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INTRODUCTION

Machine learning has the potential to enhance the practice of medicine (Rajkomar et al., 2019).
However, an “AI chasm” has been described that limit the clinical application of machine
learning models (Keane and Topol, 2018). Clinicians are domain experts that can help bridge
the gap by becoming active partners in developing and implementing machine learning models
for clinical use. The paradigm of collaboration between domain experts and machine learning
engineers has been successful in developing expert-augmented machine learning (Gennatas et al.,
2020). However, it is challenging for interested clinicians to understand the capabilities of
machine learning and how to best contribute their domain expertise in designing a machine
learning solution.

This is a guide for the clinician interested in helping to design and deploy machine learning
solutions to improve clinical care. We propose an approach that finds an area with potential for
benefit, considers machine learning as one of several solutions, then counts the cost of a perfectly
performing machine learning algorithm to determine if it is worth the effort (Figure 1).

Key Terms
Artificial intelligence (AI): Generally, the ability for a computer to accomplish tasks typically
associated with human intelligence.

Machine learning (ML): a subfield of artificial intelligence, broadly refers to the ability of a
computational platform to learn from data and make predictions or recommendations based
on this data without being explicitly programmed. In general, there are two major categories
of machine learning, supervised and unsupervised. Supervised learning is conducted with the
concept of “truth” where the model tries to approximate the relationship between inputs and
labeled outputs. For example, given images of cats and dogs, where each image has a correct
answer, can you train a model that accurately identifies of cats versus dogs?Unsupervised learning
is performed without data labels and the goal is for the computer to infer inherent structure or
patterns in the data. For example, given a set of heart rate, accelerometer, and location data from
a wearable fitness monitor, can the computer identify periods of rest versus exercise based on
differences in the raw data?

Neural networks (NN): a form of machine learning with a basic architecture consisting
of nodes and connections existing in multiple layers, loosely analogous to neurons and
synapses in the biological brain. This broad category is inclusive of many kinds of modern
machine learning models which are used in tasks such as computer vision, voice recognition,
bioinformatics, and among others.

Deep learning: A broad family of neural network architectures that have multiple layers
(aka deep).
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FIGURE 1 | Framework for considering artificial intelligence-based tools for clinical care.

KEY QUESTIONS

For the interested clinician, these following self-assessment
questions may help in determining whether a machine learning
tool makes sense for your specific scenario.

What Is My Unmet Need?
For machine learning to make a positive impact on patient
care, finding the right use case is the place to start. As a
practicing clinician, this should draw from your understanding
of the clinical workflow and impact on patient care. A proposed
paradigm is starting with a larger problem, mapping out the
workflow, and identifying areas in need of improvement.

Is Machine Learning Useful for This Need?
Critically consider if machine learning is the best tool to improve
that specific area. Consider other solutions involving personnel,
workflow, or policy changes. If an information technology
solution is the best answer, consider its impact on the workflow in
the best case scenario. This depends onwhat is important for each
clinical scenario: accuracy, timeliness, or reliability. If even the
best case scenario leads to minimal improvement and significant
changes in the workflow (with attendant costs), machine learning
may not be the best solution. Consider other solutions involving
personnel, rules-based systems, or process redesign.

Are You Asking the Right Question to Put
the ML Tool in the Highest Value Use
Within the Clinical Workflow?
In order to do this effectively, first find the right use case (e.g.,
right information to the right person at the right time). Next,

figure out where the model fits into the clinical pathway, which
includes process mapping to understand types of input data
needed and output desired. Finally, consider the workflow and
needs of the end-user, including timeliness.

Should Computer Simulation Be
Considered in the Development Process
for the ML Tool?
Depending on the deployment setting, the ML tool may benefit
from data augmentation to improve generalizability, particularly
if the tool is to be applied across different radiological, electronic
health record, or genomic platforms. This can be achieved with
generation of synthetic data or techniques of data transformation.
These are methods where data is artificially manufactured rather
than the result of real-world measurement. This approach can
sometimes be used judiciously to augment real-world data in
scenarios where real-world data is sparse or difficult to obtain.
Data can be either created de novo based on a set of criteria or by
digitally manipulating real-world measured data. This approach
should be used cautiously due to multiple tricky considerations
including bias and generalizability.

CASE STUDIES

Medical Imaging Perspective
Radiographic medical imaging, whether CT, MRI, Ultrasound,
or other modality, is an ever-growing source of big data in
healthcare. Medical imaging began as a field in which advanced
technology was used to generate visual data that could be
analyzed and assessed qualitatively by a clinician. As the field
evolved, quantitative imaging metrics were developed to assist
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with image interpretation and management decisions (Giger
et al., 2008). The advent of computer-aided diagnosis and
detection in the 1980’s and 1990’s brought early machine
learning techniques to the medical imaging field with important
applications in breast cancer mammography and ultrasound
(Jiang et al., 1999; Freer and Ulissey, 2001). Over the past
decade, the emergence of deep learning neural networks has
generated a tremendous amount of attention in the field of
medical image analysis for its transformative potential (Ker et al.,
2018). Deep learning utilizes raw pixel or voxel input from
images and feeds them through progressively more complex
layers of a neural network to generate an output prediction.
Through an iterative training process, millions of mathematical
parameters of a neural network are optimized such that input
images fed into the network generate predictions that best
fit the true output. Rather than rely on user input to pre-
engineer and determine appropriate features for the machine
learning model, deep learning utilizes raw imaging data to
“learn” the features that optimize predictive performance. Unlike
prior forms of computer-aided analysis, deep learning has the
potential to form end-to-end prediction models encompassing
multiple parallel or sequential imaging tasks, including object
segmentation, detection, and identification. Deep learning has
the potential to affect medical imaging in healthcare by (1)
improving diagnostic efficiency and achieving cost savings by
freeing up limited human resources, (2) augmenting human
performance at diagnostic prediction in challenging scenarios,
and (3) discerning previously impossible-to-discern patterns and
predictions from imaging data.

Case Study: Lung Cancer Screening
Lung cancer is the leading cause of cancer death in the
United States. Lung cancer screening with low-dose CT has
been shown to reduce mortality and is currently recommended
routinely for high-risk individuals (National Lung Screening
Trial Research et al., 2011; de Koning et al., 2020). Despite
imaging guidelines for lung cancer detection, there remains
significant concern surrounding inter-rater variability, and false-
positive and negative rates (Field et al., 2016). Additionally,
uptake of CT screening, even among high risk populations
has remained extremely low, in part, owing to lack of high-
volume radiology center resources (Jemal and Fedewa, 2017).
Given these challenges, there is a unique opportunity to explore
machine learning to improve accuracy of detection and access to
screening. In embarking on an investigation of machine learning
for lung cancer screening, the following should be considered:

What is the goal and what is the metric of success? The
ultimate goal and metric for success may not be the same
thing, particularly in initial phases of algorithm development.
The ultimate goal should reflect clinically meaningful endpoints:
improving patient survival, quality of life, or healthcare costs. The
metric for success often begins more narrowly. In the case of
lung cancer screening, percent accuracy, sensitivity, specificity,
and the area under the ROC curve in identifying a lung nodule
as benign or malignant may be appropriate. Ultimately, as
study progresses, metrics should move beyond accuracy. Direct
measurement of clinical meaningful endpoints, such as survival,

morbidity, and quality of life should be incorporated into clinical
trials of the application.

What type of machine learning is optimal for the task? The
type of machine learning utilized will be driven by the medical
imaging task, however, in general, convolutional neural network-
based deep learning architectures are the current gold standard
for image analysis. In simplistic terms, a convolutional neural
network takes images as input data, and applies various filters
which manipulate the image to extract features. This is analogous
to image filters you can use in photo manipulation software or
various social media programs. Some filters may enhance borders
or edges, others may detect specific colors or brightness levels.
This strategy is used in a neural network where the final output
is based on extracting meaningful features from the images
and making decisions based on those features. Older methods
utilizing pre-engineered radiomic features may be suitable for
certain classification problems where the image region of interest
is well-defined, but deep learning has the ability to both localize
an object (in this case lung nodule) and classify it (malignant vs.
benign). Deep learning is particularly well-suited for this “end-to-
end” task completion. Several studies have shown extremely high
accuracy of lung nodule and malignancy prediction using a deep
learning based approach to CT diagnosis (Field et al., 2016; Jemal
and Fedewa, 2017; Kang et al., 2017; Causey et al., 2018; Ardila
et al., 2019).

What type of data is needed? Data collection, curation, and
annotation are perhaps the most critical aspects of training
a successful machine learning algorithm. As the approach
shifts from simpler machine learning models to more complex
models such as deep learning neural networks, the quantity
and quality of data becomes increasingly important. For lung
cancer screening, this means access to thousands of CT scans
that have been pre-labeled by human experts. Each nodule
should have been identified and should have associated with it
a “ground truth” label. For an image localization task, this label
itself would be a segmented region of interest encompassing
the nodule. For malignancy classification, this label could be
binary (malignant or benign) or ordinal (suspicion of malignancy
on a scale of 1 through 5), depending on how the labeling
was performed. Because many imaging-based ML algorithms
are prone to overfitting training data, all models must be
validated on external datasets, ideally representative of the target
scenario for which the algorithm is being developed. Particular
considerations for medical images are type of CT scanner, use of
contrast agent, image resolution, and artifact. These parameters
must be explored and addressed in preprocessing steps and/or
validation datasets prior to implementation of an imaging-based
ML application.

What is the role of simulated, or synthetic, data? Successful
ML development in medicine requires large, high-quality,
annotated, and accessible datasets, which are often lacking
(Emanuel and Wachter, 2019). A key strategy to mitigate data
limitations is the use of data augmentation techniques to create
simulated, or synthetic, data to bolster the training process. By
applying image transformations, from simple rotations, flips,
or deformations to more advanced ML-driven augmentation,
model generalization can be improved dramatically even when
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training on relatively small datasets (Goel et al., 2020).
This is accomplished by introducing transforms that mimic
confounding variations expected of data samples encountered
in real-world testing, but that are not themselves features that
predict a particular data class.

Where does the model fit into the clinical pathway? The
ultimate utility of an ML-based healthcare application like lung
cancer screening will not be decided by AUC or accuracy, but
by clinically meaningful endpoints, such as decreased mortality,
treatment-related morbidity, and healthcare resource burden.
To maximize the potential utility of the algorithm, it must be
determined how the model can best fit into the clinical pathway
by considering timing, physical space, costs, user interface,
and responsibility. In the context of lung cancer screening, for
example, an algorithm could be executed automatically at the
time of scan or by the radiologist during review. The former
could improve resource allocation by flagging abnormal scans
for expedited review, but the latter would allow for human
oversight of the algorithm with less risk of bias. On the other
hand, incorporation at the time of radiologist review would
necessitate a streamlined user interface that does not compromise
efficiency. Simple workflow decisions such as this can also have
profound implications for responsibility, trust, and decision-
making and raise medico-legal issues. If an algorithm triages
patients incorrectly to the reviewing radiologist, who is liable for
this error? These subtle implementation characteristics represent
significant barriers to entry to real-world clinical use, but are
often overlooked in early stages of algorithm development. These
factors should be considered (and reconsidered) at each stage of
algorithm development, even at model conception.

Ambulatory Provider Perspective
A major advantage of machine learning algorithms is the
ability to process large amounts of data in a relatively short
amount of time. For an ambulatory provider, this advantage
can translate into individualized decision-making by using a
model that incorporates relevant variables beyond traditional
population-based risk factors. For example, primary care
providers often use a clinical decision support tool to recommend
initiation of a statin for appropriate patients during routine
office visits. Traditional models such as the Atherosclerotic
Cardiovascular Disease (ASCVD) risk score uses conventional
statistical methods from a population that may not be a good
representation for all patients, particularly since risk of disease
and treatment guidelines vary among patients of different
ethnicities (McCredie et al., 1990; Norwood et al., 2009; Lloyd-
Jones et al., 2017; Das et al., 2018; Volgman et al., 2018; Damask
et al., 2020).

Case Study: Polygenic Risk Scoring
To better understand differences between individuals of different
ethnicities, polygenic risk scoring estimates the predisposition
of disease using the presence or absence of known disease-
associated genes (Damask et al., 2020). This holds the promise
of generating more accurate predictions by using genotypic data
in conjunction with other clinical and environmental variables.

As a clinician interested in implementing such a model into live
practice, what are the important specifics to consider?

Machine learning models can process a large number of
variables that are also very different from one another. In order to
handle the variety of data, data management is critical during the
early stages of planning. Effective data management considers (1)
data type, (2) data reliability, and (3) the sample size.

In regards to data types, the inputs used to generate a
model can come in various forms. One of the major advantages
of newer machine learning models over traditional statistical
models is increased flexibility to take different types of inputs.
This can range from simple mixing of categorical vs. continuous
variables to handling high dimensional complex inputs such as
raw imaging, video, audio, or even genome sequencing data.
Another advantage of handlingmultiple data types is that one can
imagine a machine learning pipeline that utilizing several layers
of processing while appearing seamless to the end user. If a data
type is not readily available in modern EHRs but is of critical
importance, it should be considered for integration as part of
future policy/health IT infrastructure development. For example,
in order to fully utilize genomic risk prediction, sequencing data
must be available. At present, most genomic sequencing is often
done for a specific panel of genes and the results are often saved as
a report in the EHR. The actual genomic data is not saved as most
mainstream EHRs lack the capability to store this type of data.

When considering data reliability, the electronic health record
(EHR) is a rich source of potential data but most clinicians
recognize that there is a wide range to the reliability and accuracy
of EHR data. Some data types are structured (for example a
hemoglobin A1C laboratory value), meaning both the value and
the context are discretely defined. Structured data are more easily
accepted by machine learning algorithms with less preprocessing
needed. These types of data fall on the more reliable end of the
spectrum. Diagnosis and billing codes are also structured, in that
the value and context are clearly defined, but most clinicians
understand that they are limited terms of accurate representation
of the patient. Fully unstructured data include data types such
as notes. Notes are often considered the most representative of
clinical truth in the EHR, but often can still contain errors. As
unstructured data, notes are difficult formachine learningmodels
to accept as input without preprocessing.

A challenge for generalizability in polygenic risk scores is the
heterogeneity of available data across electronic health record
systems that vary across institutions and health systems, and
scarcity of fully annotated genomic datasets. Two promising
approaches have shown the ability to generate synthetic data by
characterizing different data distributions in electronic health
record data and genomic datasets using generative adversarial
neural networks and ordinary differential equation-based models
(Fratello et al., 2015; Baowaly et al., 2019).

A critical question for data scientists is identifying what types
of data is important to include into a model. Clinicians can
inform data scientists about important concepts to include and
point them to the best sources of data to represent those concepts.
This often draws on the clinician’s medical knowledge and may
mirror their own human analytic process when making clinical
decisions. For example, clinicians understand that diabetes is an
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important risk factor to include in models for cardiovascular
disease. Therefore, an important concept to identify is the
presence of “diabetes.” However, data that could represent
diabetes include laboratory values, clinical documentation,
billing codes, and among others. The ultimate decision on which
to use (including combinations) is best made in conjunction
with a clinician who understands the medical considerations,
the workflow considerations, and the data considerations as
discussed above. Once there is a thoughtful strategy on what
are the best sources of data for specific concepts, advanced ML
techniques can be employed to obtain more difficult to extract
data if necessary.

For example, a common challenge in utilizing the EHR is
how to best utilize clinical notes, where information largely
exists as free-text. One approach to make use of unstructured
free-text data is natural language processing. Natural language
processing models can capture specific meaning and interpret
intent based on not just terms but context. A combination of
ML models optimized for specific tasks can be integrated into a
larger model either directly or through a series of preprocessing
steps where the output is used in a subsequent ML model.
Specific ML models may be optimized for natural language
processing of notes, or detect polygenic risk of cardiovascular
disease from genomic data. In the prior example, NLP may be
used to identify the concept of “poor adherence to insulin” from
clinical notes whereas a genomic risk factor model may find
mutations that confer risk of developing type II diabetes. These
data points can subsequently integrate into a model that accounts
for environmental exposures such as smoking and other clinical
risk factors like obesity.

The last major consideration is the number of cases or patients
with the relevant data available. While most of the current
excitement is over deep learning or neural networks, these
types of machine learning techniques require large numbers of
examples to train. Other forms of machine learning can perform
well with smaller training samples, and some approaches handle
missing data better than others, which is a frequent occurrence
when working with clinical variables. Lastly, understanding the
population characteristics can be helpful when selecting good
machine learningmodel candidates. Like all predictionmodeling,
incidence and prevalence are important considerations when
attempting classification tasks. For example, rare events can be
more difficult for machine learning to predict, and data scientists
often address issues related to class balance when building the
model. If a machine learning model tried to predict whether you
would win the lottery, and just predicted that nobody would win
the lottery ever, it would be right the majority of the time and be
very “high performing” from an accuracy perspective.

Proceduralist Perspective
Real-time deep learning-based computer vision can also
enhance the performance of the proceduralist by providing
visual enhancement of anatomy and pathology. These can be
overlaid directly onto images collected during the procedure,
whether from laparoscopic surgery or diagnostic endoscopy. The
algorithms could provide optical biopsies, map out anatomical

boundaries and tissue planes, and identify abnormal areas
relevant to the particular operative procedure.

Case Study: Colonoscopy With Computer-Aided

Detection
For a gastroenterologist, finding precancerous lesions is the top
priority to prevent colorectal cancer. In order to measure the
success in preventing colorectal cancer that develops before
the recommended next colonoscopy, gastroenterologists have
traditionally used adenoma detection rate (ADR) as a proxy
indicator for high quality colonoscopy as a 1% increase in
ADR in correlated with a 3% decreased risk of interval
colorectal cancer. The endoscopist can track their adenoma
detection rate, and if it is lower than expected could undergo
additional training to improve their ability to detect pre-
cancerous lesions. However, adenoma detection rate has wide
variation across endoscopists, and a tool that would standardize
the performance of endoscopists would help decrease the
incidence of preventable colorectal cancer. Recent advances in
deep learning through convoluted neural networks have led
to high-performing algorithms that hold promise in enhancing
endoscopist performance by identifying polyps in real-time
colonoscopy videos and detecting adenomas, which can increase
the adenoma detection rates for all endoscopists (Misawa et al.,
2018; Urban et al., 2018;Wang et al., 2018, 2019, 2020; Gong et al.,
2020).

As a clinician interested in developing or implementing deep
learning tools to improve the adenoma detection rate, how
should you think about the approach?

First, identify the inputs (e.g., images or video) to train
the model, which in this case would be deep convolutional
neural networks described earlier in section Medical Imaging
Perspective. If the model is meant to detect polyps, the ideal
input would be colonoscopy videos with labeled images of “polyp
present” and where in the frame the polyp is located. This is the
rate-limiting step, since labeling is human capital-intensive, deep
learning requires numerous examples, and the algorithms learn
explicitly from the label of “polyp present” or “polyp absent.”

In this particular task, data transformation has been
considered due to the relative absence of large annotated image
databases of polyps. These approaches have included changing
the image dimensions, changing pixel values, and adding in
external conditions with the goal to maintain or achieve better
generalizability for ML tools to detect polyps (Sánchez-Peralta
et al., 2020).

As with all supervised machine learning, labels must be
present in the data to train the algorithm, which can sometimes
be costly as content experts are needed to create the labels.
Furthermore, one key challenge is to make sure the algorithm
can perform well in other datasets, referred to as “robustness,”
such as in real time for a new procedure. In this case, the specific
way the data is captured may affect the algorithm performance.
For example, if the algorithm is to be used in a practice with high
definition endoscopes that have specific image processing settings
(e.g., narrow band imaging), the input data should ideally be
captured from that specific brand of endoscope and also include
images with the specific setting. A clinician is critical in informing
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the data scientist the parameters of the data used during the
procedure so that adequate data of sufficient quality is collected
to train the algorithm.

As the model is developed, the issue of timeliness and
workflow is highlighted as a key area for clinician involvement
(Shung and Byrne, 2020). This is particularly relevant for
endoscopic units in ambulatory surgical centers, where the
trend toward lower reimbursement for endoscopy have led to
the development of performance metrics to enhance efficiency
(Gellad et al., 2013). Proceduralists provide crucial information
about the existing clinical process to guide how software
should be designed. The user needs of the endoscopist must
be considered, particularly the tolerance for false positives
and the impact of the software on efficiency (i.e., duration
of the procedure). Since a colonoscopy procedure involves
diagnosis, assessment, and treatment (find the polyps, assess if
they are problematic, and remove them), real-time processing
is a prerequisite to any software solution. For high volume
ambulatory surgery centers, algorithms must have minimal
impact the amount of time to perform procedures. Clinicians’
preferences and insight into the workflow of how the deep
learning software enhances the user experience and performance
are key in optimization, in this case providing real-time
recommendations that do not unnecessarily prolong the
overall procedure.

Finally, as these algorithms are implemented, clinicians have
an important role in providing feedback. User assessments
and improvements in the interface for each iteration of the
software implementation. If there are clear discrepancies in
what the software detects and provider assessment, quality
control is crucial to maintain provider confidence in the
software recommendations.

Limitations and Additional Considerations
While these scenarios delve into specific ways in which clinicians
can inform the development and validation ofML tools in clinical
care, the potential applications of AI in healthcare go from
individualized recommendations with personalized medicine
to informing policy in public health. A discussion of all the
potential applications is beyond the scope of this article, but a
comprehensive compilation of AI and ML-based medical devices
approved by regulatory bodies in the United States and Europe
provide a glimpse into the personalization of care (Muehlematter
et al., 2021), while another article delves into the ways in which
AI and ML can be used across populations to tailor policies to
promote health, protect health, and improve the efficiency of
services for communities within the greater population (Panch
et al., 2019).

Limitations for integrating ML tools into clinical care can
broadly fall under data maintenance and real-world deployment.

Bias, heterogeneity, and gaps in data can lead to poor
performance or contribute toward perpetuating disparities or
harmful discriminatory practices. Indeed, a prominent recent
example was the Amazon AI recruitment tool that was
deactivated after it showed bias against hiring women (Dastin,
2018). A new concept of algorithmic stewardship addresses
the limitations of constantly changing sources and storage of
healthcare data by monitoring, correcting, and updating the

dataflow to accurately reflect different ways of data capture as well
as practice patterns or epidemiological shifts (Eaneff et al., 2020).
Data equity and representation is a key limitation that should be
actively addressed with the development of anyML tool to ensure
that inherent health inequities, such as race correction, will not be
perpetuated (Vyas et al., 2020).

Generalizability and interpretability are two key limitations
that can hamper real-world deployment of ML tools. For
clinicians, the focus is on the individual patient, which requires
that the algorithm performs well and does not generate an
erroneous result. For deep learning tools in particular, the
key limitation of overfitting due to complexity of the network
architecture and large number of parameters must be addressed
with rigorous validation on multiple datasets representative of
real world data. This is analogous to training a robot to play
tennis only on a clay court, and then deploying the robot to play
on the grass courts of Wimbledon. Since clinicians are experts
with advanced training, the need to trust and verify the ML tool
output is key to ensure that the ML tools are used in clinical
practice. For this, a measure of interpretability is important so
that ML tools can complement the professional authority of
clinical providers (Kelly et al., 2019).

The use of AI with its dependence on data also introduces
additional risks into the healthcare environment with regards
to ethical, regulatory, and legal issues. Privacy compliance, the
role of the algorithm in shared patient-provider decision making,
data access, system failures, computer viruses/malware, and
intentional adversarial attacks geared toward machine learning
models require additional strategies to mitigate risk for patients
when considering the use of ML in medicine (Finlayson et al.,
2019). Ethical research methodology, including fairness and
equity for both representation in the data used for the algorithms
and in sharing the benefits realized by the algorithm, must
be practiced when using patient data. Clinician researchers
adept in these consideration can help guide data scientists
in this regard. We recommend consultation with institutional
review boards (IRB) for all projects related to patient data
to ensure appropriateness and proper protection of patients.
Prior to commercialization and deployment of informatics based
tools in patient care, approval from regulatory bodies may be
necessary. The regulatory guidelines continue to evolve in the
United States with the FDA, the European Union with General
Data Protection and Regulation framework, and internationally
through the International Medical Device Regulators Forum. For
the FDA, ML algorithms have been assessed in a similar fashion
to medical devices, although there is now a growing recognition
that software-based products are a unique category within
that track.

CONCLUSIONS

Machine learning integrated medicine is the future of patient
care. Analytic tools to take full advantage of an increasingly
information-dense practice environment, but clinicians are
critical partners in developing successful ML models that can be
integrated into real-world patient care. While data scientists are
experts in the technical aspects of machine learning, clinicians
are needed to identify the appropriate settings for ML solutions,
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the best data to use to help shape model development, the best
integration point into a real world workflow environment, and
the final usability of the tool.
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