
entropy

Article

An Umbrella Converse for Data Exchange: Applied to Caching,
Computing, and Shuffling †

Prasad Krishnan 1,* , Lakshmi Natarajan 2 and V. Lalitha 1

����������
�������

Citation: Krishnan, P.; Natarajan, L.;

Lalitha, V. An Umbrella Converse for

Data Exchange: Applied to Caching,

Computing, and Shuffling. Entropy

2021, 23, 985. https://doi.org/

10.3390/e23080985

Academic Editors: Siu-Wai Ho,

Lawrence Ong and Kenneth Shum

Received: 23 May 2021

Accepted: 24 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Signal Processing & Communications Research Center, International Institute of Information Technology
Hyderabad, Hyderabad 500032, India; lalitha.v@iiit.ac.in

2 Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi 502205, India;
lakshminatarajan@iith.ac.in

* Correspondence: prasad.krishnan@iiit.ac.in
† Part of this work was presented at the IEEE Information Theory Workshop 2020 held virtually from

11–15 April 2021.

Abstract: The problem of data exchange between multiple nodes with storage and communication
capabilities models several current multi-user communication problems like Coded Caching, Data
Shuffling, Coded Computing, etc. The goal in such problems is to design communication schemes
which accomplish the desired data exchange between the nodes with the optimal (minimum) amount
of communication load. In this work, we present a converse to such a general data exchange problem.
The expression of the converse depends only on the number of bits to be moved between different
subsets of nodes, and does not assume anything further specific about the parameters in the problem.
Specific problem formulations, such as those in Coded Caching, Coded Data Shuffling, and Coded
Distributed Computing, can be seen as instances of this generic data exchange problem. Applying
our generic converse, we can efficiently recover known important converses in these formulations.
Further, for a generic coded caching problem with heterogeneous cache sizes at the clients with or
without a central server, we obtain a new general converse, which subsumes some existing results.
Finally we relate a “centralized” version of our bound to the known generalized independence
number bound in index coding and discuss our bound’s tightness in this context.

Keywords: data exchange; coded caching; coded distributed computing; coded data shuffling;
converse; index coding

1. Introduction and Main Result

Consider a system of K nodes, denoted by [K] , {1, . . . , K}, each of which have (not
necessarily uniform) storage. The nodes can communicate with each other through a
noiseless bus link, in which transmissions of any node is received by all others. Each node
possesses a collection of data symbols (represented in bits) in its local storage and demands
another set of symbols present in other nodes. We formalize this as a data exchange problem.

Definition 1. A data exchange problem on a set of K nodes involving a collection B of information
bits is given by the following:

• a collection {Ci : i ∈ [K]}, where Ci ⊂ B denotes the subset of data present in node i,
• a collection {Di : i ∈ [K]} where Di⊂∪j 6=i Cj \ Ci denotes the set of bits demanded by node i.

The above data exchange problem models a number of cache-enabled multi-receiver
communication problems studied recently in the coding theory community, including
Coded Caching [1], Coded Distributed Computing [2,3], Coded Data Shuffling [4–6],
and Coded Data Rebalancing [7]. In [8], a special case of our general problem here was
considered in the name of cooperative data exchange, where the goal was to reach a state in
which all nodes have all the data in the system.
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A solution to a given data exchange problem involves communication between the
nodes. Each node i encodes the symbols in Ci into a codeword of length li and sends it to
all other nodes. The respective demanded symbols at any node is then to be decoded using
the received transmissions from all the other nodes and the node’s own content.

Formally, a communication scheme for the given data exchange problem consists of a
set of encoding functions Φ , {φi : i ∈ [K]} and decoding functions Ψ , {ψi : i ∈ [K]},
defined as follows.

φi :{0, 1}|Ci | → {0, 1}li , (for some non-negative integer li)

ψi :{0, 1}|Ci | × {0, 1}
∑
j 6=i

lj
→ {0, 1}|Di |,

such that

ψi
(
Ci, {φj(Cj) : j 6= i}

)
= Di.

The communication load of the above scheme is defined as the total number of bits
communicated, i.e.,

L(Φ, Ψ) , ∑
i∈[K]

li.

The optimal communication load is then denoted by

L∗ , min
Φ,Ψ

L(Φ, Ψ).

The central result in this work is Theorem 1 in Section 1.1, which is a lower bound
on the optimal communication load L∗. Using this lower bound, we recover several
important converse results of cache-enabled communication problems studied in the
literature, including Coded Caching (Section 2), Data Shuffling (Section 3), and Distributed
Computing (Section 4). In each of these sections, we briefly review each setting and then
apply Theorem 1 to recover the respective converses. As a result, the proofs of these
existing converses are also made simpler than what is already available in the literature
for the respective settings. The generic structure of the converse proofs obtained using
our data exchange bound is presented in Section 1.2. This structure includes three steps,
which we also highlight at the appropriate junctures within the proofs themselves. The
close relationship between these problems is quite widely known. This work gives a
further formal grounding to this connection, by abstracting the common structure of these
converses into a general form, which can potentially be applied to other new data exchange
problems as well.

Apart from recovering existing results, more importantly we also use our data ex-
change lower bound to obtain new tight converse results for some settings, while improving
tightness results of some known bounds. Specifically, we present a new converse for a
generic coded caching setting with multi-level cache sizes. Using this, we are able to close
the gap to optimality for some known special cases of this generic setting (Section 2.1). In
Section 5, we show the relationship between a “centralized” version of our data exchange
lower bound and an existing bound for index coding known as the α-bound or the gen-
eralized independence number bound [9]. In general, we find that our bound is weaker
than the α-bound. However, for unicast index coding problems, we identify the precise
conditions under which our data exchange bound is equal to the α-bound. In Section 6, we
discuss the application of our data exchange lower bound to more generalized index coding
settings, specifically distributed index coding [10,11] and embedded index coding [12].

Notation: For positive integer a, let [a] , {1, . . . , a}. For a set S, we denote by S \ k
the set of items in S except for the item k, and represent the union S ∪ {k} as S ∪ k. The
binomial coefficient is denoted by (n

k), which is zero if k > n. The set of all t-sized subsets
of a set A is denoted by (A

t ).
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1.1. A Converse for the Data Exchange Problem

In this subsection, we will obtain a lower bound on the optimal communication load
of the general data exchange problem defined in Section 1. This is the central result of
this work. The predecessor to the proof technique of our data exchange lower bound is
in [3], which first presented an induction based approach for the converse of the coded
distributed computing setting. Our proof uses a similar induction technique.

Given a data exchange problem and for P, Q ⊂ [K] such that P 6= ∅, let aQ
P denote the

number of bits which are stored in every node in the subset of nodes Q and stored in no
other node, and demanded by every node in the subset P and demanded by no other node,
i.e.,

aQ
P , |(∩i∈PDi) ∩ (∩j∈QCj) \

(
∪j/∈QCj) ∪ (∪i/∈PDi)

)
|. (1)

Note that, by definition, aQ
P = 0 under the following conditions.

• If P ∩Q 6= ∅, as the bits demanded by any node are absent in the same node.
• If Q = ∅, by Definition 1.

Theorem 1 gives a lower bound on the optimal communication load of a given data
exchange problem. The proof of the theorem is relegated to Appendix A. The idea of the
proof is as follows. If we consider only two nodes in the system, say [K] = {1, 2}, then each
of the 2 nodes has to transmit whatever bits it has which are demanded by the other node,
i.e., L∗ ≥ a{1}{2} + a{2}{1}. The proof of the theorem uses this as a base case and employs an
induction technique to obtain a sequence of cut-set bounds leading to the final expression.

Theorem 1.

L∗ ≥ ∑
P⊂[K]

∑
Q⊂[K]\P

|P|
|P|+ |Q| − 1

aQ
P .

Theorem 1, along with the observation that aQ
∅ = 0 = a∅

P gives us the following
corollary, which is a restatement of Theorem 1.
Corollary 1. Let

n(p, q) , ∑
P,Q⊂[K]:

|P|=p,|Q|=q,P∩Q=∅

aQ
P

denote the total number of bits present exactly in q nodes and demanded exactly by p (other) nodes.
Then,

L∗ ≥
K−1

∑
p=1

K−p

∑
q=1

p
p + q− 1

n(p, q). (2)

Remark 1. In [13], the authors presented an essentially identical bound (Lemma 1, [13]) as
Corollary 1 in the setting of coded distributed computing. The proof given in [13] for this lemma
also generalizes the arguments presented in [3], as does this work. Our present work considers a
general data exchange problem and derives the lower bound in Theorem 1 for the communication
load in such a setting. We had derived this lower bound independently in the conference version of
this paper [14], and only recently came to know about the bound in [13]. In subsequent sections,
we show how to use this bound to recover converses for various multi-terminal communication
problems considered in the literature in recent years, and also obtain new converses for some settings.
We also discuss, in Section 5, the looseness of Theorem 1 by considering a centralized version of
the data exchange problem and comparing our bound with the generalized independence number
bound in index coding. In Section 6, we discuss the application of our data exchange bound to more
generalized index coding settings. These are the novel features of our present work, compared to the
bound in Lemma 1 of [13].
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1.2. A Generic Outline of the Converse Proofs Presented in This Paper

In this work, we derive converse bounds for various settings in coded caching, coded
distributed computing, and coded data shuffling using the bound in Theorem 1. Some of
these converse bounds are already available in the literature, while others are novel. Each
setting enjoins some constraints on the size of the demands and the size of the pre-stored
content at each node. The bound in Theorem 1 applies for the setting in which the nodes
have some predetermined local storage and some specific demanded bits. However, the
settings of coded caching, coded distributed computing, and coded data shuffling permit
the design of the initial storage so that the communication load is minimized. Further,
the optimal communication load as defined in the literature for some of these settings
involves maximization over all possible demand configurations, keeping only the size of
the demands fixed. Keeping with these specifics, our bound in Theorem 1 must be tuned
for each setting to obtain the respective converse, as captured by the three following steps
which describe the generic structure behind our converse proofs.

1. Applying Theorem 1 to the present setting, we obtain a lower bound expression on
the communication load, assuming an arbitrary choice of demands across the nodes
and some arbitrary but fixed storage across the nodes.

2. “Symmetrization” step: In this step, the lower bound expression obtained in the
previous step is averaged over some carefully chosen configurations of demanded
bits at the nodes. This step helps to remove the dependency of the lower bound on
the specific choice of demands.

3. Refine the averaged bound by imposing the constraints on the size of the initial
storage at the nodes, and using convexity of terms inside the averaged bound to
obtain the final expression of the bound. This step helps to remove the dependency
of the converse on the specific initial storage configuration at the nodes.

These three steps enable us to give simpler proofs to those in the literature for known
converses, and also obtain novel converses for some variants of the same problems. Fur-
ther, it also illustrates the generic nature of the data exchange bound of Theorem 1. In
the converse proofs that are to follow in this paper, we will highlight these steps at the
appropriate junctures.

2. Coded Caching

In this section, we apply Theorem 1 to recover the lower bound obtained in [15] for
the problem of coded caching introduced in [1]. Further, using Theorem 1, we prove in
Section 2.1 a new converse for a generic coded caching problem under multiple cache size
settings. This provides new converses for some existing settings in literature, and also
tightens bounds in some others. In Section 2.2, we recover a converse for coded caching
with multiple file requests. In Section 2.3, we recover the converse for coded caching with
decentralized cache placement.

We now describe the main setting of this section. In the coded caching system intro-
duced in [1], there is one server connected via a noiseless broadcast channel to K clients
indexed as [K]. The server possesses N files, each of size F bits, where the files are in-
dexed as Wi : i ∈ [N]. Each client contains local storage, or a cache, of size MF bits, for
some M ≤ N. We call this a (K, M, N, F) coded caching system. Figure 1 illustrates this
system model.

The coded caching system operates in two phases: in the caching phase which occurs
during the low-traffic periods, the caches of the clients are populated by the server with
some (uncoded) bits of the file library. This is known as uncoded prefetching. In this phase,
the demands of the clients are not known. We denote the caching function for node k as
ζk, and thus the cache content at client k at the end of the caching phase is denoted as
Zk , ζk({Wi : i ∈ [N]}).
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Figure 1. A single server is connected to K clients via a broadcast channel. Each user has a cache
capable of storing MF of the NF bits in the file-library available at the server.

In the delivery phase which occurs during the high-traffic periods, each client demands
one file from the server, and the server makes transmissions via the broadcast channel to
satisfy the client demands. Let the demanded file at client k be Wdk

, where dk ∈ [N]. The
server uses an encoding function φ to obtain coded transmissions X = φ({Wdk

: k ∈ [K]})
such that each client k ∈ [K] can employ a decoding function ψk to decode its demanded
file using the coded transmissions and its cache content, i.e., ψk(X, Zk) = Wdk

.
The communication load Lc({ζk : k ∈ [K]}, φ, {ψk : k ∈ [K]}) of the above coded

caching scheme is the number of bits transmitted in the delivery phase (i.e., the length of X)
in the worst case (where “worst case” denotes maximization across all possible demands).
The optimal communication load denoted by L∗c , is then defined as

L∗c , min
{ζk :k∈[K]},φ,{ψk :k∈[K]}

Lc({ζk : k ∈ [K]}, φ, {ψk : k ∈ [K]}). (3)

For this system model, when MK
N ∈ Z, the work in [1] proposed a caching and delivery

scheme which achieves a communication load (normalized by the size of the file F) given

by K(1− M
N )min

{
1

1+ MK
N

, N
K

}
. In [15], it was shown that, for any coded caching scheme

with uncoded cache placement, the optimal communication load is lower bounded by

L∗c ≥
K(1−M

N )F
1+MK/N . Therefore, it was shown that, when K ≤ N and MK

N ∈ Z, the scheme in [1]
is optimal.

In the present section, we give another proof of the lower bound for coded caching
derived in [15]. We later discuss the case of arbitrary K, N in Remark 2.

We now proceed with restating the lower bound from [15]. Note that these converses
are typically normalized by the file size in literature, however we recall them in their
non-normalized form, in order to relate them with our data exchange problem setting.

Theorem 2 ([15]). Consider a (K, M, N, F) coded caching system with K ≤ N. The optimal
communication load L∗c in the delivery phase satisfies

L∗c ≥
K(1−M/N)

1 + MK/N
F.

Proof based on Theorem 1. We assume that the caching scheme and delivery scheme of
the coded caching scheme are designed such that the communication load Lc is exactly
equal to the optimal load L∗c . Let the K client demands in the delivery phase be represented



Entropy 2021, 23, 985 6 of 32

by a demand vector ddd = (d1, . . . , dK), where dk ∈ [N] denotes the index of the demanded
file of the client k. We are interested in the worst case demands scenario; this means we can
assume that all the demanded files are distinct, i.e., dk 6= dk′ for all k 6= k′ to bound L∗c from
below, without loss of generality.

We observe that a (K, M, N, F) coded caching problem during the delivery phase
satisfies Definition 1 of a data exchange problem on K + 1 nodes indexed as {0, 1, . . . , K},
where we give the index 0 to the server node and include this in the data exchange system.
Before proceeding, we remark that the below proof gives a lower bound where all K + 1
nodes in the system may transmit, whereas in the coded caching system of [1] only the
server can transmit. Thus, any lower bound that we obtain in this proof applies to the
setting in [1] also.

Clearly in the equivalent data exchange problem, the node 0 (the server) does not
demand anything, but has a copy of all the bits in the entire system. With these observations,
we have by definition of aQ

P in (1)

aQ
P = 0, if 0 /∈ Q or if P /∈

(
[K]
1

)
, (4)

where the quantities aQ
P clearly depend on the demand vector ddd.

We thus use a new set of variables: for each k ∈ [K], Q ⊂ [K], and given demands
ddd = (d1, . . . , dK), let cQ

k (ddd) denote the number of bits demanded by receiver node k that are
available only at the nodes Q ∪ {0}, i.e.,

cQ
k (ddd) , aQ∪0

{k} . (5)

Using these definitions, we proceed following the three steps given in Section 1.2.
Applying Theorem 1: By Theorem 1, we have the following lower bound for demand

vector ddd

L∗c = Lc ≥ ∑
P⊂[K]∪{0}

∑
Q′⊂[K]∪{0}\P

|P|
|P|+ |Q′| − 1

aQ′
P

=
K

∑
k=1

∑
Q⊂[K]\k

1
|Q|+ 1

cQ
k (ddd), (6)

where (6) is obtained from (4) and (5).
“Symmetrizing” (6) over carefully chosen demand vectors: We now consider the

averaging of bounds of type (6) over a chosen collection of N demand vectors, given by

D ,
{(

j⊕N 0, j⊕N 1, . . . , j⊕N (K− 1)
)

: j = 0, . . . , N − 1
}

(7)

where j⊕N i , ((j + i) mod N) + 1.
That is, D contains the demand vectors consisting of consecutive K files, starting with

each of the N files as the demand of the first client.
Averaging (6) through the set of N demand vectors in D, the lower bound we obtain is

L∗c ≥
1
N ∑

ddd∈D

K

∑
k=1

∑
Q⊂[K]\k

1
|Q|+ 1

cQ
k (ddd). (8)
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Let bQ
n denote the number of bits of file n stored only in Q ∪ {0}. Then, in the above

sum, bQ
n = cQ

k (ddd) if and only if dk = n. This happens precisely once in the collection of N
demand vectors in D. Thus, we have

L∗c ≥
1
N

K

∑
k=1

∑
Q⊂[K]\k

∑
ddd∈D

1
|Q|+ 1

cQ
k (ddd)

=
1
N

K

∑
k=1

∑
Q⊂[K]\k

N

∑
n=1

1
|Q|+ 1

bQ
n (9)

= F ∑
Q⊂[K]

N

∑
n=1

(
K− |Q|
|Q|+ 1

)
bQ

n
NF

(10)

where (10) follows as for a fixed n and Q, k ∈ [K] \ Q in (9), and by multiplying and
dividing by F.

Refining the bound (10) by using the constraints of the setting: Now, by definition,
∑n ∑Q⊂[K] bQ

n = NF, and thus bQ
n /NF : n ∈ [N], Q ⊂ [K], denotes a probability mass

function. Furthermore, ∑Q⊂[K] |Q|b
Q
n ≤ KMF. As (K− x)/(1 + x) is a convex decreasing

function for x ≥ 0, using Jensen’s inequality, we have L∗c ≥ (K− x)/(1 + x), where

x = ∑
n

∑
Q⊂[K]

|Q| bQ
n

NF
≤ KMF

NF
=

KM
N

.

Thus, we get L∗c ≥
K(1−M/N)
1+MK/N F, which completes the proof.

Remark 2. In the previous part of this section, we have shown the converse for the worst case
communication load L∗c for coded caching in the regime of K ≤ N. We now consider a general
coded caching setup with arbitrary K, N values and cache size M. Consider a positive integer
Nu ≤ min{N, K}. For a fixed caching scheme denoted by ζ = {ζk : k ∈ [K]}, let the minimum
communication load for satisfying the clients, maximized across all possible demand vectors with
exactly Nu distinct files in each of the demand vectors, be denoted as L∗c (Nu, ζ).

In the work [16], it was shown that for t , MK
N ,

L∗c (Nu, ζ) ≥ gNu
(t), (11)

where gNu
(x) is defined as the lower convex envelope of the points

P(Nu) =

{(
x,

( K
x+1)− (K−Nu

x+1 )

(K
x)

F

)
: x ∈ {0, . . . , K}

}
.

Note that gNu
(t) is independent of ζ. For this general setting, the optimal worst case load L∗c , as

defined in (3), satisfies
L∗c = min

ζ
L∗c (min{N, K}, ζ).

Thus, from (11), we get

L∗c ≥ gmin{N,K}(t), (12)

which is the converse bound on the worst case communication load proved in [16] for this general
scenario. In Appendix B, we use our data exchange bound in Theorem 1 to recover (11), which
therefore shows (12).
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2.1. Server-Based and Server-Free Coded Caching with Heterogeneous Cache Sizes at Clients

So far we have discussed the coded caching scenario where there is a central server
containing the entire file library and the client cache sizes are homogeneous, i.e., the same
at all clients. We now describe a generalization of the result in Theorem 2 to the case of
systems in which the clients have heterogeneous cache sizes, with either a centralized
server present or absent. The proof of this is easily obtained from our data exchange bound
in Theorem 1. To the best of our knowledge, a converse for this general setting is not known
in the literature. Using this converse, we can derive new converses and tighten existing
converses for various special cases of this setting, which include widely studied coded
caching settings, such as device-to-device coded caching [17].

Consider a coded caching system with N files (each of size F) with K client nodes
denoted by a set KT . We shall indicate by the value γ the presence (γ = 1) or absence
(γ = 0) of a centralized server in the system containing the file library. For the purpose of
utilizing our data exchange bound, we assume that all the nodes in the system are capable
of transmissions; thereby, any converse for this scenario is also valid for the usual coded
caching scenario in which only the server (if it is present) does transmissions in the delivery
phase. The set of clients KT is partitioned into subsets KTi : i = 1, . . . , t where the nodes
in subset KTi can store a fraction γTi of the file library. Let |KTi | = KTi . We now give our
converse for this setting. The caching and the delivery scheme, as well as the optimal
communication load L∗c , are defined as in the case of coded caching with homogeneous
cache sizes.

Proposition 1. For the above heterogeneous cache sizes setting, assuming K ≤ N, the optimal
communication load L∗c for uncoded cache placement is lower bounded as follows.

L∗c ≥
(

K−∑t
i=1 KTi γTi

γ + ∑t
i=1 KTi γTi

)
F. (13)

Before giving the proof of Proposition 1, we give the following remarks regarding
the generality of Proposition 1, the new results which arise by applying Proposition 1 and
various results from existing literature that are subsumed or improved by it.

• Heterogeneous Cache Sizes: There exists a number of works discussing distinct or het-
erogenous client cache sizes, for instance, in [18,19]. However, closed form expressions
for the lower bound on the load seem to be lacking for such scenarios, to the best of
our knowledge. Proposition 1 gives a lower bound for all such settings.

• Device-to-Device Coded Caching: Suppose there is no designated server in a coded
caching setup, but the client nodes themselves are responsible for exchanging the
information to satisfy their demands. This corresponds to the case of Device-to-
Device (D2D) coded caching, first explored in [17]. In [17], an achievable scheme
was presented for the case when each (client) node has equal cache fraction M

N , and
this scheme achieves a communication load of ( N

M − 1)F bits. In the work [20], it
was shown that this communication load is optimal (for the regime of K ≤ N) over
all possible “one shot” schemes (where “one shot” refers to those schemes in which
each demanded bit is decoded using the transmission only from one server), and
further it was shown that the load is within a multiplicative factor of 2 of the optimal
communication load under the constraint for uncoded cache placement. We remark
that the D2D setting of [17] corresponds to the special case of our current setting,
with γ = 0, t = 1, KT1 = K, and γT1 = M/N. By this correspondence, by applying

Proposition 1, we see that the load in this case is lower bounded as
(

N
M − 1

)
F, thus

showing that the achievable scheme in [17] is exactly optimal under uncoded cache
placement. The D2D scenario with heterogeneous cache sizes was explored in [21],
in which the optimal communication load was characterized as the solution of an
optimization problem. However, no closed form expression of the load for such a
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scenario is mentioned. Clearly, our Proposition 1 gives such a lower bound, when we
fix γ = 0, for any number of levels t of the client-side cache sizes.

Further, the result for coded caching with a server and equal cache sizes at receivers, as in
Theorem 2, is clearly obtained as a special case of Proposition 1 with γ = 1, t = 1, KT1 = K
and γT1 = M

N .
We now proceed to prove Proposition 1. The proof is similar to that of Theorem 2.

Proof of Proposition 1. As in the proof of Theorem 2, we will denote the server node as
the node 0 and assume a caching and delivery scheme which achieves the optimal load L∗c
for worst case client demands.

Applying Theorem 1, for our setting, we have

L∗c ≥

∑P⊂KT ∑Q⊂KT\P
|P|

|P|+|Q|−1 aQ
P if γ = 0,

∑P⊂KT ∑Q′⊂KT∪0\P
|P|

|P|+|Q′ |−1 aQ′
P if γ = 1.

Note that if γ = 1 (i.e., the server is present), then aQ′
P = 0 whenever 0 /∈ Q′.

For a specific demand vector ddd = (d1, . . . , dK) consisting of distinct demands and for
some Q ⊂ KT , we define the quantity cQ

k (ddd) as follows.

cQ
k (ddd) =


aQ
{k} = Number of bits demanded by k if γ = 0,

available exclusively in Q
aQ∪0
{k} = Number of bits demanded by k if γ = 1.

available exclusively in Q ∪ 0

Symmetrization over appropriately chosen demand vectors: Choosing the same
special set of demand vectors D as in (7) and averaging the above lower bound over the
demand vectors in D similar to the proof of Theorem 2, we obtain a bound similar to (8):

L∗c ≥


1
N ∑ddd∈D ∑k∈KT ∑Q⊂KT\k

cQ
k (ddd)
|Q| if γ = 0,

1
N ∑ddd∈D ∑k∈KT ∑Q⊂KT\k

cQ
k (ddd)
|Q∪0| if γ = 1.

(14)

Combining the two expressions in (14), we can write a single equation which holds for
γ ∈ {0, 1},

L∗c ≥
1
N ∑

ddd∈D
∑

k∈KT

∑
Q⊂KT\k

cQ
k (ddd)

γ + |Q| . (15)

We now define the term bQ
n as follows.

bQ
n =

{
Number of bits of file n available exclusively in Q if γ = 0,
Number of bits of file n available exclusively in Q ∪ 0 if γ = 1.

(16)

Using the above definition of bQ
n and observing that each demand vector in D has distinct

components, Equation (15) can be written as
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L∗c ≥
1
N ∑

k∈KT

∑
Q⊂KT\k

∑
ddd∈D

cQ
k (ddd)

γ + |Q| (17)

=
1
N ∑

k∈KT

∑
Q⊂KT\k

N

∑
n=1

bQ
n

γ + |Q| (18)

=
1
N ∑

Q⊂KT

N

∑
n=1

(K− |Q|)bQ
n

γ + |Q| . (19)

Refining the bound in (19) using setting constraints and convexity: By the defini-

tion of bQ
n in (16), we have ∑n ∑Q⊂KT

bQ
n = NF. Further, ∑Q⊂KT

|Q|bQ
n ≤

t
∑

i=1
KTi γTi NF.

Furthermore, for γ ≥ 0, the function K−x
γ+x is a convex decreasing function in x for x > 0.

Thus, using Jensen’s inequality, we have L∗c ≥ K−x
γ+x , where

x = ∑
n

∑
Q⊂KT

|Q| bQ
n

NF
≤

t
∑

i=1
KTi γTi NF

NF
=

t

∑
i=1

KTi γTi .

This completes the proof.

Remark 3. Proposition 1 holds when N ≥ K. This scenario is the most studied case in the
literature and is practically more relevant than the case K > N. We now provide lower bounds for
the heterogeneous cache sizes setting for general values of K, N, which includes the case K > N. As
before, we consider two cases: γ = 1 indicates the presence of a centralized server in the system and
γ = 0 indicates its absence.

Case 1, γ = 1: For the case where a centralized server is present, i.e., γ = 1, we have

L∗c ≥ gmin{N,K}

(
t

∑
i=1

KTi γTi

)
, (20)

where the function gmin{N,K} is defined in Remark 2. The derivation of this lower bound follows the
steps in Appendix B until (A21), where we choose Nu = min{N, K}. Without loss of generality,
we assume that all caches are fully populated with uncoded bits from the library, thus the total
memory occupied by the cached bits ∑Q⊂[K] |Q|aQ is equal to the sum of all the cache memory
available in the system ∑t

i=1 KTi γTi NF. Applying Jensen’s inequality on (A21) and using the fact

∑Q⊂[K] |Q| aQ

NF = ∑t
i=1 KTi γTi , we immediately arrive at the lower bound (20).

Case 2, γ = 0: In this case, the optimal worst-case communication load can be lower bounded
as follows:

L∗c ≥
min{N, K}

K

(
K−∑t

i=1 KTi γTi

∑t
i=1 KTi γTi

)
F. (21)

The proof of this lower bound follows similar approach as Appendix B and is outlined in Appendix C.
Note that when N ≥ K, both (20) and (21) become identical to the inequality in Proposition 1.

2.2. Coded Caching with Multiple File Requests

In [22], coded caching with multiple file requests was considered, in which each
client requests any ∆ files out of the N files in the delivery phase. It was shown in [22]
(Section V.A) that if the ∆K ≤ N, then the optimal worst case communication load can be
lower bounded as

L∗c ≥
K∆(1−M/N)

1 + MK/N
F. (22)
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The work in [22] also gives an achievable scheme based on the scheme in [1] which meets
the above bound. The same lower bound can be derived using Theorem 1 also, by following
a similar procedure as that of the proof of Theorem 2.

Applying Theorem 1, we give the proof in brief. The demand vector assumed in
proof of Theorem 1 becomes a K∆-length vector in this case, consisting of K subvectors,
each of length ∆, capturing ∆ distinct demands for each client. The proof proceeds as is
until (6).

Symmetrization: The set D in (7) now contains the K∆-length vectors of consecutive
file indices, cyclically constructed, starting from (1, . . . , K∆), i.e.,

D ,
{(

j⊕N 0, j⊕N 1, . . . , j⊕N (K∆− 1)
)

: j = 0, . . . , N − 1
}

. (23)

Thus, if the demand vector considered is d(j) ,
(

j⊕N 0, j⊕N 1, . . . , j⊕N (K∆− 1)
)
∈ D,

then the indices of the demanded files at client k ∈ [K], denoted by dk(j), is given by

dk(j) , {j⊕N (k− 1)∆, j⊕N (k− 1)∆ + 1, . . . , j⊕N (k∆− 1)}.

The averaged lower bound expression similar to (8) is then obtained as

L∗c ≥
1
N

N−1

∑
j=0

K

∑
k=1

∑
Q⊂[K]\k

1
|Q|+ 1

cQ
k (ddd(j)). (24)

In this expression, we have cQ
k (ddd(j)) which now indicates the number of bits of ∆ distinct

and consecutive files indexed by dk(j) and available exclusively at the nodes in Q ∪ 0 (0
denoting the server).

Observation: cQ
k (ddd(j)) = ∑

n′∈dddk(j)
bQ

n′ where bQ
n′ denotes the number of bits of file n′

available exclusively in the nodes Q ∪ 0, as in the proof of Theorem 2.
Now, n′ ∈ dddk(j) if and only if the file n′ is demanded by client k. By definition of D,

the event n′ ∈ dddk(j) happens for precisely ∆ values of index j. From (24), applying the
above observation, we have the following.

L∗c ≥
1
N

K

∑
k=1

∑
Q⊂[K]\k

N−1

∑
j=0

1
|Q|+ 1

cQ
k (ddd(j))

=
1
N

K

∑
k=1

∑
Q⊂[K]\k

1
|Q|+ 1

N−1

∑
j=0

∑
n′∈dddk(j)

bQ
n′


=

1
N

K

∑
k=1

∑
Q⊂[K]\k

N

∑
n′=1

∆
|Q|+ 1

bQ
n′ . (25)

Refining the bound in (25) using the setting constraints: We use the constraints of
the setting and the convexity of the resultant expression to refine (25). This refinement
essentially follows similar subsequent steps as in the proof of Theorem 2 following (9), and
leads finally to (22).

Remark 4. The work in [23] considers a coded caching setup in which Λ caches (Λ ≤ K) are
shared between the K clients. The special case when Λ divides K and each cache is serving exactly
K
Λ clients is equivalent to the scenario of the multiple file requests in [22] with Λ clients, each
demanding K

Λ files. The above proof then recovers the converse for this setting, which is obtained
in [23] (Section III.A in [23]).
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2.3. Coded Caching with Decentralized Caching

Theorem 2 and the subsequent results discussed above hold for the centralized caching
framework, in which the caching phase is designed carefully in a predetermined fashion.
In [24], the idea of decentralized placement was introduced, in which the caching phase
is not coordinated centrally (this was called “decentralized coded caching” in [24]). In
this scenario, each client, independently of others, caches a fraction γ = M

N of the bits
in each of the N files in the file library, chosen uniformly at random. For this scenario,
the server (which has the file library) is responsible for the delivery phase. The optimal
communication load L∗c is defined as the minimum worst case communication load over
all possible delivery schemes for a given caching configuration, randomly constructed as
given above. For the case of K ≤ N, the authors of [24] show a scheme which achieves

the worst case communication load Lc = KF(1−M/N)
(1−(1−M/N)K)

MK/N . This was shown
to be optimal for large F in [16] and also in [25] via a connection to index coding. In the
following, we show that the same optimality follows easily via our Theorem 1.

Assume that we have distinct demands at the K clients, as in the proof of Theorem 1,
given by the demand vector ddd. We first note that by the law of large numbers, as F increases,
for the decentralized cache placement, for any k ∈ [K], Q ⊂ [K] \ k, we have

cQ
k (ddd) = F

(
M
N

)|Q|(
1− M

N

)K−|Q|
,

with probability close to 1, where cQ
k (ddd) is as defined in (5). This observation enables us to

avoid the steps 2 and 3 mentioned in Section 1.2, as the value of cQ
k (ddd) is independent of

the specific random cache placement or the demands chosen (as long as they are distinct).
Using this in (6), we get

L∗c ≥
K

∑
k=1

∑
Q⊂[K]\k

1
|Q|+ 1

cQ
k (ddd)

≥
K

∑
k=1

∑
Q⊂[K]\k

F
|Q|+ 1

(
M
N

)|Q|(
1− M

N

)K−|Q|

= F ∑
Q⊂[K]

(
K− |Q|
|Q|+ 1

)(
M
N

)|Q|(
1− M

N

)K−|Q|

= F
K

∑
i=0

(
K
i

)(
K− i
i + 1

)(
M
N

)i(
1− M

N

)K−i

= F
K

∑
i=0

(
K

i + 1

)(
M
N

)i(
1− M

N

)K−i

= F
K

∑
j=1

(
K
j

)(
M
N

)j−1(
1− M

N

)K−j+1

= F
N
M

(
1− M

N

) K

∑
j=1

(
K
j

)(
M
N

)j(
1− M

N

)K−j

=
NF
M

(
1− M

N

)(
1−

(
1− M

N

)K
)

,

where the last step follows as ∑K
j=0 (

K
j )
(

M
N

)j(
1− M

N

)K−j
=
(

M
N +

(
1− M

N

))K
= 1. Thus,

we have given an alternate proof of the optimality of the decentralized scheme in [24].
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3. Decentralized Coded Data Shuffling

In distributed machine learning systems consisting of a master and multiple worker
nodes, data are distributed to the workers by the master in order to perform training of the
machine learning model in a distributed manner. In general, this training process takes
multiple iterations, with the workers doing some processing (like computing gradients) on
their respective training data subsets. In order to ensure that the training data subset at each
node are sufficiently representative of the data, and to improve the statistical performance
of machine learning algorithms, shuffling of the training data between the worker nodes is
implemented after every training iteration. This is known as data shuffling.

A coding theoretic approach to data shuffling, which involves the master communi-
cating coded data to the workers was presented in [4]. The setting in [4] was centralized,
which meant that there is a master node communicating to the servers to perform the
data shuffling.

The work in [5] considered the data shuffling problem in which there is no master node,
but the worker nodes exchange the training data among themselves, without involving
the master node, to create a new desired partition in the next iteration. This was termed as
decentralized data shuffling in [5]. Note that these notions of “centralized” and “decentralized”
in the data shuffling problem are different from those in the coded caching [24], in which
these terms were used to define the deterministic and random design of the caching phase,
respectively. In this section, we look at the work in [5] and give a new simpler proof of the
lower bound on the communication load for decentralized data shuffling.

We first review the setting in [5]. Consider K workers in the system, where each worker
node is required to process q data units at any given time. The total dataset F1 ∪ · · · ∪ FN
consists of N = Kq data units F1, . . . , FN , with a size of B bits per data unit. The collection
of data units to be processed by worker node k at time t is denoted as Ak,t. The collection
of data units A1,t, . . . , AK,t must form a partition of the dataset F1 ∪ · · · ∪ FN for every time
instant t, i.e., for any time t and any choice of k, k′ ∈ [K] with k 6= k′ we have

Ak,t ⊂ F1 ∪ · · · ∪ FN , |Ak,t| = qB and Ak,t ∩ Ak′ ,t = ∅.

Each node k has a local cache of size MB bits (such that q ≤ M ≤ Kq) that can hold M data
units. Out of these M units q units are the current “active” data Ak,t at any time step which
are required to be processed by the node k. The contents of the cache of node k at time t is
denoted as Zk,t. Therefore, for each choice of k ∈ [K] and any time t, we have

|Zk,t| = MB and Ak,t ⊂ Zk,t.

At each time instance t, a new partition {Ak,t : k ∈ [K]} is to be made active at
the nodes [K], where this new partition is made known to the workers only at time
step t. Note that the contents of the nodes at time t − 1 are Z1,t−1, . . . , ZK,t−1, and the
active partition at time t− 1 is A1,t−1, . . . , AK,t−1. The worker nodes communicate with
each other over a common broadcast link, as shown in Figure 2, to achieve the new
partition. The decentralized data shuffling problem is to find a delivery scheme (between
workers) to shuffle the collection of active data units {Ak,t−1 : k ∈ [K]} to a new partition
{Ak,t : k ∈ [K]}. Each worker k computes a function φk(Zk,t−1) of its cache contents and
broadcasts it to the other workers. Using these transmissions and the locally available
cache content Zk,t−1, each node k is required to decode Ak,t. As in the case of coded caching,
one seeks to reduce the worst-case communication load by designing the initial storage
and coded transmissions carefully. The communication load of this data shuffling scheme,
denoted by Lds, is the sum of the number of bits broadcast by all the K nodes in the system,
i.e., Lds = ∑k∈[K] |φk(Zk,t−1)|. The optimal communication load of data shuffling L∗ds (for
the worst case data shuffle) is defined as

L∗ds = min max Lds
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where the maximization is over all possible choices for Ak,t−1 : k ∈ [K] and Ak,t : k ∈ [K],
and the minimization is over all possible choices for the cache placement {Zk,t−1 : k ∈ [K]}
and the delivery scheme {φk : k ∈ [K]}.

For the above setting, the following bound on the communication load L∗d was shown
in [5].

L∗ds ≥
Kq

K− 1
.
K−M/q

M/q
B. (26)

The above bound was shown to be optimal for some special cases of the parameters, and
order-optimal otherwise.

Figure 2. The decentralized data shuffling problem. The contents of the local cache of each node k at
time t− 1 is Zk,t−1, out of which a subset Ak,t−1 is the active data currently processed by the node.
The worker nodes must communicate via a broadcast link to shuffle the active data among each other
and create a new partition A1,t, . . . , AK,t of the data units at the next time instance t.

Proof of the Decentralized Data Shuffling Converse

We now recover the bound (26) by a simple proof using our generic lower bound in
Theorem 1. We assume that the cache placement and delivery scheme of the data shuffling
scheme are designed such that the communication load of the data shuffling scheme is
exactly equal to L∗ds. We proceed as per the three steps in Section 1.2.

Applying Theorem 1: For k ∈ [K] and Q ⊂ [K], let AQ
k,t denote the subset of bits of

Ak,t available exactly at the nodes in Q and not anywhere else. Note that |AQ
k,t| = 0 if

Q = ∅, as each bit is necessarily present in at least one of the K nodes.
As per our bound in Theorem 1, we have

L∗ds = Lds ≥ ∑
k∈[K]

∑
Q⊂[K]\k

|AQ
k,t|
|Q| .

Symmetrization by averaging over appropriately chosen set of shuffles: Let the set
of circular permutations of (1, 2, . . . , K), apart from the identity permutation, be denoted
by Γ. There are K− 1 of them clearly. We denote an arbitrary permutation in Γ by γ, and
by γk we denote the kth coordinate of γ.

Now, consider the shuffle given by γ ∈ Γ, i.e., for each k, Ak,t = Aγk ,t−1. For this
shuffle, we have by the above equation that

L∗ds ≥ ∑
k∈[K]

∑
Q⊂[K]\k

|AQ
γk ,t−1|
|Q| (27)

= ∑
Q⊂[K]

∑
k∈[K]\Q

|AQ
γk ,t−1|
|Q| . (28)
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Now, averaging (28) over all permutations in Γ, we get

L∗ds ≥
1

K− 1 ∑
γ∈Γ

∑
Q⊂[K]

∑
k∈[K]\Q

|AQ
γk ,t−1|
|Q| , (29)

=
1

K− 1 ∑
Q⊂[K]

∑
k∈[K]\Q

∑
γ∈Γ

|AQ
γk ,t−1|
|Q| . (30)

As we go through all choices of γ ∈ Γ, we see that γk takes every value except k, i.e., γk

assumes each value in [K] \ k exactly once. Moreover, AQ
k′ ,t−1 is the collection of bits of

Ak′ ,t−1 present only in Q. However, the bits Ak′ ,t−1 are already presented in k′. Hence,
|AQ

k′ ,t−1| = 0 if k′ /∈ Q. Therefore, we have

L∗ds ≥
1

K− 1 ∑
Q⊂[K]

∑
k∈[K]\Q

∑
k′∈Q

|AQ
k′ ,t−1|
|Q| , (31)

=
1

K− 1 ∑
Q⊂[K]

∑
k′∈Q

|AQ
k′ ,t−1|(K− |Q|)
|Q| (32)

=
1

K− 1 ∑
k′∈[K]

∑
Q⊂[K]:k′∈Q

|AQ
k′ ,t−1|(K− |Q|)
|Q| . (33)

Refining the bound using setting constraints and convexity: Now, we have the
following observations as AQ

k′ ,t−1 : k′ ∈ [K], {Q′ ⊂ [K] : k′ ∈ Q} form a partition of all the
NB bits.

∑
Q⊂[K]

∑
k′∈Q
|AQ

k′ ,t−1| = NB = KqB

∑
Q⊂[K]

∑
k′∈Q
|AQ

k′ ,t−1||Q| ≤ KMB.

Utilizing the above, and the fact that K−|Q|
|Q| is a convex decreasing function in |Q| (for

|Q| ≥ 0), we have

L∗ds ≥
KqB

K− 1
.
(K−∑Q⊂[K] ∑k′∈Q

|AQ
k′ ,t−1

|
NB |Q|)

∑Q⊂[K] ∑k′∈Q
|AQ

k′ ,t−1
|

NB |Q|
(34)

≥ KqB
K− 1

.
K− KM/N

KM/N
(35)

=
KqB

K− 1
.
K−M/q

M/q
(36)

Thus, we have recovered (26).

Remark 5. We have considered the decentralized version of the coded data shuffling problem in
this subsection. The centralized version of the data shuffling problem was introduced in [4] and
its information theoretic limits were studied elaborately in [6]. Our data exchange bound, when
applied to the setting in [6], results in a looser converse result than that in [6]. The reasons for this
is explored in Section 5 using the connection between our data exchange bound and the bound for
index coding known in literature.
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4. Coded Distributed Computing

In a distributed computing setting, there are N files on which the distributed com-
puting task has to be performed by K nodes. The job at hand is divided into three phases:
Map, Shuffle, and Reduce. In the shuffle phase, the nodes that are assigned to perform the
distributed computing task exchange data. In [3], the authors proposed coded communica-
tion during the shuffle phase to reduce the communication load. We recollect the setting
and the main converse result from [3], which we recover using our data exchange bound.

A subsetMi of N files is assigned to ith node and the ith node computes the map
functions on this subset in the map phase (see Figure 3). We assume that the total number
of map functions computed at the K nodes is rN, where r is referred to as the computation
load. In the reduce phase, a total of W reduce functions is to be computed across the K
nodes corresponding to the N files. Each node is assigned the same number of functions.
Obtaining the output of the reduce functions at all the nodes will complete the distributed
computing task. In this work, as in [3], we consider two scenarios: in the first one, each
reduce function is computed exactly at one node and in the second, each reduce function is
computed at s nodes, where s ≥ 2.

Figure 3. There are N files and a subsetMi of them are assigned to node i in map phase. The output
of map phase at each node is v1:Q,Mi . Each node computes Xi = φi(v1:Q,Mi ) which it broadcasts
to other nodes. The nodes compute the reduce outputs based on their own map outputs and the
broadcasts which they receive.

Each map function output (also referred to as intermediate output) corresponds to a
particular file and a particular reduce function. For each file and each reduce function, an
intermediate output of T bits is obtained. To compute an assigned reduce function, each
node requires the intermediate outputs of all the files corresponding to the assigned reduce
function. This means each node is missing the intermediate outputs (corresponding to the
assigned reduce functions) of those files that are not assigned to it in the map phase.

The intermediate outputs of each file assigned to node i corresponding to all the
reduce functions are available at node i at the end of the map phase and denoted by
v1:Q,Mi . These intermediate outputs at the end of the map phase are encoded as follows:
Xi = φi(v1:Q,Mi ) and broadcasted to the remaining nodes, in the shuffle phase (in order to
deliver the missing intermediate outputs at the nodes). Let L∗dc be the total number of bits
broadcasted by the K nodes in the shuffle phase, minimized over all possible map function
assignments, reduce function assignments, and shuffling schemes, with a computation
load r. We refer to L∗dc as the minimum communication load.

To obtain similar expressions for the communication load as in [3], we normalize the
communication load by the total number of intermediate output bits (=WNT). We consider
the first scenario now, where each reduce function is computed exactly at one node.
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Theorem 3 ([3]). The minimum communication load L∗dc incurred by a distributed computing
system of K nodes for a given computation load r, where every reduce function is computed at
exactly one node and each node computes W

K reduce functions, is bounded as

L∗dc
WNT

≥ 1
r

(
1− r

K

)
. (37)

Proof. We resort to two of the three steps of Section 1.2 to complete this proof. The sym-
metrization step, which involves averaging over demand configurations, is not applicable
in the present setting because the definition of L∗dc involves minimization over the reduce
function assignment as well.

Applying Theorem 1: LetM = (M1, . . . ,MK) denote a given map function assign-
ment to the nodes, whereMi ⊂ [N]. Let LM denote the communication load associated
with the map function assignmentM. We will prove that

LM
WNT

≥
K

∑
j=1

ãj
M
N

K− j
Kj

,

where ãj
M denotes the number of files which are mapped at exactly j nodes in [K]. It is

easy to see that ∑K
j=1 ãj

M = N and ∑K
j=1 jãj

M = rN. We will apply Theorem 1 to this setting.
Recall that each reduce function is computed exactly at one node in our present setup. To
apply Theorem 1, we need to ascertain the quantities aQ

P for P, Q being disjoint subsets of
[K]. To do this, we first denote by ãQ the number of files whose intermediate outputs are
demanded by some node k and available exclusively in the nodes of Q. Note that ãQ is the
same for any k ∈ [K] \Q, as each node demands intermediate outputs of all the files that
are not mapped at the node itself.

As the number of reduce functions assigned to node k is W
K (as each reduce function

is computed at exactly one node) and each intermediate output is T bits, the number of
intermediate output bits which are demanded by any node k and available exclusively in
the nodes of Q are WT

K ãQ. Thus, for any Q ⊂ [K], the quantities aQ
P in Theorem 1 are given

as follows.

aQ
P =

{
WT

K ãQ if P = {k} for some k ∈ [K] such that k /∈ Q
0 otherwise

Further note that ∑Q⊂[K]:|Q|=j ãQ = ãj
M by definition of ãj

M. Using these and applying
Theorem 1 with the normalization factor WNT, we have the following inequalities.

LM
WNT

≥ 1
WNT

K

∑
k=1

∑
Q⊂[K]\{k}

1
|Q| ã

Q WT
K

=
1

KN

K

∑
j=1

∑
Q⊂[K]:|Q|=j

∑
k∈[K]\Q

1
j

ãQ

=
1

KN

K

∑
j=1

∑
Q⊂[K]:|Q|=j

K− j
j

ãQ

=
1

KN

K

∑
j=1

K− j
j

 ∑
Q⊂[K]:|Q|=j

ãQ


=

1
KN

K

∑
j=1

K− j
j

ãj
M.



Entropy 2021, 23, 985 18 of 32

Refining the bound using convexity and setting constraints: Using definition of L∗dc,

noting that K−j
j is a convex decreasing function of j and that

∑K
j=1 ãj

M
N = 1, we have that

L∗dc
WNT

≥ 1
K

K−∑K
j=1

jãj
M

N

∑K
j=1

jãj
M

N

=
1
K

K− r
r

=
1
r

(
1− r

K

)
.

Now, we consider the case in which each reduce function has to be computed at s
nodes. The total number of reduce functions is assumed to be W. In addition, the following
assumption is made to keep the problem formulation symmetric with respect to reduce
functions: every possible s sized subset of K nodes is assigned W

(K
s )

reduce functions (we

assume (K
s ) divides W). As in the previous case, we will denote the communication load

for a given map function assignment by LM(s) and the optimal communication load with
computation load r by L∗dc(s). We will prove the following result which gives a lower
bound on LM(s).

Proposition 2 ([3]). The communication load corresponding to a map function assignmentM
when each reduce function has to be computed at s nodes is lower bounded as

LM(s)
WNT

≥
K

∑
j=1

ãj
M
N

min(K−j,s)

∑
l=max(0,s−j)

(K−j
l )( j

s−l)

(K
s )

l
l + j− 1

. (38)

Proof. As before, we will denote by ãQ the number of files whose map function outputs
are available exclusively in the nodes of Q. Furthermore, we will denote the number of
intermediate output bits which are demanded exclusively by the nodes in P and available
exclusively in the nodes of Q by bQ

P . Then, applying Theorem 1, the lower bound on the
communication load in terms of {bQ

P } is given by

LM(s)
WNT

≥ 1
WNT ∑

P⊂[K]
∑

Q⊂[K]\P

|P|
|P|+ |Q| − 1

bQ
P .

We first interchange the above summation order and consider all sets Q with |Q| = j and
all sets P such that |P| = l. For |Q| = j, we need to count the subsets of size s, which form a
subset of P∪Q. Thus, for a fixed j, we can see that the range of l can vary from max(0, s− j)
to min(K − j, s). For a given subset P of size l, the number of s sized subsets which are
contained within P ∪ Q and contain P are ( j

s−l). Therefore, the number of intermediate

output bits demanded exclusively by the nodes in P and available exclusively in Q, bQ
P , is

given by bQ
P = ãQWT

( j
s−l)

(K
s )

. This is because each of the s-sized subset has to reduce ãQ W
(K

s )

functions. Using this relation, the above inequality can be rewritten as follows.

LM(s)
WNT

≥
K

∑
j=1

1
N

 ∑
Q⊂[K]:|Q|=j

ãQ

 min(K−j,s)

∑
l=max(0,s−j)

l
l + j− 1

 ∑
P⊂[K]\Q:|P|=l

( j
s−l)

(K
s )

 (39)

=
K

∑
j=1

ãj
M
N

min(K−j,s)

∑
l=max(0,s−j)

l
l + j− 1

(K−j
l )( j

s−l)

(K
s )

, (40)

where (40) follows as ãj
M = ∑Q⊂[K]:|Q|=j ãQ. This completes the proof.
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The above lemma along with certain convexity arguments resulting from the con-
straints imposed by the computation load can be used to prove the lower bound on L∗dc(s).
The interested reader is referred to the converse proof of Theorem 2 in [3] for the same.

5. Relation to Index Coding Lower Bound

We now consider the “centralized” version of the data exchange problem, where one
of the nodes has a copy of all the information bits and is the lone transmitter in the system.
We will use the index 0 for this server node, and assume that there are K other nodes
in the system, with index set [K], acting as clients. In terms of Definition 1, this system
is composed of K + 1 nodes {0} ∪ [K], the demand D0 of the server is empty, while the
demands Di and the contents Ci of all the clients are subsets of the contents of the server,
i.e., Ci, Di ⊂ C0 for all i ∈ [K]. Without loss of generality, we assume that only the server
performs all the transmissions as any coded bit that can be generated by any of the client
nodes can be generated at the server itself. Clearly, this is an index coding problem [26]
with K clients or receivers, the demand of the ith receiver is Di, and its side information is
Ci. When applied to this scenario, our main result Theorem 1 therefore provides a lower
bound on the index coding communication cost.

The maximum acyclic induced subgraph (MAIS) and its generalization, which is
known as the generalized independence number or the α-bound, are well-known lower
bounds in index coding [9,26]. In this section, we describe the relation between the α-bound
of index coding and the centralized version of Theorem 1. We show that the latter is in
general weaker, and identify the scenarios when these two bounds are identical. We then
use these observations to explain why Theorem 1 cannot provide a tight lower bound for
the centralized data shuffling problem [6].

Let us first apply Theorem 1 to the centralized data exchange problem. As node 0
contains all the information bits and its demand is empty, we have aQ′

P = 0 if 0 /∈ Q′ or

0 ∈ P. Using Q = Q′ \ {0} and defining the variable cQ
P = aQ∪{0}

P = aQ′
P , we obtain

Theorem 4. The centralized version of our main result Theorem 1 is

L∗ ≥ ∑
P⊂[K]

∑
Q′⊂{0}∪[K]

0∈Q′ ,P∩Q′=∅

|P|
|P|+ |Q′| − 1

aQ′
P

= ∑
P⊂[K]

∑
Q⊂[K]\P

|P|
|P|+ |Q| c

Q
P .

Note that it is possible to have cQ
P = aQ∪{0}

P > 0 when Q = ∅.
In Section 5.1, we express the generalized independence number α in terms of the

parameters cQ
P , and in Section 5.2, we identify the relation between our lower bound

Theorem 4 and the index coding lower bound α.

5.1. The Generalized Independence Number Bound

Let γ = (γ1, . . . , γK) be any permutation of [K], where γi is the ith coordinate of
the permutation. Applying similar ideas as in the proof of Theorem 1 to the centralized
scenario, we obtain the following lower bound on L∗. This lower bound considers the
nodes in the order γ1, . . . , γK, and for each node in this sequence it counts the number of
bits that are demanded by this node which are neither demanded by and nor available as
side information in any of the earlier nodes.
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Proposition 3. For any permutation γ of [K],

L∗ ≥
K

∑
i=1

∑
P⊂{γi ,...,γK}

γi∈P

∑
Q⊂{γi+1,...,γK}

cQ
P . (41)

Proof. See Appendix D.

A direct consequence of Proposition 3 is

L∗ ≥ max
γ

K

∑
i=1

∑
P⊂{γi ,...,γK}

γi∈P

∑
Q⊂{γi+1,...,γK}

cQ
P (42)

where the maximization is over all possible permutations on [K].
We now recall the definition of the generalized independence number [9]. Denote

the collection of the cQ
P information bits available exclusively at the nodes Q ∪ {0} and

demanded exclusively by the nodes P as {wQ
P,m : m = 1, . . . , cQ

P }. Therefore, the set of all
the information bits present in the system is

B =
⋃

P⊂[K]

⋃
Q⊂[K]\P

{
wQ

P,m : m = 1, . . . , cQ
P

}
.

Note that each bit is identified by a triple (P, Q, m).

Definition 2. A subsetH of B is a generalized independent set if and only if every subset I ⊂ H
satisfies the following:

• there exists a node k ∈ [K] and an information bit in I such that this information bit is
demanded by k (and possibly some other nodes), and none of the other bits in I are available as
side information at k.

The generalized independence number α is the size of the largest generalized independent set.

We next show that the lower bound in (42) is in fact equal to the generalized indepen-
dence number α of this index coding problem.

Theorem 5. The generalized independence number α satisfies

α = max
γ

K

∑
i=1

∑
P⊂{γi ,...,γK}

γi∈P

∑
Q⊂{γi+1,...,γK}

cQ
P , (43)

where the maximization is over all K! permutations of [K].

Proof. See Appendix E.

5.2. Relation to the Index Coding Lower Bound

Proposition 3 serves as the platform for comparing Theorem 4 and the α-bound.
While α equals the maximum value of the bound in Proposition 3 over all permutations
on [K], our bound in Theorem 4 equals the average value of the lower bound given in
Proposition 3 over all permutations on [K]. We will show this relation between Theorem 4
and Proposition 3 now.



Entropy 2021, 23, 985 21 of 32

Taking the average of the right hand side of (41) with respect to all γ, we obtain

1
K! ∑

γ

K

∑
i=1

∑
P⊂{γi ,...,γK}

γi∈P

∑
Q⊂{γi+1,...,γK}

cQ
P .

For each choice of P, Q ⊂ [K] with P ∩ Q = ∅, we now count the number of times cQ
P

appears in this sum. For a given γ, the inner summations include the term cQ
P if and only if

the following holds:

γi ∈ P, where i = min{j ∈ [K] : γj ∈ P ∪Q},

i.e., if we consider the elements γ1, . . . , γK in that order, the first element from P ∪Q to be
observed in this sequence belongs to P. Thus, for a given pair P, Q the probability that a
permutation γ chosen uniformly at random includes the term cQ

P in the inner summation
is |P|/(|P| + |Q|). Therefore, the average of the lower bound in Proposition 3 over all
possible γ is

∑
P⊂[K]

∑
Q⊂[K]

P∩Q=∅

|P|
|P|+ |Q| c

Q
P ,

which is exactly the bound in Theorem 4.
As the bound in Theorem 4 is obtained by averaging over all γ, instead of maximizing

over all γ, we conclude that this is in general weaker than the α-bound of index coding.
The two bounds are equal if and only if the bound in Proposition 3 has the same value for
every permutation γ.

Although weaker in general, we note that the bound of Theorem 4 is easier to use
than the α-bound. As demonstrated by (2), in order to use Theorem 4, we only need to
know, for each information bit, the number of nodes that contain this bit and the number
of nodes that demand this bit. In comparison, this information is insufficient to evaluate
the α-bound, which also requires the identities of these nodes.

5.3. On the Tightness of Theorem 4

We now consider the class of unicast problems, i.e., problems where each bit is de-
manded by exactly one of the nodes. For this class of problems, we characterize when
Theorem 4 yields a tight bound.

Theorem 6. For unicast problems the bound in Theorem 4 equals L∗ if and only if every S ⊂ [K]
with |S| ≥ 2 satisfies the following, cS\k

{k} = cS\k′
{k′} for every k, k′ ∈ S.

Proof. See Appendix F. When the lower bound of Theorem 4 is tight, the clique-covering
based index coding scheme (see in [26,27]) yields the optimal communication cost.

Our main result in Theorem 1, or equivalently, Theorem 4, does not provide a tight
lower bound for centralized data shuffling problem [6], because this problem involves
scenarios that do not satisfy the tightness condition of Theorem 6. For instance, consider
the simple canonical data shuffling setting, where the system has exactly K files, all of equal
size F bits, and each node stores exactly one of these files, i.e., the entirety of the contents
of the kth node Ck is the kth file. Here, |Ck| = F for all k ∈ [K], and Ci ∩ Cj = ∅ for all
i 6= j. Assume that the shuffling problem is to move the file Ck+1 to node k, i.e., Dk = Ck+1,
where we consider the index K + 1 to be equal to 1. This is a worst-case demand for data
shuffling incurring the largest possible communication cost. For this set of demands, we
have c{k+1}

k = F for all k ∈ [K], and cQ
k = 0 for all other choices of k, Q. In particular,

c{k}k+1 = 0 6= c{k+1}
k . Clearly, the condition in Theorem 6 does not hold for S = {k, k + 1}.
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Therefore, our lower bound is strictly less than L∗ for this data shuffling problem, and
therefore is not tight.

6. Relationship to Other Index Coding Settings

We now comment on the application of our data exchange bound to a couple of other
important index coding settings known in literature, (a) distributed index coding studied
in [10] (which is equivalent to the cooperative multi-sender index coding setting considered
in [11]), and (b) embedded index coding, presented in [12].

6.1. Distributed Index Coding

In [10], the authors consider a generalization of the single-server index coding problem
(which we studied in Section 5) called distributed index coding. The specific setting in [10]
is as follows. There are n messages denoted by xj : j ∈ [n], where xj ∈ {0, 1}tj (for some
positive integer tj). There is a corresponding set of n receivers indexed by [n]. The receiver
j ∈ [n] contains as side-information the subset of messages indexed by Aj ⊂ [n] (i.e.,
receiver j knows {xi : i ∈ Aj}) and demands the message xj. There are 2n − 1 servers
in the system, indexed by the sets J = {J : J ⊂ [n], J 6= ∅}. The server J contains the
messages {xi : i ∈ J}. The servers do not demand any messages and are responsible only
for transmissions that satisfy the receivers. The server J is connected to the n receivers via
a broadcast link with capacity CJ bits. In order to satisfy the demands, each server J sends
a message yJ ∈ {0, 1}sJ to all the receivers, where sJ is some positive integer.

Definition 3 ([10]). The rate-capacity tuple ((Rj : j ∈ [n]), (CJ : J ∈ J )) is said to be achievable
if there exists some positive integer r such that tj ≥ rRj, ∀j and sJ ≤ rCJ , ∀J, and there exists
valid encoding functions (encoding the messages of lengths (tj : j ∈ [n]) into codewords of lengths
(sJ : J ∈ J )) and decoding functions, such that all receivers can decode their respective demands.

Slightly abusing Definition 2, for some T ⊂ [n], we call a set S ⊂ T of message indices
as a generalized independent set of T, if for every subset S′ ⊂ S, there is some j ∈ S′ such
that Aj ∩ (S′ \ j) = ∅.

Let ((Rj : j ∈ [n]), (CJ : J ∈ J )) be an achievable rate-capacity tuple. For any non-
empty subset T ⊂ [n], let ST be a generalized independent set of T. In Corollary 2 of [10], it
is shown that

∑
j∈ST

Rj ≤ ∑
J:J∩T 6=∅

CJ . (44)

Remark 6. The above bound in (44) is given in [10] using the terminology of the side-information
graph defining the index coding problem and its acyclic induced subgraphs. However, we have
used generalized independent sets to state the same bound. The reader can easily confirm that the
acyclic induced subgraph of the side-information graph as defined in [10] is the same as a generalized
independent set we have used in this work. Therefore, (44) is the same as the bound in Corollary 2
of [10].

Let
Smax = arg max

S
∑
j∈S

tj,

where the maximization is over all generalized independent sets S of [n].
Then, we have by (44),

∑
j∈Smax

Rj ≤ ∑
J∈J

CJ . (45)

In order to relate the bound in (44) with our data exchange bound, we fix Rj = tj, ∀j ∈ [n].
This means that we should have r = 1 in Definition 3. For these parameters, let s∗J : J ∈ J
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be a choice of integers sJ : J ∈ J such that the rate-capacity tuple ((Rj = tj : j ∈ [n]), (sJ :
J ∈ J )) is achievable and ∑J∈J sJ is minimized. Note that such integers s∗J : J ∈ J will
exist as each index coding problem has at least one solution, namely, the trivial solution
consisting of uncoded transmissions of xj : j ∈ [n].

Then, applying (45), we have

∑
j∈Smax

tj ≤ ∑
J∈J

s∗J . (46)

Note that ∑J∈J s∗J is exactly the minimum number of bits to be communicated by the
servers for satisfying receiver demands.

For Q ⊂ [n], define

f Q
j ,

{
1 if j ∈ (∩k∈Q Ak) \ (∪k′∈[n]\Q Ak′),
0 otherwise.

By arguments similar to that of the proof of Theorem 5, we can verify that

∑
j∈Smax

tj = max
γ

n

∑
j=1

∑
Q⊂{γj+1,...,γn}

f Q
γj tγj , (47)

where the maximization is over all possible permutations γ = (γ1, . . . , γn) of (1, . . . , n).
We thus have by (46) and (47),

∑
J∈J

s∗J ≥ max
γ

n

∑
j=1

∑
Q⊂{γj+1,...,γn}

f Q
γj tγj . (48)

Finally, we apply our data exchange bound in Theorem 1 to the distributed index
coding setting. To do this, we first observe that if we replaced all servers by a single “virtual”
central server containing all the messages, xj : j ∈ [n], then ∑J∈J s∗J is the minimum number
of bits to be transmitted by this virtual central server to satisfy the receiver demands. Any
lower bound on the communication cost for this transformed setting with the virtual server
will thus continue to apply for the original distributed setting with messages of length
tj : j ∈ [n]. Now, utilizing the centralized version of Theorem 1 shown in Theorem 4 and
by the discussion in Section 5.2, we get

∑
J∈J

s∗J ≥
1
n! ∑

γ

n

∑
j=1

∑
Q⊂{γj+1,...,γn}

f Q
γj tγj . (49)

Therefore, we see that the generalized independent set based bound in (48) is in general
better than (49), as (48) involves a maximization over all permutations γ, while (49) involves
the average.

6.2. Embedded Index Coding

We now consider the embedded index coding problem, introduced in [12], motivated
by device-to-device communications. The embedded index coding setting consists of a
set of m data blocks (each a binary vector of length t) distributed across a set of n nodes.
Each node stores (as side information) a subset of the data blocks and demands another
subset which it already does not have. This setting is different from [26,27] or distributed
index coding [10], as there are no dedicated servers by default here. Each node transmits
a codeword obtained by encoding its data blocks, and each demanded data block at any
node is decoded from the codewords obtained from other nodes and the side information
at the node itself. An embedded index code consists of a collection of such encoding functions
and decoding functions at the nodes, such that all demanded blocks are decoded at the
respective nodes. The communication cost of embedded index coding is the total number of
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bits transmitted between the nodes to satisfy the node demands. The work [12] generalizes
the notion of minrank [26] of single-server index codes to define the optimal length of linear
embedded index codes. Further, the authors also present heuristic constructions for general
and specialized linear codes which have some nice properties.

As the embedded index coding problem clearly has a direct mapping with the data
exchange problem considered in the present work, we can apply our data exchange bound
directly to obtain a new lower bound for the communication cost of embedded index
coding. The expression of this bound would be in the same form (up to only the change
in notation) as Theorem 1 itself. As our bound holds in the information-theoretic sense, it
would apply to not just the linear codes considered in [12] but nonlinear embedded index
codes as well.

7. Conclusions

We have presented an information theoretic converse result for a generic data exchange
problem, where the terminals contain some data in their local storage and want other data
available at the local storage of other nodes. As a number of recently studied multi-terminal
communication problems fall under this setting, we have used our general converse
to obtain converses in many such settings, thus recovering many existing results and
presenting some new results as well. Using a connection with index coding, we also
presented some ideas on why and when our data exchange based converse can be loose in
the index coding setting. It would be quite interesting to see if our converse result can be
tightened further while still retaining a closed form expression, so as to cover all known
bounds for any existing setting that can be modeled in the data exchange framework. A
lower bound for the communication load in a generic data exchange setting in the presence
of coded storage bits would also be a prospective direction for future research in this area.
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Appendix A. Proof of Theorem 1

We assume that all the bits in the collection B as in Definition 1 are i.i.d uniformly
distributed on {0, 1}. For a given communication scheme for the given data exchange
problem, let Xi , φi(Ci) represent the codeword transmitted by node i. For a subset
S ⊂ [K], let XS , ∪i∈SXi. Furthermore, let YS =

⋃
i∈S(Di ∪ Ci). We first prove the

following claim.

Claim A1. For any S ⊂ [K],

H(XS|YS) ≥ ∑
P⊂S

∑
Q⊂S\P

|P|
|P|+ |Q| − 1

aQ
P , (A1)
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where S = [K] \ S.

Applying S = [K] to the above claim then gives Theorem 1, as L∗ ≥ H(X[K]).
Now, we prove Claim A1. For this, we use induction on |S|.
We take the base case to be |S| = 2, as for |S| = 1 the problem of data exchange is not

well defined. Let S = {1, 2} without loss of generality. Then, the LHS of (A1) gives

H(X1, X2|YS) ≥ H(X1|YS) + H(X2|YS, X1)

≥ H(X1|YS, C2) + H(X2|YS, C1) (A2)

= H(X1, D2|YS, C2) + H(X2, D1|YS, C1) (A3)

≥ H(D2|YS, C2) + H(D1|YS, C1) (A4)

≥ a{1}{2} + a{2}{1}, (A5)

where (A2) follows as conditioning reduces entropy and H(X1|C1) = 0, (A3) is true as
H(D2|YS, C2, X1) = 0 and H(D1|YS, C1, X2) = 0. This proves the base case.

We now assume that the statement is true for |S| = t− 1, and prove that it holds for
|S| = t. We have the LHS of (A1) satisfying the following relationships for |S| = t.

H(XS|YS) =
1
t ∑

k∈S

(
H(XS\k|YS, Xk) + H(Xk|YS)

)
≥ 1

t

(
∑
k∈S

H(XS\k|YS, Ck)

)
+

1
t

H(XS|YS) (A6)

≥ 1
t− 1 ∑

k∈S
H(XS\k|YS, Ck)

=
1

t− 1 ∑
k∈S

H(XS\k, Dk|YS, Ck) (A7)

= 1
t−1 ∑k∈S

(
H(Dk|Ck, YS) + H(XS\k|YS\k)

)
, (A8)

where (A6) follows because H(Xk|Ck) = 0. In (A7), we introduce Dk freely, because

H(Dk|XS\k, YS, Ck) ≤ H(Dk|XS\k, CS, Ck)

≤ H(Dk|XS\k, XS, Ck)

= 0,

where the last two statements follow because H(XS|CS) = 0 and from the decoding
condition, respectively. We now interpret the two terms of (A8). For the first term, we have

∑
k∈S

H(Dk|Ck, YS) = ∑
k∈S

∑
P′⊂S\k

∑
Q⊂S\(P′∪k)

aQ
k∪P′

= ∑
P⊂S

∑
Q⊂S\P

|P|aQ
P , (A9)

where the last statement follows by noting that for a fixed choice of P, Q we have |P| choices
for (k, P′) such that P′ ∪ k = P.
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Now, using the induction hypothesis for the last term of (A8),

∑
k∈S

H(XS\k|YS\k)

≥ ∑
k∈S

∑
P⊂S\k

∑
Q⊂S\(P∪k)

|P|
|P|+ |Q| − 1

aQ
P , (A10)

= ∑
P⊂S

∑
Q⊂S\P

(t− |P| − |Q|) |P|
|P|+ |Q| − 1

aQ
P (A11)

where the above follows by noting that for a fixed choice of disjoint subsets P, Q of S, we
have |S| − |P| − |Q| choices for k such that P ⊂ S \ k and Q ⊂ S \ (P ∪ k).

Using (A9) and (A11) we have

RHS of (A8)

≥ 1
t− 1 ∑

P⊂S
∑

Q⊂S\P
|P|
(

1 +
t− |P| − |Q|
|P|+ |Q| − 1

)
aQ

P

= ∑
P⊂S

∑
Q⊂S\P

|P|
|P|+ |Q| − 1

aQ
P ,

thus proving Claim A1, which also concludes the proof of the theorem.

Appendix B. Proof of (11)

We proceed according to the three steps in Section 1.2, however with some important
variations that are required to prove (11).

Applying Theorem 1 and symmetrizing: As in the proof of Theorem 2, we use the
index 0 to represent the server. Consider that, for the given placement scheme ζ, the
delivery scheme is designed so that the optimal communication load L∗c (Nu, ζ) is achieved.
Let A = ([K]Nu

) be the set of all Nu-sized subsets of clients. Consider the coded caching
subproblem induced by the server and a set A ∈ A of clients. Consider some demand
vector d = (d1, . . . , dK) such that the demands of the clients in A are distinct, i.e., di 6= dj
for i, j ∈ A, i 6= j.

Let Ω consist of the N − 1 cyclic permutations of (1, . . . , N) which are N-cycles, along
with the identity permutation. For σ ∈ Ω, let σ(d) denote the demand vector in which
the ith component is exactly the value obtained by applying the permutation σ on the ith
component of d, i.e., σ(d)i = σ(di).

Clearly, for each σ ∈ Ω, we have L∗c (Nu, ζ) ≥ L∗A(σ(d)), where L∗A(σ(d)) is the
optimal communication load for this subproblem with demands σ(d) with respect to the
placement ζ.

Now, for each σ ∈ Ω, following similar steps as in proof of Theorem 2, we can use our
data exchange bound in Theorem 1 to obtain

L∗c (Nu, ζ) ≥ L∗A(σ(d)) ≥ ∑
k∈A

∑
Q1⊂A\k

1
1 + |Q1|

f Q1
k (σ(d)), (A12)

where f Q1
k (σ(d)) is the number of bits of the demanded file Wσ(d)k

of the client k available at
the nodes Q1 ⊂ A and no other nodes in A. Let aQ be the number of all bits (corresponding
to all N files) stored exclusively in clients Q ∪ {0} ⊂ [K] ∪ {0}. Then, by the structure of
the demand vectors in the set D = {σ(d) : σ ∈ Ω}, we see that

∑
σ∈Ω

f Q1
k (σ(d)) = ∑

Q2⊂[K]\A
aQ1∪Q2 .
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By averaging (A12) across the N demand vectors in {σ(d) : σ ∈ Ω}, we get

L∗c (Nu, ζ) ≥ 1
N ∑

k∈A
∑

Q1⊂A\k
∑

Q2⊂[K]\A

1
1 + |Q1|

aQ1∪Q2 . (A13)

For each A ∈ A, the bound (A13) holds. Averaging these bounds for all A ∈ A, we obtain

L∗c (Nu, ζ) ≥ 1

N( K
Nu
)

∑
A∈A

∑
k∈A

∑
Q1⊂A\k

∑
Q2⊂[K]\A

1
1 + |Q1|

aQ1∪Q2 . (A14)

In the above summation, for any given A, for fixed Q1 ⊂ A, Q2 ⊂ [K] \ A, the variable k
takes values from A \Q1. Thus, we have

L∗c (Nu, ζ) ≥ 1

N( K
Nu
)

∑
A∈A

∑
Q1⊂A

∑
Q2⊂[K]\A

(
Nu − |Q1|
1 + |Q1|

)
aQ1∪Q2 (A15)

=
1

N( K
Nu
)

Nu

∑
q=0

∑
Q⊂[K]

∑
A∈A:|Q∩A|=q

(
Nu − q
1 + q

)
aQ. (A16)

For some Q ⊂ [K], to obtain an A ∈ A such that |A∩Q| = q, we have to choose q elements
from Q and Nu − q elements from outside Q. Thus, we have |{A ∈ A : |Q ∩ A| = q}| =
(|Q|q )(K−|Q|

Nu−q ). Thus, we have

L∗c (Nu, ζ) ≥ 1

N( K
Nu
)

Nu

∑
q=0

∑
Q⊂[K]

(
|Q|
q

)(
K− |Q|
Nu − q

)(
Nu − q
1 + q

)
aQ. (A17)

Now(
|Q|
q

)(
K− |Q|
Nu − q

)(
Nu − q
1 + q

)
=

|Q|!(K− |Q|)!(Nu − q)
q!(|Q| − q)!(Nu − q)!(K− |Q| − Nu + q)!(1 + q)

(A18)

=

(
K

Nu

) ( Nu
q+1)(

K−Nu
|Q|−q)

( K
|Q|)

. (A19)

Further, we have

Nu

∑
q=0

(
Nu

q + 1

)(
K− Nu

|Q| − q

)
=

Nu

∑
q=1

(
Nu

q

)(
K− Nu

|Q| − q + 1

)
=

(
K

|Q|+ 1

)
−
(

K− Nu

|Q|+ 1

)
. (A20)

Using (A20) and (A19) in (A17), we get

L∗c (Nu, ζ) ≥ 1
N ∑

Q⊂[K]

( K
|Q|+1)− (K−Nu

|Q|+1)

( K
|Q|)

aQ

≥ 1
NF ∑

Q⊂[K]
gNu

(|Q|)aQ, (A21)

where gNu
is the lower convex envelope as defined in Remark 2.

Using the constraints to revise (A21):
Observe that ∑Q⊂[K] aQ = NF. We assume without loss of generality that all caches are

completely populated with the bits of the file library (as we are bounding the optimal load),
and thus we have ∑Q⊂[K] |Q|aQ = tNF. By using these and applying Jensen’s inequality
to (A21), we have (11). This completes the proof.
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Appendix C. Proof of (21)

The proof uses the same approach as in Appendix B, but takes into account the fact
that there is no central server and the cache sizes are heterogeneous. The choice of the set
of demand vectors used for symmetrization is the same as in Appendix B.

Applying Theorem 1 and symmetrizing: Let the sets A and A ∈ A, the set of
cyclic permutations Ω, demand vector d, and optimal communication loads L∗c (Nu, ζ)
and L∗A(σ(d)) be defined as in Appendix B. Throughout this proof we will assume
Nu = min{N, K}. Applying our main result Theorem 1 to the subproblem induced by the
demands of the subset of nodes A, we obtain

L∗c (Nu, ζ) ≥ L∗A(σ(d)) ≥ ∑
k∈A

∑
Q⊂[K]\k

1
|Q| c

Q
k (σ(d)),

where cQ
k (σ(d)) is the number of bits of the file W(σ(d))k

demanded by node k available
exclusively in all nodes in Q and not available in [K] \Q. Let aQ be the total number of bits
stored exclusively in the nodes Q. Then, considering the set of N demands {σ(d) : σ ∈ Ω},
we have

∑
σ∈Ω

cQ
k (σ(d)) = aQ.

Averaging over all possible σ, we obtain

L∗c (Nu, ζ) ≥ 1
N ∑

σ∈Ω
L∗A(σ(d)) ≥

1
N ∑

k∈A
∑

Q⊂[K]\k

1
|Q| a

Q.

Again, averaging this inequality over all possible choices of A ∈ A = ([K]Nu
), we obtain

L∗c (Nu, ζ) ≥ 1

N( K
Nu
)

∑
A∈A

∑
σ∈Ω

L∗A(σ(d))

≥ 1

N( K
Nu
)

∑
A∈A

∑
k∈A

∑
Q⊂[K]\k

1
|Q| a

Q. (A22)

In (A22), for a given choice of Q ⊂ [K], the term 1
|Q| a

Q appears in the summation for every

choice of (A, k) such that k /∈ Q, |A| = Nu, k ∈ A. Therefore, the number of times 1
|Q| a

Q

appears in (A22) is the number of such choices of (A, k) which is (K− |Q|)( K−1
Nu−1). Hence,

we arrive at

L∗c (Nu, ζ) ≥ 1

N( K
Nu
)

∑
Q⊂[K]

(
K− 1

Nu − 1

)
(K− |Q|)
|Q| aQ

=
FNu

K ∑
Q⊂[K]

(K− |Q|)
|Q|

aQ

NF
. (A23)

Using the constraints to revise (A23): We use the observations that K−x
x is convex

and decreasing in x > 0, ∑Q⊂[K]
aQ

NF = 1, and ∑Q⊂[K] |Q|aQ ≤ ∑t
i=1 KTi γTi NF since this is

the total available cache memory across all nodes. Applying Jensen’s inequality on (A23)
using these constraints, we obtain

L∗c (Nu, ζ) ≥ FNu

K
K−∑t

i=1 KTi γTi

∑t
i=1 KTi γTi

.

This completes the proof.
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Appendix D. Proof of Proposition 3

We will continue to use the notations used in the proof of Theorem 1. Let k ∈ [K],
and S = {γk, . . . , γK}. Note that S = {γ1, . . . , γk−1}. We will prove by induction on
|S| = K− k + 1 that

H(X0|YS) ≥
K

∑
i=k

∑
P⊂{γi ,...,γK}

γi∈P

∑
Q⊂{γi+1,...,γK}

cQ
P . (A24)

Then, the result claimed in the proposition follows by using S = {γ1, . . . , γK} = [K], i.e.,
k = 1. When |S| = 1, i.e., k = K and S = {γK}, clearly (A24) is true, as

H(X0|Y{γ1,...,γK−1}) ≥ a{0}{γK}
= c∅

S .

Now, consider S = {γk, . . . , γK}. The induction hypothesis is

H(X0|YS\γk
) ≥

K

∑
i=k+1

∑
P⊂{γi ,...,γK}

γi∈P

∑
Q⊂{γi+1,...,γK}

cQ
P . (A25)

Using the fact H(Dγk |YS, Cγk , X0) ≤ H(Dγk |Cγk , X0) = 0, we have

H(X0|YS) ≥ H(X0|YS, Cγk )

= H(X0|YS, Cγk ) + H(Dγk |YS, Cγk , X0)

= H(X0, Dγk |YS, Cγk )

= H(Dγk |YS, Cγk ) + H(X0|Cγk , Dγk , YS)

= ∑
P⊂{γk ,...,γK}

γk∈P

∑
Q⊂{γk+1,...,γK}

cQ
P + H(X0|YS\γk

) (A26)

We observe that (A24) follows from (A25) and (A26).

Appendix E. Proof of Theorem 5

We prove this theorem by showing that α is both upper and lower bounded by the
right hand side of (43).

Upper Bound: Assume that H is a largest generalized independent set. We will now
identify a permutation π = (π1, . . . , πK) corresponding toH. Let I1 = H, and observe that
as I1 is itself a subset ofH, it must contain an information bit, say wQ

P,m that is demanded

by a node, say π1, and none of the bits in I1 \ {wQ
P,m} is available as side information at π1.

For k = 2, . . . , K, we sequentially identify πk as follows. We first define

Ik = H \
⋃
i<k

⋃
P:πi∈P

⋃
Q⊂[K]\P

{
wQ

P,m : m = 1, . . . , cQ
P

}
,

which is H minus all the bits demanded by any of π1, . . . , πk−1. Thus, any bit in Ik is
demanded by one or more of the nodes in [K] \ {π1, . . . , πk−1}. As Ik ⊂ H, it contains an
information bit such that this bit is demanded by a node, say πk ∈ [K] \ {π1, . . . , πk−1},
and the rest of Ik is not available as side information at πk.

Observe that H = I1 ⊃ I2 ⊃ · · · ⊃ IK, and Ik \ Ik+1 is the set of bits in H that are
demanded by πk but not by any of the nodes in π1, . . . , πk−1. Thus,

I1 \ I2, I2 \ I3, . . . , IK−1 \ IK, IK

form a partition ofH. Here, we have abused the notation to denote IK by IK \ IK+1. We
also observe that for any choice of k′ none of the bits of Ik′ is available as side information
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at πk′ . If k > k′, as Ik ⊂ Ik′ , we deduce that none of the bits in Ik is available as side
information at πk′ . Thus, we conclude that each bit in Ik \ Ik+1 is demanded by πk and
is neither demanded by and nor available as side information at any of π1, . . . , πk−1.
Therefore, |Ik \ Ik+1| is upper bounded by the number of bits exclusively demanded by
πk and possibly some subset of {πk+1, . . . , πK} and which are also exclusively available at
some subset of {πk+1, . . . , πK}, i.e.,

|Ik \ Ik+1| ≤ ∑
P⊂{πk ,...,πK}

πk∈P

∑
Q⊂{πk+1,...,πK}

cQ
P .

This provides us the following upper bound,

α = |H| =
K

∑
k=1
|Ik \ Ik+1|

≤
K

∑
k=1

∑
P⊂{πk ,...,πK}

πk∈P

∑
Q⊂{πk+1,...,πK}

cQ
P

≤ max
γ

K

∑
k=1

∑
P⊂{γk ,...,γK}

γk∈P

∑
Q⊂{γk+1,...,γK}

cQ
P ,

where the maximization is over all permutations γ of [K].
Lower bound: We derive the lower bound by showing that, for any permutation γ, the

set

H =
K⋃

k=1

⋃
P⊂{γk ,...,γK}

γk∈P

⋃
Q⊂

{γk+1,...,γK}

{
wQ

P,m : m = 1, . . . , cQ
P

}

is a generalized independent set. Then,

α ≥ max
γ
|H| = max

γ

K

∑
k=1

∑
P⊂{γk ,...,γK}

γk∈P

∑
Q⊂{γk+1,...,γK}

cQ
P .

To show thatH is a generalized independent set, consider any subset I ⊂ H. Let k be
the smallest integer such that I contains an information bit wQ

P,m with γk ∈ P, i.e., k is the
smallest integer such that γk demands some information bit in I . Therefore, any other bit
wQ′

P′ ,m′ in I must satisfy

P′ ⊂ {γk′ , . . . , γK}, Q′ ⊂ {γk′+1, . . . , γK} for some k′ ≥ k.

Clearly, this bit is not available as side information at γk. Thus,H is a generalized indepen-
dent set.

Appendix F. Proof of Theorem 6

For unicast problems cQ
P > 0 only if |P| = 1. We abuse the notation mildly and use cQ

k
to denote cQ

{k}.
The Necessity Part: The lower bound of Proposition 3 for unicast problems is

∑K
i=1 ∑Q⊂{γi+1,...,γK} cQ

γi . For brevity, we will denote this sum as f (γ). For Theorem 4
to be tight it is necessary that the bound of this theorem be equal to α, i.e., the value of f be
the same for all permutations γ.
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We first show that c{j}
i = c{i}j for any i 6= j. Consider two permutations γ and π which

differ only in the two coordinates K− 1, K, given as, γK−1 = i, γK = j and πK−1 = j, πK = i.
Then,

0 = f (γ)− f (π) = c{j}
i + c∅

i + c∅
j − c{i}j − c∅

j − c∅
i

= c{j}
i − c{i}j .

This proves the result for |S| = 2. Next, we will assume that the necessity part is true
for any S ⊂ [K] of size less than or equal to t, and use induction to prove the result for
|S| = t + 1.

Given any (t + 1)-set S ⊂ [K] and any k, k′ ∈ S we will now show that cS\k
k = cS\k′

k′ .
Consider two permutations γ, π that differ only in the two coordinates K − t, K − t + 1,
and

γK−t, . . . , γK, πK−t, . . . , πK ∈ S,

γK−t = k, γK−t+1 = k′, and πK−t = k′, πK−t+1 = k.

We observe that S = {γK−t, . . . , γK} = {πK−t, . . . , πK}, and

0 = f (γ)− f (π)

= ∑
Q⊂{γK−t+1,...,γK }

cQ
k + ∑

Q⊂{γK−t+2,...,γK }
cQ

k′ − ∑
Q⊂{πK−t+1,...,πK }

cQ
k′ − ∑

Q⊂{πK−t+2,...,πK }
cQ

k

= ∑
Q⊂S\k

cQ
k + ∑

Q⊂S\{k,k′}
cQ

k′ − ∑
Q⊂S\k′

cQ
k′ − ∑

Q⊂S\{k,k′}
cQ

k . (A27)

We now argue that except for the two terms cS\k
k and −cS\k′

k′ all other terms in (A27)
cancel out. Consider any term in the first summation of (A27) with |Q| ≤ t− 1. If k′ ∈ Q,

then by the induction hypothesis, the term −cQ∪k\k′
k′ present in the third summation will

cancel cQ
k . If k′ /∈ Q, then k, k′ /∈ Q, and the term−cQ

k in the fourth summation will cancel cQ
k .

Similarly, every term cQ
k′ in the second summation will cancel the corresponding term −cQ

k′
in the third summation. It is straightforward to observe that these correspondences between

the positive and negative terms are unique, and thus we are left with 0 = cS\k
k − cS\k′

k′ .
The Sufficiency Part: The lower bound in Theorem 4 is

L∗ ≥
K

∑
k=1

∑
Q⊂[K]\k

1
1 + |Q| c

Q
k =

K

∑
k=1

c∅
k + ∑

S⊂[K]
|S|≥2

∑
k∈S

cS\k
k
|S| .

This lower bound can be met by a scheme that uses a combination of uncoded transmission
and clique covering. All the bits that are not available at any of the K clients are transmitted
uncoded incurring the cost ∑K

k=1 c∅
k . For every S ⊂ [K] with |S| ≥ 2, the encoder constructs

|S| vectors, one corresponding to each k ∈ S and broadcasts the XOR of these vectors to
the clients. The vector for k ∈ S consists of the cS\k

k bits demanded by node k and available

at nodes S \ k. All these |S| vectors have the same length cS\k
k . These coded transmissions

incur an additional cost ∑S⊂[K]
|S|≥2

∑k∈S
cS\k

k
|S| , thereby achieving the lower bound. This is the

well known clique-covering index coding scheme (see [27,28]) and these transmissions
allow the clients to decode their demands.
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