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Abstract

Background and objective

Chemotherapy drugs, such as cisplatin (DDP), improve the survival of patients with lung

cancer by inducing apoptosis in cancer cells, which quickly develop resistance to DDP

through uncharacterized mechanisms. Glioma Pathogenesis-Related Protein 1 (GLIPR1)

plays an important role in cell proliferation, migration and apoptosis. However, the expres-

sion and function of GLIPR1 in mediating DDP resistance in human lung adenocarcinoma

A549/DDP and human large cell lung cancer H460/DDP cells has not yet been reported.

Methods

In this study, real-time PCR (RT-PCR) and western blot were used to examine the mRNA

and protein expression of GLIPR1, respectively. Bright-field microscopy, the cell counting

kit-8 (CCK-8) assay, flow cytometry analysis and JC-1 dye were used to measure the cellu-

lar morphology, proliferation, apoptosis and mitochondrial membrane potential,

respectively.

Results

Compared to human lung adenocarcinoma A549 cells, the mRNA and protein expression of

GLIPR1 were significantly increased in DDP-resistant A549/DDP cells (p < 0.05). Similarly,

the mRNA level of GLIPR1 in DDP-resistant H460/DDP cells was also significantly higher

than that in DDP-sensitive H460 cells (p < 0.05). Silencing of GLIPR1 in A549/DDP and

H460/DDP cells led to increased apoptosis via a mitochondrial signaling pathway following

incubation with various concentrations of DDP. Furthermore, GLIPR1 downregulation

markedly reduced the protein expression of Bcl-2, and increased the cleaved Poly (ADP-

Ribose) Polymerase (PARP) and cleaved caspase-3 in DDP-resistant A549/DDP cells.
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Conclusion

In this study, we demonstrated for the first time that GLIPR1 could modulate the response of

DDP-resistant A549/DDP and H460/DDP cells to cisplatin. Therefore, GLIPR1 deserves fur-

ther investigation in the context of none-small lung cancer (NSCLC).

Introduction

The highest incidence of malignant tumors throughout the world is attributable to lung cancer

[1]. More than 2.2 million patients are diagnosed with lung cancer every year, and a large

number of them are diagnosed at advanced stages [2]. Chemotherapy improves the survival of

both patients with early stage cancer after surgery and patients with advanced non-small cell

lung cancer (NSCLC) [3–4]. Cytotoxic drugs, such as cisplatin (DDP), could induce DNA

damage through various signaling molecules, such as B-cell lymphoma 2 (Bcl-2) and c-Jun N-

terminal kinase (JNK) [5–6]. Although lung cancer cells quickly develop resistance to DDP,

the underlying molecular mechanism of this resistance has not been fully characterized [7].

Glioma Pathogenesis-Related Protein 1 (GLIPR1), a p53 targeting gene, was originally iden-

tified as a tumor suppressor in prostate cancer [8–10]. The expression of GLIPR1 was reduced

in prostate and lung cancer cells compared to normal cells [9, 11]. Additionally, overexpres-

sion of GLIPR1 induced apoptosis of lung cancer cells [11] and prostate cancer cells by activat-

ing reactive oxygen species/the JNK pathway [12], downregulating c-Myc [13], or suppressing

AURKA and TPX2 [14]. In contrast, GLIPR1 is overexpressed in astrocytic [15–19], wilms

[20], acute myeloid leukemia [21], and melanoma [22] cancers. The overexpression of GLIPR1

increases glioma cell proliferation [18–19, 23], whereas the downregulation of GLIPR1

decreases the proliferation of glioma [18, 23] and melanoma [22] cells. However, the role of

GLIPR1 in mediating DDP resistance in human lung adenocarcinoma A549/DDP and human

large cell lung cancer H460/DDP cells has not yet been reported.

In this study, we found that the mRNA and protein expression of GLIPR1 were significantly

increased in DDP-resistant A549/DDP cells compared to DDP-sensitive A549 cells (p< 0.05).

The mRNA level of GLIPR1 in DDP-resistant H460/DDP cells was also significantly higher

than that in DDP-sensitive H460 cells (p< 0.05). Silencing of GLIPR1 in A549/DDP and

H460/DDP cells led to increased apoptosis via a mitochondrial signaling pathway following

incubation with various concentrations of DDP. Furthermore, GLIPR1 downregulation signif-

icantly increased the presence of activated caspase-3 and cleaved Poly (ADP-Ribose) Polymer-

ase (PARP), and markedly reduced the protein expression of Bcl-2, which is highly expressed

in A549/DDP cells and plays a critical role in the DDP resistance of A549/DDP cells [6].

Materials and methods

Cell culture

The human lung adenocarcinoma cell line A549 and the DDP-resistant cell line A549/DDP

were purchased from the Xiangya Cell Center, Central South China University (Changsha,

China). The human large cell lung cancer cell line H460 was obtained from the American

Type Culture Collection (ATCC). The DDP-resistant cell line H460/DDP was generated by

treating the cells with sequentially increased cisplatin [24]. The cells were cultured in RPMI

1640 medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal

bovine serum and 100 U/ml penicillin/streptomycin. The DDP resistance of A549/DDP and
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H460/DDP was maintained by adding 2 g/ml DDP (Sigma-Aldrich, St. Louis, USA). The cells

were grown as monolayers in a humidified atmosphere containing 5% CO2 at 37˚C.

Lentiviral construction and infection

Short hairpin RNA (shRNA) vectors against the GLIPR1 genes shG-1 (TRCN0000123176) and

shG-2 (TRCN0000123178) were obtained from TRC (The RNAi Consortium). Lentiviral plas-

mids containing GV298-shG-1, -shG-2, and -negative were obtained from GeneChem (Shang-

hai, China). Lentiviral particles were produced by the transfection of HEK 293T cells with the

lentiviral plasmids. For viral infection, A549/DDP and H460/DDP cells were plated in 6-well

plates (1×105 cells/well), grown to 50–70% confluence, and incubated with medium containing

virus and 4 μg/mL polybrene for 16 hours at a multiplicity of infection (MOI) of 20.

Cell viability

The Cell Counting Kit-8 (CCK-8; Dojindo Laboratories, Japan) was used to assess the rate of

cell proliferation. In brief, transfected A549/DDP and H460/DDP cells were plated in 96-well

plates at approximately 2000 cells per well with 200 μL of culture medium and were treated

with DDP at different concentrations. After 24 hours, 10 μl of CCK8 solution was applied to

each well, and the plates were incubated for 1 h at 37˚C. Finally, the absorbance values at 450

nm were determined using a microplate reader (Multiskan, Thermo, USA) with a reference

wavelength of 650 nm. All of the experiments were conducted at least in triplicate.

EdU incorporation assay

The cells were incubated with 10 μM EdU (5-ethynyl-2’-deoxyuridine, Invitrogen) for 4 hours

and then fixed with 3.7% formaldehyde in PBS for 15 minutes at room temperature. The EdU

was detected for EdU incorporation according to manufacturer’s recommendations. Confocal

imaging was performed on a Nikon A1R confocal laser scanning microscope system (Nikon

Corp., Tokyo, Japan). A549/DDP cells positive for EdU incorporation and positive for Hoechst

33342 staining were counted by using ImageJ (v. 1.42, Wayne Rasband, NIH), and used to cal-

culate the percentage of EdU-positive cells.

Detecting apoptosis by flow cytometry

An annexin V-FITC and propidium iodide (PI) double staining kit (Invitrogen, Carlsbad, CA,

USA) was used to analyze cellular apoptosis. Transfected A549/DDP and H460/DDP cells

were seeded in 6-well plates (5×105 cells/well) and treated with DDP at different concentra-

tions. After 24 hours, the cells were digested with trypsin (Gibco1 Trypsin-EDTA, Invitrogen,

Carlsbad, CA, USA), washed with PBS three times, suspended in 500 μl of binding buffer, and

then incubated with 5 μl of FITC-conjugated Annexin-V and 5 μl of PI for 15 min at room

temperature in the dark. The stained cells were detected using the BD FACS Aria II flow

cytometer (BD biosciences, San Jose, California, USA).

Mitochondrial membrane potential measurement

The MitoProbe™ JC-1 assay kit (Thermo Fisher Scientific Inc., MA, USA) was used to detect

changes in mitochondrial membrane potential. The assay was performed according to the

manufacturer’s instructions, and the results of the assay were obtained by the BD FACS Aria II

flow cytometer. JC-1 forms J-aggregates emitting red fluorescence at 590 nm in healthy mito-

chondria and J-monomers emitting green fluorescence at 490 nm in depolarized mitochon-

dria. An increased ratio of J-monomers indicates mitochondrial damage. Carbonyl cyanide m-
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chlorophenylhydrazone (CCCP, 50 μM), a mitochondrial membrane potential disruptor, was

used as a positive control.

Quantitative RT-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen, USA), and cDNA was synthesized

using reverse transcriptase (TOYOBO, Japan). The RNA (1%) was reverse transcribed to com-

plementary deoxyribonucleic acid, and 20 ng of complementary DNA was used as the template

for RT-PCR. The amplification cycling reactions (40 cycles) were performed as follows: 15 sec-

onds at 95˚C, 15 seconds at 60˚C and 45 seconds at 72˚C. The primer sequences included the

following:

GLIPR1 sense 5’- CCGCCATCACAAACTGGTAT-3’,

GLIPR1anti-sense 5’- TCTGCCCAAACAACCTGAGT-3’.

β-actin sense 5’- CTGGCACCCAGCACAATG-3’,
β-actin anti-sense 5’- CCGATCCACACGGAGTACTTG-3’.

Gene expression was normalized to β-actin and was measured by 2-ΔΔCT. RT-PCR was per-

formed at least 3 separate times in triplicate.

Western blot assay

Total protein was extracted using a RIPA kit (Beyotime Biotechnology Inc., Nantong, China),

separated on polyacrylamide gels, and transferred to PVDF membranes. The membranes were

incubated with anti-GLIPR1 (Abcam, Cambridge, MA, USA), cleaved caspase-3 (Asp175)

[Cell Signaling Technology (CST), MA, USA], cleaved PARP (Asp214) (CST), anti-Bcl-2

(CST), and anti-actin (CST) at 4˚C overnight and were then incubated with horseradish perox-

idase-conjugated goat anti-rabbit or anti-mouse immunoglobulin G at room temperature for

1 hour. The proteins were visualized using Pierce ECL western blotting substrate and autoradi-

ography. The blots were analyzed using Quantity One 4.6.

Intracellular signaling array

Cell extracts were prepared and analyzed using the PathScan intracellular signaling array kit

(Catalog no. 7323S; Cell Signaling Technology) and PathScan stress and apoptosis signaling

antibody array kit (Catalog no. 12856S; Cell Signaling Technology) according to the manufac-

turer’s instruction. The PathScan Intracellular Signaling Array Kit could simultaneously detect

eighteen phosphorylated or cleaved intracellular signaling molecules including ERK1/2, mam-

malian target or rapamycin (mTOR), mitogen-activated protein kinase (MAPK), B-cell lym-

phoma-2-associated death domain (Bad). The PathScan Stress and Apoptosis Signaling

Antibody Array could simultaneously detect nineteen apoptosis related signaling molecules

including cleaved caspases (caspase 3 and 9) and PARP.

Methylation analysis

Genomic DNA from A549 and A549/DDP cells was isolated using DNeasy Blood & Tissue Kit

(Qiagen, Valencia, CA, USA). Bisulfite conversion of genomic DNA was performed using the

EpiTect Bisulfite Kit (Qiagen). The GLIPR1 promoter fragment was amplified by PCR and

cloned into the Pmd18-T Vector (Takara, Japan). Five independent clones from each subject

were sequenced for each of the amplified fragments. Primers are described as follows:

Forward: (from5’ to 3’) TGAAAATTATTGAAAAGATAGGG;

Reverse: (from 5’ to 3’) AAACCATCCAAACTATTATAACAA.
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Statistical analysis

The data were expressed as the means ± SD of at least three independent experiments. The sta-

tistical analysis was performed using one-way analysis of variance (ANOVA) followed by Bon-

ferroni’s multiple comparison test. A p-value < 0.05 was considered statistically significant.

Results

GLIPR1 was upregulated in DDP-resistant A549/DDP and H460/DDP

cells

To investigate the potential role of GLIPR1 in the development of chemotherapeutic drug

resistance, we firstly compared the expression levels of GLIPR1 in DDP-sensitive and -resis-

tant lung adenocarcinoma A549 cells. The RT-PCR results revealed that GLIPR1 mRNA was

significantly increased in DDP-resistant A549/DDP cells compared to DDP-sensitive A549

cells (p < 0.05) (Fig 1A). Similarly, the western blot results showed elevated protein levels in

A549/DDP cells compared to A549 cells, suggesting the role of GLIPR1 in chemoresistance

(p< 0.05) (Fig 1B and 1C). To verify this, we generated DDP-resistant H460/DDP cells by

treating the cells with sequentially increased cisplatin. The CCK-8 assay showed that the prolif-

eration rate of DDP-resistant H460/DDP cells was significantly higher than that of DDP-sensi-

tive H460 cells (p < 0.05) (S1A Fig). The RT-PCR results demonstrated that GLIPR1 mRNA is

significantly increased in H460/DDP cells compared to H460 cells (p< 0.05) (S1B Fig).

GLIPR1 mediated DDP resistance in A549/DDP and H460/DDP cells

GLIPR1 shRNA or negative shRNA which could downregulate GLIPR1 expression in DDP-

resistant A549/DDP cells were stably transfected into A549/DDP cells. The RT-PCR results

demonstrated that both shG-1 and shG-2, two shRNA sequences targeting the GLIPR1 gene,

could significantly reduce GLIPR1 mRNA expression in A549/DDP cells (p< 0.05) (Fig 2A).

As confirmation, the western blot results revealed that shG-1 and shG-2 both significantly

decreased the GLIPR1 protein levels in A549/DDP cells (p< 0.05) (Fig 2B and 2C).

To study the effect of GLIPR1 downregulation on the apoptosis of A549/DDP cells, bright-

field images of GLIPR1 shRNA or negative shRNA stably transfected A549/DDP cells were

collected 120 hours after transfection. Morphological examination of A549/DDP cells demon-

strated that shG-1 and shG-2 resulted in decreased cell proliferation (Fig 3A). To investigate if

GLIPR1 could mediate DDP resistance in A549/DDP cells, we analyzed the effect of shRNA-

induced GLIPR1 downregulation on the proliferation of A549/DDP cells following DDP

Fig 1. GLIPR1 was upregulated in DDP-resistant A549/DDP cells. A) The RT-PCR results showed that GLIPR1 mRNA was significantly

increased in A549/DDP cells compared to A549 cells. The data were presented as the fold changes in gene expression normalized to β-

actin and relative to A549 cells. B) Cellular GLIPR1 and β-actin were assessed by western blot. C) The statistical analysis demonstrated that

the GLIPR1 protein was significantly upregulated in A549/DDP cells compared to A549 cells. The protein levels of GLIPR1 were normalized

to β-actin. The data were representative of three similar experiments. * indicates a significant difference at p < 0.05 versus A549 cells.

https://doi.org/10.1371/journal.pone.0182410.g001
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Fig 2. shRNA sequences targeting the GLIPR1 gene reduced GLIPR1 expression in A549/DDP cells. A) The RT-PCR results showed

that shRNA sequences, shG-1 and shG-2, significantly reduced GLIPR1 mRNA expression in A549/DDP cells compared to the negative

control. The data were presented as the fold changes in gene expression normalized to β-actin and relative to negative control. B) The

western blot results showed that shG-1 and shG-2 reduced GLIPR1 protein in A549/DDP cells compared to the negative control. C) The

statistical analysis demonstrated that shG-1 and shG-2 significantly downregulated GLIPR1 protein in A549/DDP cells compared to the

negative control. The protein levels of GLIPR1 were normalized to β-actin. The data were representative of three similar experiments. The

error bars represent mean values ± SD. * indicates a significant difference at p < 0.05 versus the negative control.

https://doi.org/10.1371/journal.pone.0182410.g002

Fig 3. GLIPR1 mediated DDP resistance in A549/DDP cells. A) Bright-field images of A549/DDP cells 120 hours after transfection with

GLIPR1 shRNA or negative shRNA incubated with 2 μg/ml DDP induced cell morphological changes. B) Cell proliferation and the viability of

A549/DDP cells transfected with GLIPR1 shRNA or negative shRNA incubated with 0.2, 2, 10, 20, and 200 μg/ml DDP were measured by

CCK-8. One representative experiment with n = 3 is shown. The error bars represent mean values ± SD. * indicates a significant difference

at p < 0.05 versus the negative control.

https://doi.org/10.1371/journal.pone.0182410.g003
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treatment. The CCK-8 assay showed that shG-1 and shG-2 significantly inhibited the growth

of A549/DDP cells compared to the negative control after treatment with 0.2, 2, 10, 20 μg/ml

DDP (p< 0.05) (Fig 3B). In addition, the effects of silencing GLIPR1 on the proliferation of

A549/DDP cells following DDP treatment was measured by using EdU incorporation. The

results showed that there were about 37% EdU positive cells in negative control group, and

about 20% in shG-1 and shG-2 groups when incubated with 2 μg/ml DDP (Fig 4A and 4B),

suggesting silencing GLIPR1 significantly reduced the proliferation of A549/DDP cells follow-

ing DDP treatment.

Moreover, an annexin V-FITC/PI double staining assay and flow cytometry analysis were

performed. The cells in the upper-right (UR, Q2) and lower-right (LR, Q4) quadrants of the

FACS histogram represent apoptotic cells. As shown in Fig 5, the apoptosis rates of A549/DDP

cells transfected with shG-1 or shG-2 were significantly increased compared to that of the neg-

ative control when incubated with 2 μg/ml DDP (p< 0.05) (Fig 5A and 5C), with 10 μg/ml

DDP for 24 hours (p< 0.05) (Fig 5B and 5D), or in the absence of DDP (S2A and S2B Fig).

Furthermore, GLIPR1 shRNA or negative shRNA were stably transfected into H460/DDP

cells to investigate the effect of GLIPR1 downregulation on the apoptosis of H460/DDP cells.

The RT-PCR results demonstrated that both shG-1 and shG-2 could significantly reduce

GLIPR1 mRNA expression in H460/DDP cells (p< 0.05) (S1C Fig). The CCK-8 assay showed

that shG-1 and shG-2 significantly inhibited the growth of H460/DDP cells compared to the

negative control after treatment with 0, 2, 10 μg/ml DDP (S1D Fig). The annexin V-FITC/PI

double staining assay and flow cytometry analysis showed that the apoptosis rates of H460/

DDP cells transfected with shG-1 or shG-2 were significantly increased compared to that of

the negative control when incubated with 2 μg/ml DDP for 24 hours (S1E and S1F Fig).

Fig 4. Silencing GLIPR1 decreased the proliferation of A549/DDP cells. A) A549/DDP cells transfected with with GLIPR1 shRNA or

negative shRNA were treated with 2 μg/ml DDP, stained with EdU and Hoechst 33342. B) the percentage of EdU-positive cells in negative

control group was significantly higher than those in shG-1 and shG-2 groups. The data were representative of at least three similar

experiments. * indicates a significant difference at p < 0.05 versus the negative control.

https://doi.org/10.1371/journal.pone.0182410.g004
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Fig 5. Flow cytometric analysis of apoptosis induction in A549/DDP cells following DDP treatment. A549/DDP cells transfected with

GLIPR1 shRNA or negative shRNA were treated with 2 μg/ml DDP (A) or 10 μg/ml DDP (B) for 24 hours, stained with FITC-annexin V/PI,

and then analyzed by flow cytometry. The statistical analysis revealed that shG-1 or shG-2 significantly increased the apoptosis of A549/

DDP cells compared to the negative control incubated with 2 μg/ml (C) or 10 μg/ml DDP (D). The data were representative of three similar

experiments. * indicates a significant difference at p < 0.05 versus the negative control.

https://doi.org/10.1371/journal.pone.0182410.g005
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Downregulation of GLIPR1 decreased mitochondrial membrane

potential

Depolarization of the mitochondrial membrane potential is an indicator of the cell apoptosis

[25]. In this study, we stained GLIPR1 shRNA or negative shRNA stably transfected A549/

DDP cells with JC-1, which accumulates in healthy mitochondria as J-aggregates emitting red

fluorescence, while in depolarized or damaged mitochondria as JC-1 monomers emitting

green fluorescence. We found that the JC-1 monomer ratio of A549/DDP cells transfected

with shG-1 or shG-2 were significantly increased compared to that of the negative control

when incubated with 2 μg/ml DDP (Fig 6A and 6B), or in the absence of DDP (S2C and S2D

Fig).

GLIPR1 regulated Bcl-2, cleaved caspase-3, and cleaved PARP

The molecular mechanism underlying GLIPR1 mediated DDP resistance in A549/DDP cells

was investigated by examined the phosphorylation or activation of eighteen signaling mole-

cules using the PathScan intracellular signaling array kit. It was found that the levels of cleaved

PARP (Asp214), a DNA repair enzyme, and cleaved caspase-3 (Asp175), a pro-apoptotic pro-

tein, in A549/DDP cells transfected with shG-1 or shG-2 were markedly increased compared

with that in negative control cells (Fig 7A). Since GLIPR1 mediates the apoptosis-associated

proteins in A549/DDP cells, the PathScan stress and apoptosis signaling antibody array kit was

then used to monitor the nineteen apoptosis related signaling molecules. It was confirmed that

there was a significant increase in the expression levels of cleaved PARP and cleaved caspase-3

Fig 6. Downregulation of GLIPR1 decreases mitochondrial membrane potential. A) Representative histograms showing flow

cytometry analysis of JC-1 staining. CCCP was used as a positive control. B) The statistical analysis revealed that shG-1 or shG-2

significantly increased the JC-1 monomer ratio of A549/DDP cells compared to the negative control incubated with 2 μg/ml DDP. The data

are representative of three similar experiments. * indicates a significant difference at p < 0.05 versus the negative control.

https://doi.org/10.1371/journal.pone.0182410.g006
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in A549/DDP cells transfected with shG-1 or shG-2 (Fig 7B). Western blot results further con-

firmed that cleaved PARP and cleaved caspase-3 were significantly increased when GLIPR1

was downregulated in A549/DDP cells (p< 0.05) (Fig 7C and 7D).

The anti-apoptotic protein Bcl-2 plays an important role in sensitizing DDP-resistant

A549/DDP cells to DDP [6] and is a upstream signaling molecule of cleaved caspase-3 and

PARP [26]. We then explored the effect of GLIPR1 reduction on the expression of the Bcl-2

Fig 7. GLIPR1 regulates Bcl-2, cleaved caspase-3, and cleaved PARP. A) Representative chemiluminescent images produced using

the PathScan intracellular signaling array kit and the PathScan stress and apoptosis signaling antibody array kit (B). Red box: cleaved

PARP; Green box: cleaved caspase-3. C) The upper panel showed that the levels of cleaved PARP were increased in A549/DDP cells

transfected with GLIPR1 shRNA. The lower panel demonstrated that shG-1 or shG-2 significantly increased the levels of cleaved PARP

compared to the negative control. The figures are representative profiles of at least three experiments. * indicates a significant difference at

p < 0.05 versus the negative control. D) The upper panel showed that the levels of cleaved caspase-3 were increased in A549/DDP cells

transfected with GLIPR1 shRNA. The lower panel demonstrated that shG-1 or shG-2 significantly increased the levels of cleaved caspase-3

compared to the negative control. E) The upper panel showed that the expression of Bcl-2 protein were increased in A549/DDP cells

transfected with GLIPR1 shRNA. The lower panel demonstrated that shG-1 or shG-2 significantly increased the expression of Bcl-2 protein

compared to the negative control.

https://doi.org/10.1371/journal.pone.0182410.g007
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protein. The western blot results clearly showed that shG-1 and shG-2 markedly reduced the

protein expression of Bcl-2 in A549/DDP cells compared to the negative control (p < 0.05)

(Fig 7E).

Methylation was not conjunction with the high expression of GLIPR1 in

A549/DDP cells

To examine whether the epigenetic status of GLIPR1 in DDP-sensitive and -resistant human

lung adenocarcinoma A549/DDP cells was responsible for the high expression of GLIPR1 in

A549/DDP cells [9, 15, 20], bisulfite sequencing primers were designed to amplify a 264 bp

region 50 of the transcription start site containing five CpG sites as previously reported.[15]

GLIPR1 bisulfite sequencing data were obtained on a minimum of 5 clones prepared from

each of both A549 and A549/DDP cells (Fig 8A). The GLIPR1 promoter sequences amplified

from A549/DDP cells showed no differences in methylation as compared to A549 cells

(Fig 8B).

Discussion

Drug resistance is one of the primary causative agents of poor prognoses in patients with

advanced NSCLC. Thus, it is necessary to identify novel pharmaceutical targets in the treat-

ment of patients with resistance to DDP. In this study, we examined the expression of GLIPR1

in DDP-sensitive and -resistant human lung adenocarcinoma A549 and human large cell lung

cancer H460 cells and the role of GLIPR1 in mediating the resistant of A549/DDP and H460/

DDP cells to DDP. GLIPR1 has been extensively studied in various cancers, including prostate

[8–9, 12–14], astrocytic [18], wilms [20], acute myeloid leukemia [21], melanoma [22], and

lung cancers [11]. However, its expression and function in DDP-resistant A549/DDP and

H460/DDP cells have not yet been investigated.

In the present study, the results showed that compared with human lung adenocarcinoma

A549 cells, the mRNA and protein expression of GLIPR1 were significantly increased in DDP-

resistant A549/DDP cells. Similarly, the mRNA level of GLIPR1 in DDP-resistant H460/DDP

cells was also significantly higher than that in DDP-sensitive H460 cells. GLIPR1 has been

found to be expressed at high levels in astrocytic [15–19, 23], wilms [20], acute myeloid leuke-

mia [21], and melanoma [22] cancers and at low levels in prostate [8–10], and lung cancer

[11]. The differential expression pattern is possibly due to the epigenetic status of GLIPR1 in

different cancers. It has been found that DNA hypomethylation of the GLIPR1 gene promoter

led to its overexpression in glioma [15] and wilms [20] tumors, whereas hypermethylation of

the GLIPR1 gene promoter led to the downregulation of its mRNA expression in prostate can-

cer [9]. Thus, the epigenetic status of GLIPR1 in DDP-sensitive and -resistant human lung

adenocarcinoma A549 cells was examined; however, there were no differences in the levels of

methylation between A549 and A549/DDP cells. It is possible that other mechanisms might be

involved in the increased expression of GLIPR1 in A549/DDP cells.

The function of GLIPR1 remains controversial. The overexpression of GLIPR1 has been

demonstrated to induce apoptosis in prostate cancer cells [9, 12–14]; however, overexpression

of GLIPR1 increased glioma cell proliferation [18–19, 23] and downregulation of GLIPR1

decreased the proliferation of glioma [18, 23] and melanoma [22] cells. Thus, it is necessary to

investigate the role of GLIPR1 in mediating the A549/DDP and H460/DDP cell response to

DDP. In the study, we found that, in the absence of DDP, GLIPR1 downregulation resulted in

slightly increased cellular apoptosis and decreased mitochondrial membrane potential (S2

Fig); however, the percentage of cellular apoptosis and mitochondrial membrane potential

decrease was more profound when incubated in DDP, especially in 10 μg/ml DDP. These
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results indicate that GLIPR1 is critical for cell survival and GLIPR1 downregulation sensitizes

cells to DDP. Our results are consistent with studies in glioma and melanoma cells, in which

GLIPR1 promotes cell proliferation.

Mitochondria play critical roles in the apoptosis of A549/DDP cells. In this study, GLIPR1

downregulation was found to cause mitochondrial damage as indicated by the loss of

Fig 8. The epigenetic status of GLIPR1 in DDP-sensitive and -resistant human lung adenocarcinoma A549 cells. A) Each row shows

the methylation status for 5 single DNA clones (numbered # 1 to 5). The filled circle represents the methylated CpG, and the empty circle the

unmethylated CpG. B) Methylation frequency at each of the 5 CpG sites in the GLIPR1 promoter in A549 and A549/DDP cells.

https://doi.org/10.1371/journal.pone.0182410.g008
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mitochondrial membrane potential. To further explore the mechanisms underlying GLIPR1-

mediated DDP resistance in A549/DDP cells, PathScan intracellular signaling array kit and

PathScan stress and apoptosis signaling antibody array kit were used to simultaneously detect

various phosphorylated or cleaved intracellular signaling molecules. Finally, downregulation

of GLIPR1 in A549/DDP cells was discovered significantly increased the cleaved PARP, a

DNA repair enzyme, and cleaved caspase-3, a pro-apoptotic protein. Next, the protein expres-

sion of Bcl-2 in A549/DDP cells, an anti-apoptotic protein, was examined and found that the

downregulation of GLIPR1 led to reduced protein levels of Bcl-2 in A549/DDP cells. Taken

together, it was possible that downregulation of GLIPR1 induced the apoptosis of A549/DDP

cells in a Bcl-2-dependent pathway and then activated caspase-3, following PARP cleavage.

Our results are consistent with previous studies in which the overexpression of GLIPR1

increased the expression of Bcl-2 [18], which was found to be highly expressed in A549/DDP

cells, and the silencing of Bcl-2 induced an increase in cell apoptosis [6]. DDP is used as a first-

line treatment among patients with advanced NSCLC; however, lung cancer cells quickly

develop drug resistance. The results of this study suggest that A549/DDP cells increase DDP

resistance by upregulating GLIPR1, which promotes cell proliferation by inducing Bcl-2

expression. Thus, our results revealed a novel signaling pathway mediating DDP resistance in

A549/DDP cells. However, there are several biological limitation to the current study; for

example, the animal models are needed to verify the cellular results.

Conclusion

In summary, the mRNA and protein expression of GLIPR1 were significantly increased in

DDP-resistant A549/DDP and H460/DDP cells. Silencing of GLIPR1 in A549/DDP cells

induced apoptosis via a mitochondrial signaling pathway by decreasing the anti-apoptosis pro-

tein Bcl-2, and increasing cleaved caspase-3 and PARP. Our results suggest that GLIPR1

deserves further investigation in the context of NSCLC and further investigation is required to

verify GLIPR1 has the potential to be a novel therapeutic target for DDP-resistant NSCLC

patients.

Supporting information

S1 Fig. GLIPR1 mediates DDP resistance in H460/DDP cells. A) Cell proliferation and the

viability of H460/DDP cells incubated with 0, 2, 6, and 10 μg/ml DDP was measured by CCK-

8. One representative experiment with n = 3 is shown. The error bars represent mean

values ± SD. � indicates a significant difference at p< 0.05 versus the DDP sensitive H460

cells. B) The RT-PCR results showed that GLIPR1 mRNA is significantly increased in H460/

DDP cells compared to H460 cells. The data are presented as the fold changes in gene expres-

sion normalized to β-actin and relative to H460 cells. C) The RT-PCR results showed that

shRNA sequences shG-1 and shG-2 significantly reduced GLIPR1 mRNA expression in H460/

DDP cells compared to the negative control. The data are presented as the fold changes in

gene expression normalized to β-actin and relative to negative control. The error bars repre-

sent mean values ± SD. � indicates a significant difference at p< 0.05 versus the negative con-

trol. D) Cell proliferation and the viability of H460/DDP cells transfected with GLIPR1 shRNA

or negative shRNA incubated with 0, 2, and 10 μg/ml DDP was measured by CCK-8. One rep-

resentative experiment with n = 3 is shown. The error bars represent mean values ± SD. � indi-

cates a significant difference at p< 0.05 versus the negative control. E) H460/DDP cells

transfected with GLIPR1 shRNA or negative shRNA were treated with 2 μg/ml DDP for 24

hours, stained with FITC-annexin V/PI, and then analyzed by flow cytometry. F) The statisti-

cal analysis revealed that shG-1 or shG-2 significantly increased the apoptosis of H460/DDP
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cells compared to the negative control. The data are representative of three similar experi-

ments. � indicates a significant difference at p< 0.05 versus the negative control.

(TIF)

S2 Fig. Downregulation of GLIPR1 decreases mitochondrial membrane potential and

induces cellular apoptosis of H460/DDP cells. A) H460/DDP cells transfected with GLIPR1

shRNA or negative shRNA in the absence of DDP were stained with FITC-annexin V/PI, and

then analyzed by flow cytometry. B) The statistical analysis revealed that shG-1 or shG-2 sig-

nificantly increased the apoptosis of H460/DDP cells compared to the negative control. The

data are representative of three similar experiments. � indicates a significant difference at

p< 0.05 versus the negative control. C) Representative histograms showing flow cytometry

analysis of JC-1 staining. D) The statistical analysis revealed that shG-1 or shG-2 significantly

increased the JC-1 monomer ratio of H460/DDP cells compared to the negative control in the

absence of DDP. The data are representative of three similar experiments. � indicates a signifi-

cant difference at p< 0.05 versus the negative control.

(TIF)
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