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ABSTRACT Primary infection with human cytomegalovirus (HCMV) results in a life-
long infection due to its ability to establish latent infection, with one characterized
viral reservoir being hematopoietic cells. Although reactivation from latency causes
serious disease in immunocompromised individuals, our molecular understanding of
latency is limited. Here, we delineate viral gene expression during natural HCMV per-
sistent infection by analyzing the massive transcriptome RNA sequencing (RNA-seq)
atlas generated by the Genotype-Tissue Expression (GTEx) project. This systematic
analysis reveals that HCMV persistence in vivo is prevalent in diverse tissues. Notably,
we find only viral transcripts that resemble gene expression during various stages of
lytic infection with no evidence of any highly restricted latency-associated viral gene
expression program. To further define the transcriptional landscape during HCMV la-
tent infection, we also used single-cell RNA-seq and a tractable experimental latency
model. In contrast to some current views on latency, we also find no evidence for
any highly restricted latency-associated viral gene expression program. Instead, we
reveal that latency-associated gene expression largely mirrors a late lytic viral pro-
gram, albeit at much lower levels of expression. Overall, our work has the potential
to revolutionize our understanding of HCMV persistence and suggests that la-
tency is governed mainly by quantitative changes, with a limited number of
qualitative changes, in viral gene expression.

IMPORTANCE Human cytomegalovirus is a prevalent pathogen, infecting most of
the population worldwide and establishing lifelong latency in its hosts. Although re-
activation from latency causes significant morbidity and mortality in immunocom-
promised hosts, our molecular understanding of the latent state remains limited.
Here, we examine the viral gene expression during natural and experimental latent
HCMV infection on a transcriptome-wide level. In contrast to the classical views on
herpesvirus latency, we find no evidence for a restricted latency-associated viral
gene expression program. Instead, we reveal that latency gene expression largely re-
sembles a late lytic viral profile, albeit at much lower levels of expression. Taken to-
gether, our data transform the current view of HCMV persistence and suggest that
latency is mainly governed by quantitative rather than qualitative changes in viral
gene expression.

KEYWORDS cytomegalovirus, gene expression, latency, single-cell RNA-seq,
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Human cytomegalovirus (HCMV) is a ubiquitous pathogen that, like all herpesvi-
ruses, can establish latent infection that persists for the lifetime of the host. In

healthy individuals, infection rarely causes any significant clinical symptoms, due to a
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robust immune response (1, 2). In contrast, primary infection or reactivation from
latency can result in serious and often life-threatening disease in immunocompromised
individuals (3–5). Latent infection is, therefore, a key part of viral persistence, and
latently infected cells are a clear threat when the immune system is suppressed. Despite
this, our molecular understanding of the HCMV latency state is still limited.

HCMV is tightly restricted to humans; however, in its host it has extremely wide cell
tropism (6), and many kinds of cells can be productively infected, including fibroblasts,
epithelial cells, and smooth muscle cells (7). In contrast, latent infection was so far
characterized only in cells of the early myeloid lineage, including CD34� hematopoi-
etic progenitor cells (HPCs) and CD14� monocytes (8). It was further established
that terminal differentiation of HPCs and CD14� monocytes to dendritic cells (DCs)
or macrophages triggers virus reactivation from latency (9–13). This differentiation-
dependent reactivation of latent virus is thought to be mediated by changes in
posttranslational modification of histones around the viral major immediate early
promoter (MIEP) (11, 14–17). These modifications drive the viral major immediate early
(IE) gene expression, resulting in reactivation of the full viral lytic gene program cascade
and the production of infectious virions (11). Thus, the cellular environment is a key
factor in determining the outcome of HCMV infection.

During productive lytic infection, HCMV expresses hundreds of different transcripts
and viral gene expression is divided into three waves of expression, IE, early, and late
(6, 18, 19). The maintenance of viral genome in latently infected cells is thought to be
associated with expression of a much smaller number of viral genes relative to lytic
infection (20–25) in the general absence of IE gene expression. Due to their therapeutic
potential, significant attention has been drawn to a few latency-associated viral gene
products, but the possibility that additional viral transcripts contribute to latency
regulation remains unclear.

The earliest studies that looked for latency-associated gene expression identified a
number of transcripts arising from the MIEP region of HCMV, but no function was
assigned to them (26–28). More systematic mapping of latency-associated transcripts
was conducted with the emergence of microarray technology. Two studies detected a
number of viral transcripts in experimentally latently infected myeloid progenitor cells
(29, 30). The latent transcripts reported by these studies were not entirely overlapping,
and yet these findings were used as a guideline for targeted efforts to identify latent
gene products. Interrogating the viral transcriptome in natural persistent infection is
highly challenging since viral genomes are maintained in extremely few cells, at very
low copy numbers, and viral genes are expected to be expressed at low levels.
Nevertheless, subsequent work detected a number of these transcripts during natural
latency (22, 25), mainly using high-sensitivity approaches such as nested PCR,
building a short list of viral genes that is generally accepted to represent a distinct
transcriptional profile during latent infection. These genes include UL138, UL81-82ast
(LUNA), and US28, as well as a splice variant of UL111A, which encodes a viral
interleukin-10 (31–37).

More recently, transcriptome sequencing (RNA-seq) was applied to map latency-
associated viral transcripts (38). This study revealed a wider viral gene expression profile
that included two long noncoding RNAs (lncRNAs), RNA4.9 and RNA2.7, as well as the
mRNAs encoding replication factors UL84 and UL44 (38). In a recent study, a targeted
enrichment platform was applied to study the transcriptome of HCMV latent infection
in both experimental and natural samples, revealing an even broader gene expression
profile (39).

Such genome-wide analyses are highly informative as they measure the expression
of all transcripts in an unbiased manner. However, a major limitation is that they portray
a mean expression in cell population, without reflecting intrapopulation heterogeneity.
In the case of latent HCMV infection models, this can be highly misleading since it is
hard to exclude the possibility that a small, undesired population of cells is undergoing
lytic replication and thus can easily introduce “lytic noise.” This effect can be especially
significant for viral genes that are highly expressed during lytic infection, such as
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lncRNAs (19). Finally, the low frequency of natural latent cells is a major hurdle for
global quantitative analysis of naturally latently infected cells.

To overcome the problem of scarcity of natural latent cells, we took advantage of
the massive human RNA-seq atlas generated by the Genotype-Tissue Expression (GTEx)
Consortium (40). Through analysis of 435 billion RNA reads, we did not find any
evidence for a restricted latency-associated viral gene program. Instead, in several
tissues we captured low-level expression of viral transcripts that resembles gene
expression at late stages of lytic infection. Next, to directly explore viral gene expression
in a controlled latently infected cell population, we turned to the established myeloid
lineage experimental systems. By using single-cell RNA-seq (scRNA-seq), we unbiasedly
characterize the HCMV latency program of both experimentally latently infected CD14�

monocytes and CD34� HPCs, overcoming the impediment of cell population variability.
Surprisingly, in contrast to the existing view in the field, we find no strong evidence for
a specific latency-associated viral gene expression signature of specific viral genes.
Instead, we reveal that in HCMV latency models, while there is little detectable IE
expression, there is low-level expression of viral genes that largely resembles the
late-stage lytic viral gene expression profile. Our analyses thus redefine the HCMV latent
gene expression program and suggest mainly quantitative rather than qualitative
changes that help determine latency. Our work illustrates how new genomic technol-
ogies can be leveraged to reevaluate complex host-pathogen interactions.

RESULTS
No evidence for a restricted latency-associated viral gene expression program

in natural HCMV infection. The proportion of infected mononuclear cells in seropos-
itive individuals was estimated at 1:10,000 to 25,000 with a copy number of 2 to 13
genomes per infected cell (41). Given that transcription of viral genes is expected to be
low in these cells, an immense amount of sequencing data is required to capture viral
transcripts. We thus took advantage of the Genotype-Tissue Expression (GTEx) data-
base, a comprehensive atlas containing massive RNA-seq data across human tissues
that were obtained postmortem from otherwise healthy individuals (40). We analyzed
HCMV reads in 9,416 RNA-seq samples from 549 individuals covering 31 tissues and
containing more than 433 billion reads (see Fig. S1A and B in the supplemental
material). In 40 samples, we obtained only reads that aligned with a 229-bp region in
the IE promoter (Fig. S1C). Since the sequence in these reads matches the sequence of
the HCMV promoter commonly used in vectors rather than the sequence observed
in the majority of clinical samples (Fig. S1D), we concluded that these reads may
originate from a contamination and excluded them from further analysis.

Reassuringly, the number of samples that contained HCMV reads and the number of
HCMV reads were significantly higher in samples originating from seropositive individ-
uals (Fig. 1A) (P � 0.0467 and P � 10�55, respectively; hypergeometric test). HCMV
reads were found in 6 out of 2,210 seronegative samples; however, all of them
contained only one viral read per sample. Therefore, this was used as a threshold, and
viral reads from samples containing fewer than two viral reads were filtered out in
further analysis (data from all samples are summarized in Table S1A).

HCMV genomes have been detected in HPCs and in additional cells throughout the
myeloid lineage (42, 43). Consequently, the blood and the hematopoietic system are a
major focus in research on HCMV persistence. Analysis of the GTEx database provides
an exceptional opportunity to unbiasedly assess HCMV prevalence in various tissues.
Interestingly, analysis of the abundance of HCMV reads in different tissues revealed that
ovaries, blood, adipose tissue, and lung had the highest percentage of samples
containing viral reads (Fig. S1E) as well the highest normalized number of viral reads
(Fig. 1B). Since the GTEx database did not contain RNA-seq data from bone marrow,
where CD34� HPCs reside, we performed RNA-seq on two CD34� HPC samples from
HCMV-positive individuals and surveyed an additional 25 RNA-seq samples of CD34�

HPCs from healthy individuals (Table S1D). Although we analyzed over 1.5 billion
aligned RNA-seq reads, we did not detect any viral reads in these samples (Fig. 1B).
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Next, we analyzed the viral gene expression as reflected by the HCMV reads that we
identified in natural samples, including in this analysis only samples that contained
more than 4 HCMV reads. Hierarchical clustering revealed that the samples could be
subdivided into two groups based on the pattern of viral gene expression (Fig. 1C).
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The first group (group I) was composed of samples that were dominated by
transcripts that are the most highly expressed during the late stage of lytic infection,
e.g., RNA2.7, RNA4.9, RNA1.2, and UL22A (Fig. 1C and S1F). Indeed, when we compared
the viral gene expression of these samples to RNA-seq data that we collected during
lytic infection of fibroblasts, we obtained a high correlation with late stages of infection
(R � 0.97) (Fig. 1D and S2A). This correlation suggests that these viral reads that were
identified in natural settings resemble the late-stage lytic gene expression program.

The second group (group II) is composed of samples that express bona fide
immediate early genes, e.g., UL123, US3, and UL36, as well as US33A, which is the most
highly expressed transcript early in infection (18), and importantly has very limited
expression of transcripts that are abundant at the late stage of lytic infection (Fig. 1C
and (S2B). Therefore, we speculate that these samples may reflect the onset of viral
reactivation, a state in which IE genes are transcribed but the full viral gene program
is still suppressed. Supporting this notion, viral gene expression of these samples
correlated best with lytically infected fibroblasts at 5 h postinfection (hpi) (R � 0.55)
(Fig. 1D and S2B). This IE expression-positive state may represent cells exiting from
latency, consistent with the view that reactivation goes through a stage of IE gene
activation. Since the tissues that we analyzed were obtained postmortem, it is possible
that postmortem-related physiological events led to HCMV reactivation and IE gene
expression. To assess this hypothesis, we inspected the time postmortem at which the
tissue was collected (data are provided by GTEx [40]). Samples in group II were not
enriched for a long waiting time before tissue collection or any other clinical technical
details (Fig. S2C and Tables S1B and C). In addition, there were no differences in the
time interval of tissue collection between samples that contained HCMV reads and
those that did not (Fig. S2D). These results suggest that the HCMV gene expression
pattern that we captured is likely independent of the trauma that occurred after death.

Importantly, although we were able to identify HCMV transcripts, we were not able
to identify tissue or blood samples that provide evidence for any highly restricted
latency-associated viral gene expression program that differs from lytic viral gene
expression. Since viral gene expression is expected to be very low in latent cells, a
possible explanation for this is that a nontargeted sequencing approach may not detect
these rare transcripts despite great sequencing depth.

Single-cell transcriptomic analysis of latently infected CD14� monocytes. Al-
though in natural samples we detected only a low-level viral gene expression pattern
that resembles the lytic gene expression program, the cellular heterogeneity in these
samples does not allow us to distinguish whether we are analyzing latently infected
cells or rare cells in which productive infection is taking place. Consequently, we next
moved to characterize the viral transcriptome in experimental models of HCMV latency.
Since these models rely on primary hematopoietic cells that may vary in their differ-
entiation state and may also contain heterogeneous populations, we took advantage of
the emergence of single-cell RNA-seq (scRNA-seq) technologies (44, 45). This high-
resolution profiling of single-cell transcriptomes allowed us to delineate the nature of
the HCMV latency program in the best-studied latent reservoir, hematopoietic cells.

Freshly isolated CD14� human monocytes were infected with an HCMV TB40E strain
containing a simian virus 40 (SV40) promoter-driven green fluorescent protein (GFP)
(TB40E-GFP) (46). This strain allows short-term detection of GFP-tagged latently in-
fected cells, as in these cells GFP expression is efficiently detected at 2 days postinfec-
tion (dpi) and then GFP signal gradually declines. Despite GFP levels in monocytes
being much lower than those in lytic infection, the GFP expression allowed us to
confirm that the majority of cells were indeed infected (Fig. S3A). To validate latent
infection in our experimental settings, we analyzed by quantitative real-time PCR
(qRT-PCR) the gene expression pattern of the well-studied latency-associated gene
UL138 and of the immediate early gene IE1 at 4 days postinfection (dpi). Infected
monocytes expressed relatively high levels of UL138 while showing only trace levels of
IE1 transcript (Fig. 2A), thus manifesting the hallmark of latent infection (29, 31, 32, 37,
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47, 48). Differentiation of these infected monocytes into dendritic cells resulted in
detectable IE expression as well as production of infectious virions (Fig. 2B and C), thus
demonstrating that our CD14� cells are latently infected.

Next, HCMV-infected CD14� cells were single cell sorted without further selection at
3, 4, 5, 6, 7, and 14 dpi, and their transcript levels were measured using massively
parallel 3= scRNA-seq (MARS-seq) (49). Analysis of the entire transcriptome was per-
formed on 3,655 CD14� infected cells, in which we could detect 15,812 genes, out of
which 171 were HCMV transcription units (see Materials and Methods and Fig. S3B for
distribution of reads and genes over the cell population). Projection of the cells using
t-distributed stochastic neighbor embedding (t-SNE) analysis revealed that most of the
cells constitute a large heterogeneous but continuous population and only a small
group forms a distinct population (Fig. 3A). When we calculated the percentage of
reads that align with the HCMV genome in each of the cells, it became evident that the
viral transcripts constitute �10% of the total reads in the small distinct population
(Fig. 3A). Reassuringly, when performing the t-SNE analysis by using only cellular gene
expression, we obtained the same structure, confirming that we are looking at two
different cell states (Fig. S4A). The small population likely represents a lytic infection
state, and the rest of the monocytes, which are the vast majority, exhibit very low to
undetectable, diverse viral gene expression levels, indicating that they likely represent
latently infected cells. This distribution, showing a clear separation between two groups
of cells exhibiting very different levels of viral gene expression, confirms the purity of
the single-cell isolation and the dominance of latent cells in the population of CD14�

infected cells (Fig. 3A).

UL138
IE1

Latent 
Monocytes

Lytic 
Macrophages

60

50

40

30

8

6

2

4

l ev el A
N

R
m evit al e

R

A C

H
oe

ch
st

G
FP

IE
1/

2

Reactivated
DCs

Latent
Monocytes

B

M
er

ge

2
4
6
8

10
12
14
16
18 r et f a i cof ev itis op PF

G
st sal bor bi f h t i

w er u tl uco c

Latent
Monocytes

Reactivated
DCs

FIG 2 Establishment of HCMV latency in CD14� monocytes. (A) Monocytes and monocyte-derived macrophages were infected with HCMV strain TB40E-GFP
at an MOI of 5. RNA was collected at 4 days postinfection (dpi) from the latent monocytes and 5 h postinfection (hpi) from lytic monocyte-derived macrophages
and was analyzed by qRT-PCR for the transcript levels of UL138 and IE1. Expression was normalized to the human Anxa5 transcript. Means and error bars
(showing standard deviations) represent three measurements. (B) Monocytes were latently infected with TB40E-GFP at an MOI of 5. At 3 dpi, cells were either
differentiated into dendritic cells (reactivated DCs) or left undifferentiated (latent monocytes), and 2 days after terminal differentiation, reactivation was
visualized by GFP and IE1/2 staining. Representative fields are presented. (C) Monocytes were latently infected with TB40E-GFP at an MOI of 5. At 3 dpi, cells
were either differentiated to dendritic cells (reactivated DCs) or left undifferentiated (latent monocytes). Two days after terminal differentiation, cells were
cocultured with primary fibroblasts and GFP-positive plaques were counted. The number of positive plaques per 100,000 monocytes or monocyte-derived
dendritic cells is presented. Cell number and viability were measured by trypan blue staining prior to plating. Means and error bars (showing standard
deviations) represent two experiments.

Shnayder et al. ®

March/April 2018 Volume 9 Issue 2 e00013-18 mbio.asm.org 6

http://mbio.asm.org


GFP
UL123
UL122

UL26
UL80
UL13
UL30
UL53
UL94

UL145
Anti UL150

UL54
Anti RNA 2.7

UL34
US8

UL78
UL74/75

UL99
RNA5.0

US12
UL138

UL84
UL48A
UL4/5

UL132
US18

UL16/17
RNA1.2

UL40
RNA4.9

UL22
RNA2.7

CD59
HLA−DQA1

B2M
CD63
APOE

IFITM1

SERPINA1

CD81
CD68
CD74
CYBB
LITAF

CHIT1
CD52
CCL4

CXCL2
NFKBIA

IL8
CCL3

Cluster 1(86) Cluster 2(997) Cluster 3(724) Cluster 4(710) Cluster 5(591) Cluster 6(547)

dpi
HCMV%

    0        <0.1%    <1%     <10%    >10%

HCMV %

3          4         5          6            7         14

dpi

3655 single cells

Vi
ra

l g
en

es
H

os
t g

en
es

sdaer latot fo sdaer V
M

C
H fo 

%
B

HCMV -1

Normalized log expression

  HumanNo 
reads

Normalized log expression

3  0No 
reads

6

tSNE 1

tS
N

E 
2

0%

5%

10%>
10

00
50

00
A

FIG 3 scRNA-seq analysis of latently infected CD14� monocytes. Single-cell RNA sequencing analysis of 3,655 cells from a cell population of latently infected
monocytes. CD14� monocytes were infected with HCMV (TB40E-GFP) and analyzed at 3, 4, 5, 6, 7, and 14 dpi. (A) t-SNE plot of all 3,655 single cells based on
host and viral gene expression. The color bar shows the percentage of viral reads from total reads per cell. (B) Heat map showing clustering analysis of 3,655
single cells. Rows show expression of the 176 most differential genes (32 out of 171 detected viral transcripts shown in the upper panel, 144 out of 15,812

(Continued on next page)

Single-Cell Transcriptomics of Latent HCMV ®

March/April 2018 Volume 9 Issue 2 e00013-18 mbio.asm.org 7

http://mbio.asm.org


HCMV latency-associated gene expression in CD14� monocytes and CD34�

HPCs resembles the late lytic gene expression program. To assess the heterogeneity
in HCMV latently infected monocytes, we combined the data from all 3,655 cells and
clustered them on the basis of their host and viral gene expression profiles into 6
clusters (Fig. 3B) (clustering method was previously described [50]). Notably, also in this
approach, the cells exhibiting high viral expression levels, representing the lytic infec-
tion state, were clustered together, and the most differential genes that were highly
expressed in this cluster were almost exclusively viral genes (cluster 1, Fig. 3B, top
panel). On the other hand, the rest of the cells exhibited very low levels of viral gene
expression in various degrees and the highly expressed differential genes in these five
clusters were all cellular genes (Fig. 3B, lower panel, and Table S2A).

These clusters were consistent with the t-SNE analysis, with cluster 1 overlapping the
distinct population probably representing lytic infection state (Fig. S4B). Indeed, by
comparing the viral gene expression pattern of cells from this cluster to that of lytically
infected monocyte-derived macrophages or fibroblasts, we could confirm that they
exhibit comparable programs (Fig. S4C). Unexpectedly, although the lytic and latent
cells represent two very separable cell states (Fig. S4A), latent cells from all clusters
show a viral gene expression profile that to a large extent resembles the late lytic
expression profile (cluster 1), with the dominant difference being the level of viral gene
expression but not the identity of the viral genes (Fig. 4A). The only viral genes whose
deviation from this correlation was statistically significant, and which were relatively
higher in latent cells, were the exogenous GFP (false discovery rate [FDR], 7 � 10�19),
which is driven by the strong SV40 promoter; the lncRNA RNA2.7 (FDR, �10�100), which
is the most abundant transcript; and a transcript encoding UL30 (FDR, 6 � 10�8), a
poorly characterized coding gene (19) (Table S2B).

We also examined whether the viral gene expression program varies between the
different populations of latently infected cells defined by the different clusters, by
assessing the correlation between lytic cells (cluster 1) and each of the five other
clusters. We found that viral gene expression profiles of all clusters were correlated to
some extent with the lytic cells (cluster 1) (Fig. S4D). The correlation coefficient declined
with the reduction in number of viral reads, as expected; however, throughout the
different clusters only very few viral genes were significantly higher in latent cells
composing these clusters (Table S2C).

Interestingly, the continuous decline in viral gene expression appears tightly related
to the time during infection and is also reflected in the separation into different clusters
(Fig. 3B and S5). This gradual repression suggests progressive silencing of viral gene
expression during latent infection as has been previously demonstrated (29, 30).

Importantly, by calculating the background noise in the single-cell data (Materials
and Methods), we confirmed that the results are not skewed by possible cross con-
tamination in the single-cell data from the few lytic cells that we have in our experi-
ments (Fig. S6).

Overall, this analysis indicates that to a large extent the viral gene expression
program during experimental latency mirrors the viral gene expression program in the
late stage of lytic infection, albeit expressed at much lower levels.

It is noteworthy that these unexpected results do not contradict previous analyses
of latent cells, as we observe latent infection to be associated with overall low levels of
viral gene expression and with high levels of UL138 relative to IE1. Importantly, this
high UL138/IE1 ratio is also evident at late stages but not at early stages of lytic
infection (Fig. 4B).

FIG 3 Legend (Continued)
detected cellular transcripts shown in the lower panel). The bar over the upper panel shows the number of reads obtained for each cell (log scale). Bars under
the heat map indicate the percentage of viral reads from total reads and days postinfection for each cell. Cells are partitioned into 6 distinct clusters (1 to 6)
based on gene expression profiles and ordered by the relative abundance of viral reads, from high to low. The number of cells in each cluster is shown in
parentheses next to the cluster number.
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It was previously demonstrated that HCMV virions contain virus-carried mRNAs (51,
52). To exclude the possibility that the transcripts that we capture originate from input
mRNAs that are carried in by virions, we infected CD14� monocytes with untreated or
UV-inactivated viruses and evaluated the levels of RNA2.7 and RNA4.9 at 5 dpi. The
expression of both transcripts was over 30-fold lower in the cells infected with
UV-inactivated virus than in cells infected with untreated virus (Fig. 4C). In addition, viral
transcripts levels at 5 hpi were much lower than at 5 dpi (Fig. 4D), illustrating that the
viral transcripts that we capture during latency result from de novo expression and are
not the result of input mRNAs.

We next examined viral gene expression in experimentally infected CD34� HPCs,
which are another well-characterized site of latent HCMV infection (43, 53). CD34� cells
were infected with TB40E-GFP virus in the same manner as CD14� monocytes and used
for generation of scRNA libraries at 4 dpi. We initially used MARS-seq (49) to measure
the transcriptome of infected HPCs; however, in CD34� cells viral gene expression was
significantly lower, and out of 424 cells that we sequenced, viral transcripts could be
detected in only 12 cells (Table S2E). We therefore moved to the 10� Genomics
Drop-Seq platform that allows simultaneous analysis of thousands of cells. We analyzed
the transcriptome of 7,634 experimentally infected HPCs, in 366 of which we identified
viral transcripts (see Materials and Methods and Fig. S3C for distribution of reads and
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genes over the cell population). Projection of cells using t-SNE analysis revealed
heterogeneous populations, and cells that expressed viral transcripts were distributed
throughout these populations (Fig. 5A). Analysis of the 366 cells that expressed viral
transcripts revealed low expression levels, and as in CD14� monocytes, the low viral
gene expression that we measured in these cells correlated with the expression pattern
of the late stage of lytic infection (comparing CD34� cells to cluster 1, Fig. 5B). Also
here, only for a few transcripts, the deviation from this correlation was statistically
significant; these included RNA2.7 and UL30 (Table S2E).

Recent transcriptome mapping done on experimentally infected CD34� cells re-
vealed a broader profile of gene expression than was previously appreciated (39).
Importantly, comparison of the viral expression profile using this independent data set
to the expression profile of late lytic fibroblasts from the same study also revealed
significant correlation (R � 0.91 and R � 0.89) (Fig. S7). Overall, our results and analysis
show that during experimental latent infection there is no well-defined latency-
associated viral gene expression signature, but rather, these cells are characterized by
gradual repression of viral gene expression with low-level expression of a program
largely resembling late lytic infection stages.

DISCUSSION

Despite the clinical importance of HCMV latency, the mechanisms involved in viral
genome maintenance and reactivation are poorly understood. An important step in
deciphering these mechanisms is to characterize viral transcripts that are expressed
during latent infection in an unambiguous manner. To address this challenge, we
examined HCMV infection by comprehensive analysis of RNA-seq data from diverse
human tissues and further used scRNA-seq to analyze gene expression of latently
infected CD14� monocytes and CD34� HPCs. Surprisingly, our measurements demon-
strate that in both natural HCMV infection and experimental latency models there is no
evidence of a unique latency-associated gene expression program, but instead, we
describe a viral gene expression pattern that is largely similar to the late stage of lytic
infection at exceedingly low levels. Although these results are surprising given the
prevalent notion that HCMV latency involves a restricted gene expression program,
evidence for broader viral gene expression was indicated in several previous genome-
wide studies (29, 30, 38, 39).

Examination of HCMV infection by analyzing viral gene expression in diverse human
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tissues uncovered two patterns of gene expression: the first is composed of samples
that contain viral transcripts that are abundant at the late stage of lytic infection, and
the second is composed of samples with a restrictive gene expression pattern that
includes mainly IE transcripts. The samples that contain late viral transcripts could
reflect low-level expression that originates from few latent cells or the existence of
scarce lytic cells in these tissues. Since cells expressing viral transcript are very rare, it
is currently impossible to distinguish between these two scenarios.

The samples that contained mainly IE transcripts are interesting as they may reflect
a snapshot of viral gene expression during reactivation in vivo, in natural human
samples. Although we did not observe any difference in the time interval from death
until these samples were collected, it remains possible that this restricted IE gene
expression occurred postmortem or due to the associated trauma (54). Regardless of
the conditions that initiated this restrictive IE gene expression, this state may imply that
in vivo exit from latency goes through a phase in which IE genes are activated. The IE
expression pattern that we find was seen mostly in blood samples but not solely. While
speculative, the restrictive IE gene expression in these cells may suggest that there is
a threshold that needs to be crossed (perhaps the accumulation of enough IE proteins)
before the temporally controlled viral gene expression program can start. Indeed, this
idea is entirely consistent with differentiation of CD34� cells ex vivo to immature
dendritic cells (DCs) resulting in cells permissive for IE1 expression but not virus
production (11) and with the detection of IE1 expression without infectious virus
production in immature DCs isolated from healthy seropositive carriers (55). A similar
model was proposed for herpes simplex virus 1 (HSV-1) reactivation from latency,
where accumulation and localization of VP16 were suggested to regulate the onset of
the full reactivation program (56).

Our analysis of natural samples also suggests that HCMV persistence is widespread
throughout the body, as we found viral gene expression in diverse human tissues.
Previous studies have shown the presence of viral genomes in tissues outside the blood
and hematopoietic system (57–60). Our data provide some evidence for viral gene
expression in various tissues. The tissue in which we found the highest levels of viral
transcripts was the lung, which is consistent with recent results showing that HCMV
DNA could be identified in the lung (60) and in alveolar macrophages (9) and that
HCMV reactivation is often manifested clinically as pneumonitis (61, 62). The cellular
heterogeneity in tissue samples precludes any conclusion about the cellular sites of
HCMV infection in these natural samples.

Our inability to detect a restricted latency-associated gene expression program in this
systematic survey of natural samples motivated us to examine the viral gene expression in
the best-studied latency experimental systems using single-cell analysis. Notably, our
results challenge the view of latency as being a specific virally restricted program and
highlight rather a quantitative aspect of viral gene expression that is likely governed by the
host cell. Unbiased transcriptome analyses of HPCs and monocytes latently infected with
HCMV either experimentally or naturally have been previously performed using both
microarrays and next-generation sequencing (29, 35, 38). The list of expressed genes
emerging from these different studies included dozens of viral transcripts. The recent study
by Cheng et al. (39) revealed an even broader profile of gene expression during hemato-
poietic cell infection. By using recombinant viruses that establish a latent or a replicative
infection in HPCs, this study identified a class of low-expression genes that are differentially
expressed in latent versus replicative states of infection and suggested that these genes
may have a role in regulating latency. Our analysis of this data set further reveals a
significant correlation between viral gene expression in latent HPCs and viral gene expres-
sion in late lytic fibroblasts. This correlation provides an important independent validation
of our finding that viral gene expression during latency to a large extent resembles the
program seen during late-stage lytic infection.

The significant advantage of scRNA-seq, especially in the case of viral infection, is
that we can unbiasedly determine the existence of different cell populations and
exclude the possibility that the expression profile is skewed by a small group of cells.
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Importantly, the clustering approach used in this study allows us to validate that the
viral gene expression profile is not related to viral expression levels. Although the
correlation coefficient is declining with the reduction in the number of viral reads,
the decline in viral gene expression level is progressive and suggests continuous
repression of viral gene expression during latent infection. Thus, we see expression
profiles that correlate with late stages of lytic infection even in the clusters that have
almost undetectable levels of viral gene expression.

At the present sampling depth and coverage efficiency, our analysis of CD14� cells
can detect subpopulations of 0.3% (11 to 12 cells) or higher. Therefore, although we
cannot exclude the possibility that a very small population of cells is in a different state
and will harbor a different, more restricted viral gene expression program, if such cells
exist they would be rare.

Our analyses reveal differences in cellular gene expression that are associated with
differences in the levels of viral gene expression. These differences could stem from
variation in the cell maturation state that restricts viral gene expression, or alternatively,
they could reflect virally induced changes in the host environment. Future work will
help to distinguish between these two options.

The results that we obtained for both CD14� and CD34� progenitors were quali-
tatively similar; however, the relative levels of viral transcripts in CD34� progenitors
were significantly lower, suggesting that these cells are by nature much more repres-
sive. These results are in line with previous studies showing that MIEP is more repressed
in CD34� cells (63). Likewise, in natural latency we were unable to detect any viral
transcripts by examining more than 1.5 billion RNA-seq reads from CD34� cells. In
contrast, by examining 3 billion RNA-seq reads from the blood, we identified 378 viral
reads from 18 samples. These results suggest that viral gene expression is more
restricted in CD34� progenitors both in natural and in experimental settings and
further support the notion that the host cell environment plays a major role in dictating
the latency state.

An essential step in understanding HCMV latency is deciphering the importance of
viral transcripts and proteins to latency maintenance and to the ability of the virus to
reactivate. Based on the view that only a limited number of genes are expressed during
HCMV latency, only several candidates for viral functions that may control HCMV
latency have been studied. These include UL138 (31, 32), astUL81-82/LUNA (34, 48),
UL111A/LAcmvIL-10 (33, 35), and US28 (36, 37). Despite the lack of a clear restricted
latency-associated expression program, our results do not undermine the importance
of these factors to HCMV latency but rather add many additional candidate genes. Two
appealing candidates are RNA2.7 and UL30. RNA2.7 is the most abundant transcript in
both lytic and latent cells, but in our measurements, RNA2.7 relative expression in
latent cells was constantly higher than expected in comparison to the lytic profile.
RNA2.7 was demonstrated to protect infected cells from mitochondrion-induced cell
death (64), but its role in latency was never tested. UL30 transcript was suggested to
contain UL30A, which is conserved among primate cytomegaloviruses and expressed
from a nonconventional initiation codon (ACG) (18, 19), but its functional role was never
studied. Future work will have to delineate the importance of the different transcripts
that we detected to regulating latency.

Overall, our experiments and analyses start to challenge the dogma that all herpes-
viruses express a highly restricted latency-associated program and suggest that HCMV
latency is associated more with quantitative shifts rather than qualitative changes in
viral gene expression. Although the relevance of these viral transcripts to latency
should be further studied, our findings provide a potential new context for deciphering
virus-host interactions underlying HCMV lifelong persistence.

MATERIALS AND METHODS
Cells and virus stocks. Primary CD14� monocytes were isolated from fresh venous blood, obtained

from healthy donors, using a Lymphoprep (StemCell Technologies) density gradient followed by mag-
netically activated cell sorting with CD14� magnetic beads (Miltenyi Biotec).
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Cryopreserved bone marrow CD34� cells were obtained from Lonza. Alternatively, fresh CD34� cells
were purified from umbilical cord blood of healthy donors. Isolation was done using a Lymphoprep
(StemCell Technologies) density gradient followed by magnetically activated cell sorting with CD34�

magnetic beads (Miltenyi Biotec). CD34� and CD14� cells were cultured in X-Vivo15 medium (Lonza)
supplemented with 2.25 mM L-glutamine at 37°C in 5% CO2 (65).

Human foreskin fibroblasts (HFF) (ATCC CRL-1634) and retinal pigmented epithelial cells (RPE-1)
(ATCC CRL-4000) were maintained in Dulbecco Modified Eagle Medium (DMEM) with 10% fetal bovine
serum (FBS), 2 mM L-glutamine, and 100 units/ml penicillin and streptomycin (Beit-Haemek, Israel).

The bacterial artificial chromosome (BAC) containing the clinical strain TB40E with an SV40-GFP tag
(TB40E-GFP) was described previously (66, 67). This strain lacks the US2-US6 region, and therefore, these
genes were not included in our analysis. Virus was propagated by electroporation of infectious BAC DNA
into HFF cells using the Amaxa P2 4D-Nucleofector kit (Lonza) according to the manufacturer’s instruc-
tions. Viral stocks were concentrated by ultracentrifugation at 70,000 � g and 4°C for 40 min. Infectious
virus yields were assayed on RPE-1 cells.

Infection and reactivation procedures. For experimental latent infection models, CD14� mono-
cytes and CD34� HPCs were infected with HCMV strain TB40E-GFP at a multiplicity of infection (MOI) of
5. Cells were incubated with the virus for 3 h, washed, and supplemented with fresh medium. To assess
infection efficiency, a sample of the infected cell population was analyzed by fluorescence-activated cell
sorting (FACS) for GFP expression at 2 dpi. For single-cell experiments, cells were isolated without further
selection; CD14� cells were harvested at 3, 4, 5, 6, 7, and 14 dpi, and CD34� HPCs were harvested at 4 dpi.

Lytic infection was carried out on primary fibroblasts and monocyte-derived macrophages obtained
by growing CD14� monocytes in 50 ng/ml phorbol myristate acetate (PMA)-containing medium for
2 days. For reactivation assays, infected monocytes were differentiated into dendritic cells (DCs) at 3 dpi
by incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (Pe-
protech) at 1,000 U/ml for 5 days, followed by stimulation with 500 ng/ml of lipopolysaccharide (LPS)
(Sigma) for 48 h (as previously described in reference 65). Release of infectious virions was assayed by
coculturing 100,000 differentiated and nondifferentiated infected monocytes at the end of the differ-
entiation procedure with HFF cells for 10 days and quantification of GFP-positive plaques. Cell number
and viability were measured by trypan blue staining prior to plating.

For UV inactivation, the virus was irradiated in a Stratalinker 1800 (Stratagene) with 200 mJ.
Immunofluorescence. Cells were fixed in 4% paraformaldehyde for 10 min, permeabilized with 0.1%

Triton X-100 in phosphate-buffered saline (PBS) for 10 min, and blocked in 10% normal goat serum in
PBS. Detection of IE1 was performed by immunostaining with anti-IE1 antibodies (1:100; Abcam catalog
no. ab53495), followed by goat anti-mouse antibody (1:200; Alexa Fluor 647; Invitrogen catalog no.
A21235) and Hoechst nuclear stain. Cells were visualized in a Zeiss Axio Observer fluorescence micro-
scope.

qRT-PCR. Total RNA was extracted using TRI reagent (Sigma) according to the manufacturer’s
protocol. cDNA was prepared using the qScript cDNA synthesis kit (Quanta Biosciences) according to the
manufacturer’s protocol. Real-time PCR was performed using the SYBR green PCR master mix (ABI) on a
real-time PCR system, QuantStudio 12 K Flex (ABI), with the following primers (forward, reverse): IE1
(GGTGCTGTGCTGCTATGTCTC, CATGCAGATCTCCTCAATGC), UL138 (GTGTCTTCCCAGTGCAGCTA, GCACG
CTGTTTCTCTGGTTA), RNA2.7 (TCCTACCTACCACGAATCGC, GTTGGGAATCGTCGACTTTG), RNA4.9 (GTAAG
ACGGGCAAATACGGT, AGAGAACGATGGAGGACGAC), and Anxa5 (AGTCTGGTCCTGCTTCACCT, CAAGCCT
TTCATAGCCTTCC).

Single-cell sorting and MARS-seq RNA library construction. Single-cell sorting and library prep-
aration were conducted according to the massively parallel single-cell RNA-seq (MARS-seq) protocol, as
previously described (49). In brief, cells from latently infected populations of CD14� monocytes and
CD34� HPCs were FACS sorted into wells of 384-well capture plates containing 2 �l of lysis buffer and
reverse transcription (RT)-indexed poly(T) primers, thus generating libraries representing the 3= end of
mRNA transcripts. Four empty wells were kept in each 384-well plate as a no-cell control during data
analysis. Immediately after sorting, each plate was spun down to ensure cell immersion into the lysis
solution, snap-frozen on dry ice, and stored at �80°C until processed. Barcoded single-cell capture plates
were prepared with a Bravo automated liquid handling platform (Agilent). For generation of the RNA
library, mRNA from cells sorted into capture plates was converted into cDNA and pooled using an
automated pipeline. The pooled sample was then linearly amplified by T7 in vitro transcription, and the
resulting RNA was fragmented and converted into a sequencing-ready library by tagging the samples
with pool barcodes and Illumina sequences during ligation, RT, and PCR. Each pool of cells was tested
for library quality, and concentration was assessed as described earlier (49).

RNA sequencing of lytic cells. For generation of a reference lytic RNA library used in the single-cell
experiments, monocyte-derived macrophages or primary fibroblasts were infected with TB40E-GFP virus
at an MOI of 5 and used for library preparation at 4 dpi. The libraries were generated from a samples of
~10,000 cells according to the MARS-seq protocol (49).

The lytic fibroblast-derived RNA-seq libraries used as a reference in analysis of the natural samples
were previously described (18).

Single-cell library construction using 10� platform. Cell suspensions at a density of 700 cells/�l
in PBS plus 0.04% bovine serum albumin (BSA) were prepared for single-cell sequencing using the
Chromium Single Cell 3= Reagent version 2 kit and Chromium Controller (10� Genomics, CA, USA) as
previously described (68). Briefly, 9,000 cells per reaction were loaded for gel bead-in-emulsion (GEM)
generation and barcoding. GEM-RT, post-GEM-RT cleanup, and cDNA amplification were performed to
isolate and amplify cDNA for library construction. Libraries were constructed using the Chromium Single
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Cell 3= Reagent kit (10� Genomics, CA, USA) according to the manufacturer’s protocol. Library quality
and concentration were assessed according to the manufacturer’s instructions.

Sequencing. RNA-seq libraries (pooled at equimolar concentration) were sequenced using NextSeq
500 (Illumina), at a median sequencing depth of ~45,000 reads per cell for MARS-seq and ~32,000 reads
per cell for the 10� procedure. Read parameters were Read1 (72 cycles) and Read2 (15 cycles) for
MARS-seq and Read1 (26 cycles), Index1 (8 cycles), and Read2 (58 cycles) for the 10� procedure.

MARS-seq CD14� analysis. The analysis of the MARS-seq data was done with the tools described
in references 49 and 50. The reference was created from the hg19 and TB40E (NCBI EF999921.1) strain
of HCMV. The transcription units of the virus were based on NCBI annotations, with some changes based
on the alignment results. This includes merging several transcripts (taking into account that the library
maps only the 3= ends of transcripts) and adding some antisense transcripts. Read assignment to wells
was based on the batch barcode (4 bp) and the well barcode (7 bp) and removal of reads with low-quality
barcodes. The read itself (37 bp) was aligned with the reference using Bowtie 2 (69), and the counting
of the reads per gene is done based on unique molecular identifiers (UMIs) (8 bp). For each batch, the
leakage noise level was estimated by comparing the number of UMIs in the 2 empty wells to the total
number of UMIs in the batch. Batches with a high noise level (�8%) were discarded. Wells with �1,000
reads were discarded. The number of wells that were used for further analysis is 3,655. Genes with a low
total number of reads (�10) or with low variability (variance/mean of �1.1) and also ribosomal protein
and histones were excluded. By using a multiplicative probabilistic model and an expectation-
maximization-like optimization procedure, the 3,655 cells were clustered into 6 clusters. The model
includes a regularization parameter (�0.5) simulating additional uniform reads to all genes. The clusters
are ordered according to the viral content from high to low.

When analyzing correlation in gene expression, the error bars represent 95% confidence intervals
that were calculated by 10,000 bootstrap iteration of the cells in each one of the clusters. The t-SNE plot
of the MARS-seq CD14� cells was calculated with the R package (70), after down-sampling each cell to
1,000 UMIs.

To exclude background noise, in each one of the batches, all cells with a number of viral reads below
3 times the estimated noise at this batch were excluded.

To estimate the P value of getting number of reads n, in cluster B, under the null hypothesis of the
same expression program as in cluster A, a semiparametric bootstrap method was used. First, the
probability of sampling UMIs for each viral gene was calculated according to the gene expression in
cluster A. Then, each bootstrap simulation consisted of a parametric step and an aparametric step. The
parametric step is, for each cell in cluster B, to sample the number of UMIs according to the actual
number of reads in this cell, with distribution over the genes according to the probabilities calculated
from cluster A. Then, the aparametric step is a usual bootstrap sampling of the cells in cluster B and
calculation of the total number of reads in this cluster B. After doing this simulation 1,000 times, for each
viral gene, the mean and the standard deviation of the number of reads in cluster B under the null
hypothesis were calculated. Based on this value, the Z-score of the actual value n was calculated, and a
P value was calculated assuming normal distribution of the number of reads under the null hypothesis.
Last, these P values were adjusted for multiple testing, and only the genes with a false discovery rate
(FDR) of �0.01 are reported in Table S2B and C in the supplemental material.

GTEx and GEO analysis. All RNA-Seq, paired-end GTEx samples available in July 2016 were used for
the analysis. The reference genome that was used was based on hg19 and the Merlin strain of HCMV
(NCBI NC_006273.2). Bowtie 2 (69) was used for alignment with the default parameters, besides the
additional flag --local. Pairs with a mapping quality of less than 30 were excluded. Pairs with only one
read aligned with the Merlin sequence were excluded. For each sample, possible PCR duplications were
removed. The counting of the alignments with the genes was done with HTSeq-count (71). Annotation
of gff files is based on NCBI data, with some adjustment taking into account correction for the
nonstranded library. The clustering for Fig. 1C and D was generated with GENE-E (72). The analysis of the
CD34� GEO samples was carried out in the same way. The list of data sets that were used is presented
in Table S1D.

10� CD34� data analysis. We used Cell Ranger (73) software with the default settings to process
the FASTQ files. The reference was created with the mkref Cell Ranger command, based on the Cell
Ranger human hg19 reference and TB40E (NCBI EF999921.1) as was used in the analysis of the MARS-seq
data. The demultiplexing of the Illumina files and the analysis were done with the Cell Ranger commands
mkfastq and count, respectively. The raw read data were extracted with the Cell Ranger R kit (73). The
t-SNE plot is based on the coordinates calculated by the count command.

Analysis of data from the work of Cheng et al. The files containing the number of viral reads per
samples were downloaded from GSE99823. Full details are given in the work of Cheng et al. (39). Briefly,
lung fibroblasts (MRC-5) and CD34� cells from a few donors were infected with the HCMV TB40E strain,
and extracted RNA was sequenced (paired end). The computational pipeline includes trimming and
quality control (QC) with Trim Galore, alignment with Tophat2, and read counting with HTSeq. In the
correlation figure presented, only wild-type samples without any selection were used. For each sample,
the number of reads was normalized to the percentage of viral expression, and then for the two CD34�

samples, the mean and standard deviation of the percentage were calculated and are displayed in Fig. S7
versus the percent viral expression of the HFF sample.

Ethics statement. All fresh peripheral blood samples were obtained after approval of protocols by
the Weizmann Institutional Review Board (IRB application 92-1), and umbilical cord blood of anonymous
healthy donors was obtained in accordance with local Helsinki committee approval (RMB-0452-15).
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Informed written consent was obtained from all volunteers, and all experiments were carried out in
accordance with the approved guidelines.

Data availability. All next-generation sequencing data files were deposited in Gene Expression
Omnibus under accession number GSE101341.
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