine 
categories each representing a tissue class. Finally, when testing a new supervoxel all the BB decisions are merged 
by a voting scheme.

Our method trains an SVM on the k-nearest neighbors and directly obtains local decision boundary. The 
parameter k =  100 is selected according to best performance. SVMs attempt to find a separating hyperplane 
which maximizes the margins between the classes while minimizing the error on the training set with a cost 
depending on the number of misclassifications (C =  28 is the penalty parameter for misclassification  
on the training data). Typically SVM maps the data from the original feature space to a higher  
dimensional space. Our experiments were performed utilizing the LIBSVM software package (available at  
http://www.csie.ntu.edu.tw/~cjlin/libsvm)46, with a non-linear SVM using a radial basis function kernel. 

γ γ= − − =R x x x x( , ) exp( ), 1,f g f g
2

Summary of Machine Learning Steps

•	 Split training/testing supervoxels according to heatmap BB generated.
•	 For each BB, and all unseen test samples:

1. Select the k nearest neighbors based on pairwise distance to training set.
2. If all k neighbors are of the same class, label the query and exit;
3. Else, 

i. train multiclass SVM with kernel matrix only with kNN supervoxels.
ii. Use the resulting classifier to label the query.

•	 Merge all BB-classifier labels by voting scheme, for all test samples.

BLI analysis. Optical imaging modalities such as Bioluminescence imaging (BLI) are widely used in-vivo to 
monitor biochemistry with high sensitivity specifically to follow tumors, albeit BLI does not provide anatomical 
information and therefore it is commonly fused with high resolution micro-CT images. In this study we focus 
on segmenting soft tissue organs, taking advantage of MRI’s excellent tissue contrast, thus all the modalities are 
aligned with an MR channel as the reference space.

To fuse the BLI data with the MR data we first perform three-dimensional (3D) reconstruction of the lumi-
nescent light source distribution by the Living Image software which is based on a diffuse tomography model 
(DLIT). We then extract points representing the skin surface in MR and BLI data automatically. The skin surface 
of the MR reference is detected in the coarse scale of the automated supervoxel hierarchy. Finally a point based 
registration approach47 based on a GMM formulation is applied minimizing the distance measure between the 
two corresponding mixtures.

The combined use of MRI and CT with optical imaging allows integration of anatomical, functional, and met-
abolic information enhancing tumor identification. Figure 6 shows the results of alignment of BLI and MR and 
provides visualization of the GT tumor overlap with the positive BLI signal. However, the BLI imaging technique 
is not accurate enough for tumor localization. Namely, currently inclusion of the BLI signal in the segmentation 
could lead to disagreement between the automatic and manual segmentation with many false positives (FP) and 
false negatives (FN) in tumor delineation. The limitation stems from the low resolution due to light scattering in 
the tissue.

Results
Validation. The performance of the system is evaluated on twenty mice and nine organs including heart, 
lungs, liver, left kidney, right kidney, tumor, stomach, vena cava and bladder. To analyze the accuracy of the 
algorithm, dice coefficients of volume overlap were computed. Given two volumes automatic (A) and manual 
(M), SA, SM represent the automatic segmentation and the manual ground truth segmentation respectively. Dice 
coefficients are computed as follows D =  2 *  |SA∩ SM|/|SA|+ |SM|. Table 1 summarizes the average results obtained 
for the organs in terms of Dice coefficients compared to benchmarks results. Figure 7, demonstrates visualizations 
of results on 16 axial slices.

CT images were acquired and aligned as described in Materials and Methods. Manual labeling to one of four 
classes (1) upper limb - including the scapula, humerus, radius, and ulna; (2) ribs; (3) sternum central - including 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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the vertebrae and pelvis; and (4) lower limb - including the femur, fibula and tibia was performed as described 
in Materials and Methods. Table 2, presents results obtained on four skeleton structures with twenty mice by 
automatic segmentation of the CT modality alone (extracting scale =  7 of ~14 and without using the heatmap and 
kNN due to the CT high-contrast properties). Figure 8 shows visualizations of results in 3D.

Computational complexity. Supervoxels are used to speed up the classifier and it is therefore important 
that they are generated efficiently. The computational cost for the supervoxel generation based on the multiscale 
pyramid is linear O(n) in the number of voxels in the image n. The classifier complexity is controlled by the kNN 
and SVM classification in each bounding box. The search time of the naive exact NN per test query is O(dns) 
where ns is the number of training supervoxel samples in each bounding box and d the number of features. For 
higher dimensions allowing approximate NN search with locality sensitive hashing37 can dramatically accelerate 
the algorithm. SVM training requires solving a quadratic problem and choosing the support vectors which is 
generally O(dk2) for the RBF kernel where k is the number of training points from kNN.

Our implementation on a standard Intel i7 CPU 3.07 GHz dual Core PC (with 2 GB RAM) takes less than 
2 minutes for supervoxel pyramid generation on a multi modal set of 150 × 240 × 37 volumes of interest. This 
does not include the preprocessing to determine the correspondences to the selected MR channel (based on SPM 
and ITK software). Training and testing take less than one minute per mouse dataset and can be parallelized over 
datasets. The parameters of the algorithm were chosen empirically and include: pyramid parameters (e.g. fine, 
course coupling are α =  15,10 respectively, where the automatic multi-channel weight is explained in Materials 
and Methods, and the SVM-kNN classifier parameters k =  100, γ  =  1).

Discussion
In-vivo multi-modal imaging provides valuable complementary information in preclinical studies. Nevertheless 
advances in imaging techniques in preclinical research have not yet been matched by advances in computational 
methods enabling quantitative analysis. Despite the numerous segmentation approaches, segmentation of whole 
body small animal in multi-model imaging remains a difficult problem.

Figure 6. Registration of bioluminescence imaging to MRI. (a) 3D reconstruction of bioluminescence 
imaging (IVIS Spectrum). (b) MR whole body coarse segmentation. (c) Bioluminescence superimposed on MR 
after registration. (d) GT segmentation (heart in red, lungs in green, liver in yellow, stomach in blue, tumor in 
purple).
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This study presents an automatic small animal imaging segmentation and learning method. Unlike previous 
approaches to whole body small animals, we do not rely on atlas registration. Instead, we incorporate an effi-
cient multiscale approach to obtain supervoxels followed by a machine learning framework based on multiple 
SVM-kNN classifier each constrained to heatmap region, with high probability for the structure to obtain tissue 

Figure 7. Illustration of segmentation results on internal organs. 16 axial slices are presents in the different 
columns, in two set of rows upper (a–c), lower (d–f). The organs presented are the ones used for calculating 
the dice score, namely heart (red), lungs (green), liver (yellow), stomach (blue), kidney left (cyan), kidney right 
(magenta), ovarian tumor (purple), bladder (dark green). Each set of rows includes: automatic segmentation 
(a,d) manual segmentation (b,e), aligned BLI images overlaid on the MR data (c,f).
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segmentation. We demonstrate state-of-the-art accuracies on a large dataset, while segmenting more structures 
and being significantly more accurate than most other state of the art methods. It will be interesting to see the 
effect of deep learning strategies which have recently shown optimal results in many computer vision domains 
where large amounts of training data is available48. Finally, the robust and effective algorithm proposed can be 
adapted to a variety of segmentation scenarios and could have a large impact on this field.
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