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ABSTRACT

Orthogonal ribosomes (o-ribosomes), also known as
specialized ribosomes, are able to selectively trans-
late mRNA not recognized by host ribosomes. As a
result, they are powerful tools for investigating
translational regulation and probing ribosome struc-
ture. To date, efforts directed towards engineering
o-ribosomes have involved random mutagenesis-
based approaches. As an alternative, we present
here a computational method for rationally design-
ing o-ribosomes in bacteria. Working under the
assumption that base-pair interactions between
the 16S rRNA and mRNA serve as the primary
mode for ribosome binding and translational initia-
tion, the algorithm enumerates all possible extended
recognition sequences for 16S rRNA and then
chooses those candidates that: (i) have a similar
binding strength to their target mRNA as the canon-
ical, wild-type ribosome/mRNA pair; (ii) do not
bind mRNA with the wild-type, canonical Shine-
Dalgarno (SD) sequence and (iii) minimally interact
with host mRNA irrespective of whether a recog-
nizable SD sequence is present. In order to test
the algorithm, we experimentally characterized a
number of computationally designed o-ribosomes
in Escherichia coli.

INTRODUCTION

Gene expression involves two steps, transcription and
translation. While a number of genetic tools exist for
reprograming transcription in cells, far fewer tools exist
for translation. Of the tools available in bacteria, the most
popular are riboregulators, both cis- and trans-activating
(1–4), and orthogonal ribosomes (o-ribosomes), also
known as specialized ribosomes (5–9). In terms of repro-
graming translation, o-ribosomes are especially powerful
as they enable one to partially decouple translation
from the native protein synthesis machinery. In particular,
o-ribosomes can translate genes with altered Shine-
Dalgarno (SD) sequences not recognized by host

ribosomes. Because of this fact, o-ribosomes can be used
to explore translational regulatory mechanisms such
as coupling (10,11) and to probe ribosome structure
(6,12–15). Furthermore, o-ribosomes can be used to
explore gene expression dynamics as they potentially
provide a method for tuning translation rates. Finally,
o-ribosomes may have application in synthetic biology
as they introduce new functionality within cells (8,16–19).

O-ribosomes are duplicated ribosomes with mutations
in the 30 end of 16S rRNA that alter their specificity for
mRNA (5–9) (Figure 1). In bacteria, translation initiation
is primarily mediated by interactions between the 30S
ribosomal subunit and the 50 untranslated region of
mRNA. Although many factors control this process, the
most recognizable signal for translation is the SD
sequence located approximately 6–12 bp upstream of the
start codon (20–22). Complementary base-pair interac-
tions between the SD sequence and the 30 end of the 16S
ribosomal RNA (rRNA), known as the anti-Shine-
Dalgarno (ASD) sequence, serve to correctly position
the 30S ribosomal subunit during the initiation process
(22–24). The strength of this interaction is thought to
influence translational efficiency as mutations in either
the SD or ASD sequence that weaken the interaction
reduce the amount of protein made (5,25). In the case of
o-ribosomes, mutations are introduced into the ASD
region such that they can base pair with complementary,
noncanonical SD sequences not recognized by host ribo-
somes (5–9).

Initial efforts devoted towards engineering o-ribosomes
in Escherichia coli involved changing two bases in the SD
and ASD sequences (5,6). While these mutant ribosomes
were sufficient for translating genes not recognized by host
ribosomes, translation was inefficient (26). Furthermore, a
number of researchers discovered that the o-ribosomes
could be toxic to the cell (7,27). More recently, researchers
have employed random mutagenesis and directed evolu-
tion to improve the functionality of o-ribosomes (7,8). Of
notable significance is the recent work of Rackham and
Chin, who proposed a novel dual-selection strategy for
engineering o-ribosomes in E. coli. Unlike work in the
past, their designs bypass many of the limitations asso-
ciated with earlier ones, in particular toxicity.
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To date, o-ribosome design has either involved ad hoc
or random mutagenesis-based approaches. While these
approaches have clearly been successful, one question is
whether a rational, computational-based strategy could
be employed in design. In particular, a computational
approach would enable one to explicitly explore the dif-
ferent elements and associated hypotheses that factor into
o-ribosome design. In this work, we propose a computa-
tional strategy for designing o-ribosomes in bacteria. The
basic approach in our algorithm involves enumerating all
possible ASD–SD pairs and then selecting those that mini-
mally interfere with the translation of native mRNA.
To demonstrate the utility of our algorithm, we experi-
mentally tested a number of computationally designed
o-ribosomes in E. coli. In the process, we were able to
test a number of hypotheses regarding o-ribosome func-
tionality. These findings should complement existing
approaches based on random mutagenesis and screening.

MATERIALS AND METHODS

Bacterial strains, media and growth conditions

All cloning steps were performed in E. coli strain DH5aZ1
(F� deoR supE44 recA1 endA1 relA1 gyrA96 thi-1 �(lacZ-
argF)U169 �80(lacZDM15) hsdR17 attB�::[PN25-tetR
lacIq spcR]) (28). Subsequent experiments were conducted
in E. coli strain LC100 (F� ilvG rfb-50 rph-1 attB�::[PN25-
tetR lacIq spcR]). LC100 was constructed by P1vir trans-
duction of the chromosomally integrated TetR/LacI
expression cassette from DH5aZ1 into strain MG1655
(29). Cultures were grown in Luria-Bertani (LB) liquid

media for all experiments. All media were supplemented
with 20 mg/ml chloramphenicol and 100 mg/ml ampicillin.
Inducers anhydrotetracycline (aTc) and isopropyl-b-
D-galactopyranoside (IPTG) were used at concentrations
of 200 ng/ml and 1mM, respectively, unless otherwise spec-
ified. All cultures were grown at 378C.

O-ribosome expression systems

For ribosomal expression in E. coli, the rRNA operon
rrnB was amplified by PCR using pKK3535 (a gift from
H. Noller, UCSC) (30) using primers ATAGCGGGT
ACCGCCGCTGAGAAAAAGCGAAGC and ATACT
GCAGTGTTCGTCTTCGGCACATAC bearing KpnI
and PstI restriction sites (underlined). The resulting rrnB
PCR fragment was cloned into the plasmid pZA31 (p15A
origin, chloramphenicol resistance) under control of the
aTc-inducible promoter PLtetO-1 (28), resulting in the plas-
mid pZA31-WT. Derivatives of pZA31-WT (pZA31-OR1
to pZA31-OR8) bearing mutations to the 30 end of the 16S
rRNA were made by enzymatic inverse PCR (EI-PCR)
site-directed mutagenesis (31) using primers GGAAA
GGTCTCAGGTTGGATCANNNNNNTACCTTAAAG
AAGCGTACTTTGTAG and GAGTAGGTCTCAAA
CCGCAGGTTCCCCTACG bearing BsaI restriction
sites (underlined), where the NNNNNN subsequence cor-
responds to the 6-nucleotide mutation determined by the
rational selection algorithm. Mutant rrnB operons gener-
ated in pZA31-WT were subsequently subcloned by KpnI
and PstI digestion into pZE31 (ColE1 origin, chloramphen-
icol resistance) resulting in pZE31-WT and derivatives
pZE31-OR1 to pZE31-OR8. Similarly, the rrnB operon
was cloned into the plasmid pTrc99A under the control
of the strong, IPTG-inducible promoter Ptrc in two steps
(32). First, the 23S and 5S rRNA segments were subcloned
from pKK3535 into pTrc99A by XbaI and BspHI diges-
tion and ligation resulting in pTrc23S. Second, the 16S
rRNA portions of the rrnB operon was subcloned from
pZA31-WT and pZA31-OR1 into pTrc23S by KpnI and
XbaI digestion and ligation resulting in plasmids pTrcWT
and pTrcOR1.

Orthogonal mRNA (o-mRNA) expression systems

To monitor the translation mediated by o-ribosomes and
also to determine if the o-mRNA remained untranslated
by host ribosomes, an optimized green fluorescent protein
(GFP) variant, we term gfp (33) was used. For the
o-mRNA reporter system, gfp was amplified using primers
ATAGAATTCTAANNNNNNAAAAAAATGAGTAA
AGGAGAAG and ATAAAGCTTTTATTATTTGTA
TAGTTC containing EcoRI and HindIII restriction sites
(underlined), where the NNNNNN subsequence denotes
the complementary mutation determined by the algo-
rithm, followed by cloning into the EcoRI and HindIII
sites of pZE12 (ColE1 origin, ampicillin resistance) under
the control of the IPTG-inducible promoter PLlacO-1 (28).

Fluorescence and cellular growth measurements

To monitor fluorescent protein expression, cultures were
grown overnight in noninducing LB liquid media.
Cultures were then diluted 1:100 in fresh LB media

Figure 1. Comparison of canonical and orthogonal translation.
(a) Translation of canonical mRNAs is performed solely by the
native ribosome and not the o-ribosome. (b) Orthogonal translation
is specific only to cognate o-mRNAs. The native ribosomes are
unable to translate the o-mRNA.
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supplemented with appropriate inducers. These cultures
were then allowed to grow with vigorous aeration for
18 h before fluorescence and optical density measure-
ments. All fluorescence measurements were made using a
Tecan Safire2 plate reader.
To determine the impact on cell growth due to the

expression of o-ribosomes, E. coli LC100 cells containing
o-ribosome expression plasmids based on pZA31-WT,
pZE31-WT and pTrcWT (see above) were grown over-
night in LB liquid media. Cultures were then subcultured
to an OD600 of 0.1 in fresh LB media followed by 1 h of
noninduced growth. After 1 h of growth, aTc (200 ng/ml)
or IPTG (1mM) was added to allow for expression of the
o-ribosome. Growth measurements were made every 1 h
with an Amersham UltroSpec 10 spectrophotometer.

RESULTS

Computational procedure for designing o-ribosomes

We sought to develop a computational approach for engi-
neering o-ribosomes as an alternative to random muta-
genesis. Working under the assumption that base-pair
interactions between the ASD and SD serve as the primary
mode for ribosome binding and translational initiation,
we computationally generated a library of mutations to
the ASD and then selected those predicted to minimally
interact with the native translation process yet still effi-
ciently translate genes with the orthogonal SD sequences
(Figure 2).
The first two steps in the algorithm involve enumerating

all possible mutant ASD–SD complementary sequence
pairs and then comparing their binding energies to the
wild-type, canonical ASD–SD pair using the RNAfold
and RNAduplex programs from the Vienna RNA

Package (34). To fix the size of the mutant library, we
only considered randomizing the six bases from region
1535 to 1540 of the rrnB 16S rRNA (Figure 2a). This
segment is known to bind the mRNA translation initia-
tion region (TIR) (5,20,22,25). For each 16S rRNA
mutant, a cognate (reverse complement) SD sequence
was determined to create an o-ribosome–mRNA pair. In
this way, it selected only o-ribosomes with their cognate
mRNA pair unlike other experimental approaches that
select both cognate and potentially noncognate ASD–SD
pairs (7,8).

In our free-energy calculations, we also considered the
neighboring residues flanking the mutated six bp region of
the 16S rRNA (e.g. 50-AUCAnnnnnnUA-30, where
n denotes the mutated base pair). Of the 4096 possible
mutant ASD–SD pairs, the algorithm selects those
ASD–SD pairs with free energies of binding within
0.5 kcal/mol of the wild-type, canonical ASD–SD pairs
(Figure 2b). Extended base pairing between 16S rRNA
and the TIR has previously been shown to inhibit transla-
tion, presumably due to the formation of a tightly bound
complex between the 30S ribosomal subunit and mRNA
that does not allow the ribosome to proceed with elonga-
tion (35). Similarly, weak interactions between 16S rRNA
and the TIR are believed to result in inefficient transla-
tional initiation (7). We, therefore, selected only those
ASD–SD pairs with binding strengths similar to the
wild-type ASD–SD interaction (�9.2 kcal/mol). We also
discarded 16S rRNA mutants that formed any RNA sec-
ondary structures within the ASD region in order to
ensure efficient mRNA binding. This region is unstruc-
tured in the wild-type ribosome (22,36) and we hypothe-
sized that hairpins resulting from mutations to this region
would inhibit the binding of the 30S ribosomal subunit to
mRNA.

The third step in the algorithm involves computa-
tionally enriching for mutant ASD–SD pairs that are
orthogonal to the wild-type, canonical ASD–SD pair
(Figure 2c). The algorithm enforces this orthogonality
constraint by removing those mutant-wildtype pairs
whose mutual binding energies are less than �1 kcal/
mol. In other words, the mutant ribosome should not be
able to bind the canonical SD sequence nor should the
wild-type ribosome be able to bind the corresponding
mutant SD sequence, where failure to bind is defined by
a �1 kcal/mol threshold. This threshold is well above the
average energy of �4.2 kcal/mol associated with the bind-
ing of the wild-type ASD to the core SD motifs AGGA,
GGAG and GAGG (37–40). Note that this latter binding
energy is far weaker than the threshold used in the second
step. Our rational is that many genes do not possess a full,
canonical SD sequence (AGGAGG) but instead contain
subsets of this sequence, the core motifs mentioned above.
This measure (�4.2 kcal/mol) was also previously used by
Ma and coworkers (38) as a threshold criterion for ribo-
some binding.

The result of the first three steps of the algorithm is a
set of candidate o-ribosomes. In order to rank these
candidates, we included a fourth step that accounts for
cross-reactivity with host mRNA. While the third step
also addresses cross-reactivity, it does so only for the

Figure 2. Illustration of the selection algorithm. (a) Enumeration. All
possible ASD–SD pairs are enumerated. (b) Similarity. Mutant ASD–
SD pairs are selected with similar binding energies as the wild-type,
canonical ASD–SD pair and that also lack RNA secondary structure
within the ASD region. (c) Orthogonality. ASD–SD pairs are enriched
for pairs that do not cross-react with the wild-type ASD–SD pair and
vice versa. (d) Host cross-reactivity. The candidate o-ribosomes are
ranked ordered based on the number of times they have stronger inter-
actions with host genes than the native ribosomes.
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canonical SD. However, many mRNA TIR regions lack a
conserved SD. Therefore, we also considered all known
TIR regions irrespective of whether they had a SD
sequence or not. A 30-bp window, 20 bases upstream
and 10 bases downstream of the predicted start codon,
was used to measure cross-reactivity. This region is
known to be the primary binding site for wild-type ribo-
somes (21,41); downstream regions of the host mRNA are
often saturated with translating ribosomes and, therefore,
unlikely sites for interference by the mutant ribosomes
(though we note that internal translation initiation sites
have been documented) (42–45). To determine the extent
of cross-reactivity for a given o-ribosome, we counted the
number of TIR regions that it was able to bind more
strongly than the host, wild-type ribosome. We then rank
ordered the o-ribosomes based on this number (Table S1).

Experimental validation of the computationally
designed o-ribosomes

We next sought to experimentally validate the algorithm
predictions. We chose four designs among the top eight
mutations predicted by the algorithm (Table 1). We
then tested translation by these o-ribosomes using a two-
plasmid expression system, one for the o-ribosome and
the other for the cognate mRNA reporter. To express
the o-ribosome, we cloned the E. coli rrnB rRNA operon
with the desired mutations under the control of the
aTc-inducible promoter PLtetO-1 into a medium number
copy plasmid. The PLtetO-1 promoter, a phage lambda
PL derivative containing engineered TetR operator sites,
has been previously observed to remain tightly repressed
in noninducing conditions for low and medium copy
number plasmids (28). Similarly, the corresponding
o-mRNA reporter was produced by cloning the GFP
with the cognate SD sequence under the control of the
IPTG-inducible promoter PLlacO-1 on a high copy
number plasmid. The PLlacO-1 promoter is analogous to
the PLtetO-1 promoter except that is uses LacI operator
sites in place of TetR operator sites (28). Use of the
PLlacO-1 promoter on a high copy plasmid allowed for
high levels of expression for the o-mRNA in inducing con-
ditions and also provided a sensitive platform for detecting
weak GFP translation. The o-ribosome and reporter plas-
mids were then transformed into the E. coli strain LC100.

Cells harboring o-ribosome and o-mRNA cognate plas-
mid pairs were grown for 18 h in LB media at 378C

in order to determine whether the o-ribosome candidate
designs were able to efficiently translate their cognate
o-mRNA. When grown under inducing conditions
(IPTG at 1mM and aTc at 200 ng/ml), all four candidate
designs resulted in high levels of GFP expression as deter-
mined by fluorescence measurements (Figure 3a).
However, when grown in the absence of aTc but presence
of IPTG, such that only the o-mRNA was expressed, neg-
ligible fluorescence relative to the empty plasmid control
was detected. These results indicate that the o-mRNA is
not translated in the absence of o-ribosome expression.
Note that much greater fluorescence was observed using
the o-ribosome relative to the wild-type control, most
notably for o-ribosomes OR1 and OR4. In the case of
the wild-type control, the native rrnB operon was
expressed from the aTc-inducible promoter and GFP
with the canonical SD (AGGAGG) was expressed from
the IPTG inducible promoter. We suspect that the
increased expression by the o-ribosomes relative to the
control is due to the lack of competing substrates arising,
at least in part, from the orthogonality constraint imposed
in the selection algorithm. As partial evidence in support
of this conclusion, expressing the wild-type rrnB operon
from the aTc-inducible promoter increased translation of
gfp with the canonical SD, though not to the same levels
as the o-ribosome/o-mRNA pairs. Collectively, these
results demonstrate the candidate designs work as pre-
dicted. Finally, as a point of reference, we also tested
the o-ribosome previously characterized by Hui and de
Boer (5) using our two plasmid expression system
(Figure 3b). This o-ribosome (OR-HUI) was able to trans-
late its cognate o-mRNA at levels roughly equal to wild
type. Note that this o-ribosome was not selected by our
algorithm.
In order to test the significance of the different steps of

the algorithm, we also designed two additional types of
o-ribosomes. The first type was used to test the similarity
constraint (step 2). To test this constraint, we designed
two o-ribosomes OR5 and OR6 (Table 1) that bound
their cognate ASD at energy levels significantly greater
than the cognate ASD–SD pair (an average of
�13 kcal/mol versus �9 kcal/mol for the algorithm-
selected o-ribosomes) and thus violated the second selec-
tion step in algorithm. Consistent with our hypothesis,
these o-ribosomes were only able to weakly translate
GFP with their cognate ASD (Figure 3b). Presumably,

Table 1. Orthogonal ASD-SD pairs used in this work

Name ASD sequence SD sequence �Gbinding (kcal/mol) Reference

OR1 AUCACGAGACUA GUCUCG �9.1 This work
OR2 AUCAACGAGGUA CCUCGU �8.7 This work
OR3 AUCAACGAGCUA GCUCGU �9.4 This work
OR4 AUCACGGAACUA GUUCCG �8.8 This work
OR5 AUCAGGGGGGUA CCCCCC �13.2 This work
OR6 AUCAGGGCGCUA GCGCCC �13.1 This work
OR7 AUCAUGGCUGUA CAGCCA �9.3 This work
OR8 AUCAUGGCGUUA ACGCCA �8.7 This work
OR-HUI AUCACACACUUA AGUGUG �6.7 (5)

Binding energies were determined by the RNAduplex software component of the Vienna RNA Package (34).
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this inhibition is due to the inability of the ribosome to
release from the TIR during elongation as too tight of a
complex forms. Similar results have been observed when
there is extended base-pairing between the TIR and wild-
type 16S rRNA in E. coli (35). Collectively, these results
suggest that the binding energy for an o-ribosome ASD–
SD pair cannot be too strong, thereby justifying the simi-
larity step in the algorithm. Note, we did not directly
consider the reciprocal case where binding was too weak
as equivalent experiments were performed with our con-
trols and orthogonality experiments (see below). Suffice to
say, when the binding energy is too weak between an
ASD–SD pair, translation is severely inhibited.
The second type of o-ribosome was used to test the cross-

reactivity constraint, the last step in the selection algo-
rithm. To test this constraint, we built two o-ribosomes,
OR7 and OR8 (Table 1) that were the two worst ranked
among 216 candidate designs listed in Table S1. Despite
ranking at the bottom of the list, however, these two
ribosomes were able to efficiently translate their cognate

o-mRNA despite greater predicted cross-reactivity with
host mRNA (Figure 3b). As these results demonstrate, this
step in the algorithm is not necessary. The reason that we
included it in the algorithm was in order to provide
some measure for selecting among the various candidate
designs. While all of the top-ranked o-ribosome were able
to efficiently translate their cognate o-mRNA, the same
was also true for the low ranking ones. We do note that
all of the candidate designs are predicted to have a high
degree of cross-reactivity. The top ranking o-ribosome in
E. coli, for example, is predicted to out compete the wild-
type ribosome at 1042 TIR’s. As a comparison, the bottom
ranking o-ribosome is predicted to out compete wild type
at 2129 TIR’s.

As a final step in characterizing our o-ribosomes in
E. coli, we measured the degree of GFP translation at
varying levels of o-ribosome and mRNA expression for
OR1 and OR2. In order to produce sub-saturating
amounts of o-ribosome or o-mRNA, one inducer (aTc
or IPTG) was varied with the other fixed at a

Figure 3. Verification of o-ribosomes selected by algorithm in E. coli.
Cells were grown in LB with specified inducers for 18 h prior to fluores-
cence measurements. The control is LC100 cells containing empty plas-
mids. WT denotes cells expressing wild-type rrnB rRNA and GFP with
the canonical SD. (a) Optimally selected o-ribosome–mRNA pairs.
(b) Previously reported o-ribosome of Hui and de Boer (5) and
o-ribosomes designed to test different steps in the selection algorithm.

Figure 4. Dose-dependent response of o-ribosome and o-mRNA
expression. Cells harboring o-ribosome–mRNA pairs or empty plasmid
controls were grown in (a) mRNA inducing conditions (IPTG at 1mM)
with varied concentrations of o-ribosome inducer (aTc). (b) o-ribosome
inducing conditions (aTc at 200 ng/ml) with varied concentrations of
o-mRNA inducer (IPTG). All cultures were grown in LB for 18 h prior
to fluorescence measurements.
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saturating concentration (Figure 4). The results from these
experiments indicate that GFP translation is dose depen-
dent, both with respect to o-ribosome and o-mRNA
expression. Furthermore, these results indicate that
o-ribosome translation can be tuned at the level of
o-ribosome expression.

Mutual orthogonality of o-ribosomes: computational
predictions versus experimental results

We next tested the mutual orthogonality of five proposed
o-ribosome designs and compared the results to predic-
tions based on the underlying free-energy calculations,
the engine of our algorithm. In these experiments,
we measured the level of GFP expression for each
o-ribosome paired against the cognate o-mRNA for
other o-ribosomes. In addition to the four optimal
o-ribosomes (OR1–OR4), we also included one other pre-
viously discussed o-ribosome (OR7) to expand the anal-
ysis. As demonstrated in Figure 5a, the five o-ribosomes
were almost perfectly orthogonal with respect to one other
in terms of relative fluorescence measurements.

In order to compare these results with the predictions
based on the free-energy calculations, we replotted the
same data on a logarithmic scale (Figure 5c). As transla-
tional efficiency is believed to be correlated with the
strength of the ribosome/mRNA interaction (assuming,
of course, that it is not too strong), the logarithm of the
relative fluorescence should scale proportionally with the
free energy of binding. Comparing the scaled experimental
data with the predicted free energies (Figure 5b versus
Figure 5c), we observed some degree of correlation
though the five o-ribosomes tested were more orthogonal
than predicted by simple thermodynamic calculations.
These results suggest that while the thermodynamic cri-
teria provides predictable results at high free-energy
values of binding, at lower free energies other factors
likely become increasingly important with regards to
determining the ribosome–mRNA interaction.

The role of copy number and promoter strength on
o-ribosome toxicity

A number of studies have previously noted that the
expression of o-ribosomes may be toxic to the cell
(7,8,27). To determine if and under what conditions our
o-ribosomes may be toxic, we measured the effect of
expressing them on cell growth. As a control, we also
included the Hui and de Boer o-ribosome, as it is known
to retard cell growth under certain conditions. As illus-
trated in Figure 6a, we did not observe any growth
defect when expressing OR1 (similar results were observed
for the other o-ribosomes). We also did not observe
any growth defect when expressing the Hui and de Boer
ribosome, despite previous observations otherwise. We do
note that no defect was observed with this o-ribosome in
the original study by Hui and de Boer (5,6). Therefore, we
hypothesized that the previously observed growth defects
may be due to the choice of the expression system.
Because our o-ribosome expression system was con-
structed on a medium copy number plasmid, it may not
express the mutant rRNA as strongly as other expression

systems, thereby minimizing any toxic effect. To test this
hypothesis, we cloned the o-ribosomes into an otherwise
identical expression vector utilizing a high copy number
origin of replication. Once again, however, we did not
observe any defect in growth (Figure 6b). These results
indicate that the plasmid copy number does not have an
effect. Next, we tested the promoter. Other studies observ-
ing growth defects have used the strong, hybrid Ptrc pro-
moter (18) or PlacUV5 promoter (7). Likewise, the original
Hui and de Boer studies, where no defect was observed,
used the phage lambda PL promoter, the same promoter
used in this study. Therefore, to test whether the promoter
may have an effect, we cloned the o-ribosomes into a
medium copy number plasmid under the control of the
IPTG-inducible promoter Ptrc. In this case, we observed
no defect in growth with OR1 but did observe a defect
with the Hui and de Boer o-ribosome, similar to what was
observed previously (Figure 6c).

Figure 5. Mutual orthogonality of o-ribosomes. OR and OM refer to
cognate o-ribosome and o-mRNA, respectively. (a) Observed relative
fluorescence. (b) Predicted binding energies of cognate and noncognate
pairs. (c) Rescaled (logarithmic) relative fluorescence.
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Collectively, the results indicate that, under the con-
ditions used in our experiments, expression of the
o-ribosomes has no effect on cell growth. However,
when expressed from a strong promoter, some o-ribo-
somes may be toxic to the cell. Note that we did not
directly address toxicity in our algorithm, so the lack of
toxicity associated with our o-ribosomes is somewhat
serendipitous. Finally, these results along with those for
GFP expression (Figure 4) demonstrate that the expres-
sion system used in this study is highly effective for exam-
ining o-ribosome–mRNA interactions without the loss of
cellular viability.

DISCUSSION

In this work, we have developed and experimentally
validated a computational method for engineering
o-ribosomes. The method involves enumerating all possi-
ble ASD–SD sequences and then selecting those that are
orthogonal to the wild-type ASD–SD pair while also
having similar binding strengths. The first constraint is
used to ensure that the o-ribosomes do not bind too tightly
to their target mRNA, something that can potentially inhi-
bit translational efficiency, and the second to enforce
orthogonality. As a number of ASD–SD pairs satisfy
these two constraints, the algorithm then rank orders
them based on the degree to which they interact with pre-
dicted TIR sequences within the genome of interest.
The two constraints based on similarity and orthogon-

ality were motivated by a simple hypothesis regarding
o-ribosome functionality. In the case of the similarity
constraint, we were able to demonstrate that o-ribosomes
predicted to bind too tightly to their ASD sequence
inefficiently translate their cognate mRNA. Likewise,
the orthogonality constraint ensures that only the
o-ribosomes are able to translate their cognate mRNA.
We were able to establish this latter condition for all our
designs. These two constraints, however, do not yield a
single solution. Rather, multiple ASD–SD pairs satisfy
these constraints. Therefore, we introduced one addi-
tional step to distinguish between these potential designs

based on cross-reactivity. We initially hypothesized that
o-ribosomes with less cross-reactivity would be less toxic
to the cell. However, as our results demonstrate, the cross-
reactivity condition has no effect on performance, as the
top and bottom ranking o-ribosomes are able to translate
their cognate mRNA with equal efficiency. Furthermore,
none of the o-ribosomes designed using our algorithm
exhibited any toxicity, irrespective of ranking and the
expression system. We, therefore, conclude that this step
in the algorithm is unnecessary and that our rank ordering
of the o-ribosomes is not relevant for design.

We note that, in developing the method, we have
assumed that the ASD–SD interaction provides the key
signal for ribosome binding and translation initiation.
While sufficient for inducing initiation, the SD sequence
is not necessary as many genes lack one. In fact, the only
signal both necessary and sufficient for initiation is the
start codon (46,47). Clearly, other sequence-dependent
factors such as alternate recognition sites and secondary
structure play a role in initiating translation both in con-
junction and independently of the SD sequence (48).
Despite these alternative mechanisms, our results illustrate
the importance of the ASD–SD interaction during trans-
lational initiation and also demonstrate that certain prop-
erties of the wild-type ribosome must be preserved when
engineering o-ribosomes. However, they also beg the ques-
tion regarding the mechanism by which genes lacking SD
sequences are translated.

The primary advantage of our strategy is that selection
is performed on the computer, potentially reducing the
time and resources necessary to vet different candidate
designs. In addition, the algorithm can potentially be
used to design o-ribosomes in diverse species of bacteria,
the only requirement being a sequenced genome. Finally,
we note that the choice of the expression system can have
profound results. While none of our o-ribosomes were
toxic to the cell, we demonstrated that the previously char-
acterized o-ribosome of Hui and de Boer is toxic using
some expression systems but not with others. Why some
o-ribosomes are toxic but other are not is still not known.

In summary, o-ribosomes are a powerful tool for reg-
ulating the translation of mRNA not recognized by host

Figure 6. Growth of E. coli LC100 harboring different o-ribosome expression systems. Cells were subcultured to an OD600 of 0.1 in fresh LB media
and grown for 1 h prior to induction with aTc (200 ng/ml) or IPTG (1mM). Control and WT refer to cells harboring empty expression vector or the
wild-type rrnB operon, respectively. (a) PLtetO-1 promoter (pZA31) with medium-copy p15A origin. (b) PLtetO-1 (pZE31) with high-copy ColE1 origin.
(c) Ptrc promoter(pTrc99A) with medium- to low-copy pMB1 origin.
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ribosomes in a dose-dependent manner. In addition to
being able to tune translation, o-ribosomes can also be
used to probe ribosome structure (6,12–15), enhance the
efficiency of synthetic amino acid incorporation (19),
establish the translational coupling of adjacent genes
(10,11) and explore the mechanism of ribosome binding
and translational initiation (9,49). In conclusion, we were
able to use a computational approach based on a few
simple hypotheses for designing o-ribosomes. The compu-
tational methodology developed here simplifies some steps
in the design process.
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