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Precise phase retrieval 
for propagation‑based images 
using discrete mathematics
James A. Pollock1*, Kaye S. Morgan1, Linda C. P. Croton1, Michelle K. Croughan1, 
Gary Ruben1, Naoto Yagi2, Hiroshi Sekiguchi2 & Marcus J. Kitchen1

The ill‑posed problem of phase retrieval in optics, using one or more intensity measurements, has a 
multitude of applications using electromagnetic or matter waves. Many phase retrieval algorithms 
are computed on pixel arrays using discrete Fourier transforms due to their high computational 
efficiency. However, the mathematics underpinning these algorithms is typically formulated using 
continuous mathematics, which can result in a loss of spatial resolution in the reconstructed images. 
Herein we investigate how phase retrieval algorithms for propagation‑based phase‑contrast X‑ray 
imaging can be rederived using discrete mathematics and result in more precise retrieval for single‑ 
and multi‑material objects and for spectral image decomposition. We validate this theory through 
experimental measurements of spatial resolution using computed tomography (CT) reconstructions of 
plastic phantoms and biological tissues, using detectors with a range of imaging system point spread 
functions (PSFs). We demonstrate that if the PSF substantially suppresses high spatial frequencies, 
the potential improvement from utilising the discrete derivation is limited. However, with detectors 
characterised by a single pixel PSF (e.g. direct, photon‑counting X‑ray detectors), a significant 
improvement in spatial resolution can be obtained, demonstrated here at up to 17%.

X-ray imaging, through non-invasive single projection and Computed Tomography (CT), can provide excellent 
structural detail of samples and is a crucial tool in medical diagnosis, but it exposes the sample to harmful ionis-
ing radiation in the process. Although significant steps have been made to reduce the radiation dose, such as using 
iterative reconstruction  methods1, spiral scans, and selective slice  scans2, the incorporation of phase contrast 
(PC) techniques can be used to significantly reduce dose even  further3. While several phase contrast techniques 
exist, we focus here on propagation-based phase-contrast imaging (PBI), taking advantage of the simplicity in 
optical design, which only requires a sufficiently coherent beam at the sample position and some propagation 
distance between the object and detector. Phase contrast appears as intensity fringes on the detector and arises 
from the interference of X-rays that have incurred different phase shifts after passing through different materials. 
This effect enables PBI to be used effectively to enhance contrast between low-Z materials. To reconstruct the 
sample properties from the images requires application of an appropriate phase retrieval algorithm. Since we 
cannot directly measure the phase of an X-ray wavefield, it must be derived from intensity images alone. Phase 
retrieval is therefore an ill-posed problem and few algorithms provide an accurate and robust solution. The phase 
retrieval algorithm of Paganin et al.4 provides such a solution for the case of homogenous objects, that is, those 
comprised of a single material, and converts the phase contrast effects to a signal-to-noise-ratio (SNR) boosted 
version of the absorption contrast image. This enables low-dose distinction between low-Z  materials3,5. The 
boost in SNR comes from the phase retrieval applying a customised blurring filter to the images, returning the 
phase-contrast sharpened boundaries to more directly match the object shape while removing high frequency 
noise in the  process6. The most common algorithm for this is a Lorentzian Fourier filter, based on the transport 
of intensity equation (TIE), which is referred to herein as the Paganin Method (PM).

The PM relies on the paraxial approximation, requires a homogeneous object, and a small propagation dis-
tance between the sample and detector � so that the resulting image is in the near-field regime. While material 
inhomogeneity leads to erroneous thickness determinations in projection-based images, the single-material 
requirement was later loosened by Beltran et al.7 to allow for dual-material samples. See also a simplification 
when combined with CT in Croton et al.8, which allows phase retrieval to be performed on interfaces between 
any two known materials, regardless of how many other materials are present in the sample. In its original form, 
the Paganin method of phase retrieval reconstructs the contact intensity as
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where I0 is the incident wavefield intensity, δ is the decrement component of the complex refractive index 
n = 1− δ + iβ , and µ is the linear attenuation coefficient, which is related to the imaginary component of the 
complex refractive index β and X-ray wavelength � by µ = 4πβ/� . The vector k2⊥PM represents the perpendicular 
components of the wavevector, defined as

with ( kx , ky ) the Fourier spatial frequencies corresponding to the image coordinates (x, y).
In conjunction with CT, Eq. (1) has been applied in a range of settings, including investigations of self-healing 

 thermoplastics9, studies of  sandstone10 and coal micro-structure11 as well as in animal imaging studies such as 
detecting iron oxide nanoparticles in mouse  brains12,13, and dose optimization of lung  microtomography3,14. Of 
particular interest are the studies that report improvements to spatial resolution after incorporating sharpening 
filters to the algorithm, effectively suppressing high spatial frequencies to a lessor degree than implemented by 
the Fourier Lorentzian filter in Eq. (1). These studies included the  ANKAphase15 version 2.1 software package 
implementation of the PM incorporating a deconvolution filter, and the addition of an unsharp mask to the 
pyHST2  implementation16. Alternative methods have also included adding high spatial frequency informa-
tion from the phase contrast image back into the retrieved  images17, intended as a compromise between phase 
retrieval and phase contrast. This motivated Paganin et al.18 to revisit the derivation and find a first principles 
justification for the success of these  approaches18. Previous, first-principles-supported methods for increasing 
the spatial resolution of the PM have broadened the algorithm’s scope, such as by reducing the filter strength to 
account for inherent blurring by the system point spread function (PSF)19. However, with an algorithm based on 
fundamental wave optics, namely the new Generalised Paganin Method (GPM)  in18, we can expect a correction 
that more accurately restores high spatial frequencies than post-hoc sharpening filters.

The over-suppression of high spatial frequencies by the PM is a consequence of applying Eq. (1), derived 
using continuous Fourier transform integrals, to discrete pixel-based imaging systems. Note that, although Eq. 
(1) includes Fourier transforms, this algorithm is implemented using discrete Fourier transforms, since digital 
images have discrete sampling. In the GPM derivation presented by Paganin et al.18, this is addressed by employ-
ing a 5-point approximation of the transverse  Laplacian20,21 into which the discrete representation of the Fourier 
transform is substituted. This representation is then used, in place of the Fourier derivative theorem, to expand 
the Laplacian that appears in the derivation of the original PM. The contact plane intensity in the GPM is given as

where DFT represents the discrete Fourier transform mapping from the image coordinates (x, y) to the Fourier 
space coordinates (kx , ky) , and DFT−1 is the inverse transform. Equation (3) explicitly accounts for the discrete 
image sampling at coordinates (x, y), while possessing a similar form as the PM in Eq. (1) differing only in the 
quantification of the spatial frequencies, now represented by

where W is the pixel size of the detector. As demonstrated in Paganin et al.18, a Taylor series expansion of Eq. (4) 
shows convergence to Eq. (2) for spatial frequencies close to the origin of Fourier space, but this can differ greatly 
when approaching the Nyquist frequency of the Fourier transform. Paganinet al.18 demonstrated that the GPM 
filter always suppresses high spatial frequencies to a lesser extent than the PM, providing some first principles 
justification for the spatial resolution improvement found by users applying sharpening masks alongside the PM 
 algorithm18. Paganin et al.18 provided a comparison between the PM and GPM spatial frequency filters by varying 
δ�/µW over several orders of magnitude. They also demonstrate a difference between images reconstructed 
with the GPM and PM algorithms by subtracting one from the other, but did not consider how the PSF may 
affect the utility of the GPM. Our study aims to quantify the improvement in spatial resolution of the GPM by 
looking at the PSF of the entire imaging and reconstruction system, and identifying the experimental conditions 
under which the GPM provides noticeably improved spatial resolution compared to the PM.

We begin in “Analysis of system transfer functions” section by analyzing the respective transfer functions of 
each algorithm, comparing their spatial frequency filters before incorporating the system PSF to describe how 
well the imaging and retrieval system captures the various spatial frequencies present in the sample. “Spatial 
resolution improvement in projection images” section then provides a brief comparison of the resolution each can 
achieve on a simulated phantom projection. “Indirect X-ray detectors” section explores improvements achieved 
in CT and compares the differences between direct and indirect X-ray imaging detectors. Having determined the 
best experimental configuration to exploit the utility of the GPM, we demonstrate in “Rederivation of additional 
phase retrieval algorithms using discrete mathematics” section that the discrete Fourier transform notation intro-
duced in the GPM can also be used to prevent over-blurring in other phase retrieval algorithms that use DFTs. 
Specifically, we experimentally demonstrate more accurate image reconstruction, via improved spatial resolu-
tion, for the two-material phase retrieval algorithm of Beltran et al.7 (“Two-material phase retrieval algorithm” 
section) and spectral decomposition algorithm of Schaff et al.22 (“Dual-energy material decomposition” section).
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Simulated analysis in projection
We begin with preliminary comparisons of the PM and GPM methods by looking at the respective spatial filters. 
We incorporate additional filtering to mimic other stages of imaging, to better emulate how spatial frequencies in 
the sample are captured in the raw image and then appear in the final retrieved sample image. These two methods 
are also applied to simulated projection images to measure the resulting spatial resolution of the imaging system.

Analysis of system transfer functions. The PM, Eq. (1), is ultimately a tailored spatial frequency filter, 
derived under the transport of intensity equation, used to blur an image such that the phase contrast seen at 
material boundaries is spread to reconstruct the sample thickness. Given that the only difference between the 
PM and GPM methods is the shape of this spatial frequency filter, this becomes our first point of comparison. 
From Eqs. (1) and (3), we can define transfer functions for the application of each filter to raw images as

given as Eqs. (20) and (19) in Paganin et al.18, where HPM(kx , ky) represents the amplification applied to each 
spatial frequency amplitude by the PM, and HGPM(kx , ky) the amplification applied by the GPM. From here, a 
simple comparison between Eqs. (5) and (6) can be performed by taking their ratio (Eq. (21)  in2), 
R(kx , ky) = HGPM(kx , ky)/HPM(kx , ky) and plotting the result on a normalized axis. Figure 1a does this for a 
range of values of the combined parameter δ�/µW2 , displaying the fractional difference between the GPM and 
PM as a shaded region bounded by the |ky| ∪ |kx | = 0 (upper bound) and |kx| = |ky| (lower bound) lines. For 
the |kx| = |ky| lines, seen as the lower bound of the Fig. 1a plots, we produce the one-dimensional spatial fre-
quency axis through kr = W

√

k2x + k2y  , leading to values above π where (kx , ky) extend into the corners of a 
square image. The shaded regions help to demonstrate the new-found asymmetry of the GPM filter, correcting 
the PM algorithm to deliver a more uniform treatment of all edges in real-space, regardless of their orientation. 
A more helpful way to reveal quantitative differences between each algorithm is through the fractional difference, 
defined as
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Figure 1.  Comparative analysis of the PM and GPM transfer functions. (a) Displays the ratio of the phase 
retrieval transfer functions, Eqs. (6) and (5), for various values of δ�/µW2 , using a horizontal and diagonal 
slice of the 2D filter to create a bounded region presenting the asymmetry of the GPM filter. (b) Plots the 
horizontal, ( kx , ky = 0 ), line of the fractional difference in transfer functions described by Eq. (7), used as a 
comparison to (c) the imaging system transfer function, Eq. (12), which incorporates a G (kx , ky ,Ŵ) PSF, set as 
Ŵ = 3.0 FWHM which reduces the plot’s vertical scaling, as well as the phase retrieval transfer function. Finally, 
(d) directly displays the effect of varying the PSF width, Ŵ , on the imaging system transfer function, for the case 
δ�/µW2 = 10.
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which converges toward zero when the PM and GPM filters match, as opposed to the ratio of Eqs. (5) and (6) 
which converges to one. Figure 1b plots Eq. (7) across the kx or ky axis line ( |ky| ∪ |kx | = 0 ). We see again that 
the larger frequencies experience the greatest difference between the two algorithms, leading to increased spatial 
resolution in the GPM due to the greater proportion of high spatial frequencies, and that they are effectively 
indistinguishable at the lower spatial frequencies. However, Eqs. (5)–(7) only represent the transfer function of 
the post-image processing, whereas to better reflect experimental conditions we must also account for the blur-
ring effect of the detector imaging system and optical system (i.e. all blurring effects aside from the propagation 
and phase retrieval). To do this we introduce the contrast transfer function G (kx , ky ,Ŵ) . We describe the real-
space detector PSF as an azimuthally symmetric Gaussian, so that G (kx , ky ,Ŵ) is given by the Fourier transform

where Ŵ is the a full width at half maximum (FWHM) in real space, measured in pixels, and the factors of 4π2 
in the exponential reflect the DFT normalization convention. Combining the imaging system transfer function, 
Eq. (9), with the phase retrieval transfer functions, Eqs. (5)–(6), gives the complete transfer functions H̄ as

allowing us to similarly define a new fractional difference as

By incorporating the blurring effects of the imaging and imaging system into Eq. (7), we can expand on the 
filter comparisons in Paganin et al.18 and demonstrate how imaging PSFs may limit the relative spatial resolu-
tion improvement between the algorithms. Figure 1c plots Eq. (12) for the same δ�/µW2 values as in Fig. 1b, 
now including a Gaussian PSF with FWHM of 3 pixels. We see that the amplitudes of all spatial frequencies are 
reduced relative to panels (a) and (b), particularly at the higher spatial frequencies, and the difference between 
the GPM and PM is reduced overall. This predicts that there may only be a very small difference in spatial resolu-
tion between the PM and GPM methods when the PSF Ŵ is a few pixels wide, as is typical of most indirect X-ray 
detectors. We also see that the biggest difference is now shifted to medium spatial frequencies in this example. 
Figure 1d plots Eq. (12) for δ�/µW2 = 10 , while varying the PSF size in pixels ( Ŵ ). The ‘no convolution’ trend 
displays the fractional difference without incorporating a PSF, D (kx , ky) , as a reference point. We observe that 
increasing the PSF size decreases the amplitudes of high spatial frequencies, hence likely decreasing the potential 
improvement to resolution available via the GPM. However, for PSF widths around 1 pixel, typical of direct X-ray 
detectors, such as photon counting detectors, the high spatial frequency amplitudes are still 20% increased under 
the GPM algorithm. This leads us to suspect that direct detectors, such as photon-counting detectors, will be best 
suited to benefit from the GPM algorithm, while for indirect X-ray detectors, which can possess PSF widths of 
two or more pixels, the improvement may be relatively minor.

Spatial resolution improvement in projection images. The previous section showed how the shape 
of the image transfer function can vary between the PM and GPM phase retrieval algorithms as a result of add-
ing realistic PSFs to the system. Here we quantify what effect the PSF has on spatial resolution in combination 
with phase retrieval via numerical simulation. We performed the comparison by simulating the propagation 
of a wavefield through cylindrical phantoms using the TIE (details below) until phase contrast fringes were 
produced. Next, we applied each phase retrieval algorithm and created an azimuthally-averaged profile of the 
phantom edge, which was differentiated to create a line spread function (LSF) that can be measured to evaluate 
the spatial resolution of the phase-retrieved image. We then use the measured resolution in the propagation-
based phase contrast image, pre-phase retrieval, as a basis for our resolution comparison. Note that, while LSFs 
are one dimensional, and PSFs are two dimensional, both are distinct measurements of spatial resolution enti-
ties, and we will use the terms interchangeably throughout the paper. A typical LSF is well approximated by a 
Pearson VII function,

where x0 is the peak position, Ŵ is the FWHM and m is the exponent that sets the position on the spectrum 
between Lorentzian ( m = 1 ) and Gaussian (approximated by m > 10 ) behaviour. Finally, we use the FWHM 
values of the imaging system PSF measured in the phase-retrieved images from the PM ( ŴPM ) and GPM ( ŴGPM ) 
to calculate a fractional improvement in spatial resolution between the two algorithms,
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Our simulations used end-on cylindrical phantoms composed of water ( 0.998 g cm−3 ) and polymethyl meth-
acrylate (PMMA, 1.19 g cm−3 ) with a radius of 900.5 pixels, created on a 2048× 2048 pixel array with pixel size 
W = 25µm . The wavefield directly after transmission through the phantom was constructed using the projection 
 approximation23 on a ×5 up-sampled grid, assuming an object thickness of 6 mm, and propagated with the TIE 
until a single phase contrast fringe became visible in the wavefield intensity (4 mm). A small Gaussian blurring 
filter ( Ŵ = 1.0 pixel) was applied to the thickness map pre-propagation to suppress artefacts arising from the 
pixelated boundaries of the circular phantom, before the second blurring filter was applied post-propagation to 
simulate a detectors with varying PSFs. Phase retrieval was then performed using either the PM or GPM methods. 
Figure 2a shows example imaging system PSF measurements, before and after phase retrieval, incorporating 
a G (kx , ky ,Ŵ) component, simulated through a Gaussian blurring filter, applied after the TIE  propagation24.

From Fig. 2b we see, for these low-Z materials, a ∼ 6% improvement in the resolution when the phase contrast 
PSF FHWM is equal to the pixel size. This benefit reduces with increasing detector PSF width. At 2 pixels wide, 
a ∼ 2% improvement is seen, and only a ∼ 1% improvement is seen at 3 pixels PSF FWHM. This reinforces that 
the benefit of the GPM method is heavily dependent on the detector PSF and will show the greatest improvement 
over the PM when the detector PSF width is equivalent to a single pixel or smaller.

Experimental analysis in CT
Phase retrieval is often combined with CT to provide three-dimensional separation of materials with very high 
signal-to-noise ratios due to its three-dimensional smoothing  operation3. We recorded tomographic scans of 
various phantoms to compare the PM and GPM using direct and indirect pixelated detectors to experimentally 
verify the effects of different detector PSFs on the reconstructions. We used synchrotron radiation, which pro-
vides high coherence and a low divergence beam, which are ideal for phase contrast imaging. To reconstruct the 
CT data, we first performed the standard flat field and dark current correction followed by phase retrieval, then 
used parallel beam filtered back projection with a ramp filter.

Indirect X‑ray detectors. Indirect X-ray detectors typically have a PSF of several pixels in width, intro-
duced during the conversion of X-rays to visible light, where the divergent visible light from a single X-ray 
photon spreads across several pixels on the detector chip. Our investigation, which focused on indirect X-ray 
detectors, used a Hamamatsu Orca Flash 4.0 detector, with a 10µm thick Gadox (P43) phosphor directly cou-
pled to the sCMOS sensor, with 6.5µm pixels in a 2048× 2048 geometry. Combined with the imaging system 
at beamline 20B2 of the SPring-8 Synchrotron in Japan, with a propagation distance of � = 2m and energy of 
24 keV , this produced a system PSF with FHWM Ŵ = 15.6µm or 2.4 pixels. The filter shape analysis in “Simu-
lated analysis in projection” section suggests that such conditions would likely lead to negligible improvement in 
spatial resolution under the GPM. To reproduce this effect in experimental data, here we explore pixel rebinning 
as a method to probe different pixel sizes for a given detector PSF, G (kx , ky ,Ŵ) , and hence allow the GPM to 
demonstrate improvement as the pixel size approaches the PSF width. Rebinning is frequently used to increase 
the signal-to-noise ratio in circumstances where a longer exposure time is not desired, or to achieve fast data 
transfer times for high-speed imaging, so is important to consider in the context of this kind of experiment. Fig-
ure 3a provides transfer function fractional differences, evaluated using Eq. (12), for the detector settings listed 
above, with increasing levels of rebinning. We observe that rebinning leads to larger differences between the PM 
and GPM at higher spatial frequencies, with the GPM potentially providing increased relative resolution at the 
new pixel size. Figure 3b demonstrates the effect of rebinning on experimentally recorded CT slices created from 
1800 projection images acquired over 180◦ rotation. As expected, analysis without rebinning produced only a 
negligible improvement in the width of the PSF after applying the GPM filter instead of the PM; approximately 
0.9(5)% . Rebinning by factors of 2, 4 and 8 along each axis show further improvements in the GPM spatial reso-

(14)ŴI =
ŴPM − ŴGPM

ŴPM
.

0 10 20 30 40
Pixels

∂
In
te
ns
ity
/∂

r

PC; Γ = 0.83± 0.03 pixels
PM; Γ = 5.9± 0.1 pixels
GPM; Γ = 5.44± 0.03 pixels

a)

1.0 1.5 2.0 2.5 3.0
ΓPC(Pixels)

0.00

0.05

0.10

0.15

Γ I

Water
PMMA

b)

Figure 2.  (a) Azimuthally averaged imaging system Line Spread Functions (LSF)s of the circular phantom 
image showing the effect of phase retrieval on spatial resolution from the phase contrast (PC) and phase 
retrieved images using the PM and GPM algorithms for a sample composed of water. Underlying dashed curves 
represent Pearson VII fits used to measure the LSF width. The phase contrast PSF was rescaled vertically by a 
factor of 8 for plotting. (b) Plots the percentage improvement in resolution, according to Eq. (14) of the GPM, 
plotted against the initial resolution of the simulated object.
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lution compared to the PM. This improvement is quantified as a change in PSF width of 4(1)% when rebinning 
by a factor of 2, 12(2)% at a factor of 4, and 16(2)% at a factor of 8. Each level of rebinning shows improvement; 
however, the difference between rebinning by 2 and 4 is far greater than that between rebinning by 4 and 8, as 
expected from the higher proportion of high spatial frequency information allowed by the transfer function 
(Fig. 3a).

We note that the spatial resolution does not vary significantly when initially rebinning by a factor of two 
along each axis. This implies that data recording could be performed using a detector rebin setting, increasing 
data transfer rates and read time, without compromising resolution.

Direct X‑ray detectors. Figure  1d shows that the proportion of high spatial frequencies in the optical 
system transfer function, which includes phase retrieval, increases as the width of the PSF decreases. From 
this, we predict that photon counting detectors will provide the best improvement to spatial resolution when 
using the GPM instead of the PM, since the detector PSF for these systems is inherently limited to the pixel 
dimensions. To show this, we imaged the same PMMA phantom as was shown in Fig.  3 with an Advacam 
Modupix photon-counting detector at a 2 m propagation distance using 24 keV synchrotron radiation (SPring-8, 
BL20B2). The detector comprised a Timepix chip with a 55µm pixel size and silicon sensor, with the threshold 
set to count X-rays above 12 keV . Figure 4a provides azimuthally averaged PSF fits at the outer boundary of the 
PMMA phantom using both the PM and GPM algorithms, showing a percentage improvement in spatial reso-
lution of 17(2)% according to Eq. (14) when using the GPM, alongside a drop in SNR from 92± 14 to 81± 16 
( 12± 35% ). In a second experiment, we used an X-Spectrum LAMBDA (Large Area Medipix Based Detector 
Array) 350K photon-counting detector with a 1000µm thick cadmium telluride (CdTe) scintillator and a 55µm 
pixel size to image a larger PMMA phantom. The results are shown in Fig. 4b and were recorded at the Imaging 
and Medical Beamline (IMBL) of the Australian Synchrotron. Although the larger phantom radius was intended 
to provide more points in the radial averages, we found it was slightly asymmetric and poorly polished, leading 
us to use only part of the radial arc in our analysis. Defining a radial origin to be from the phantom centre to the 
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Figure 3.  The effect of rebinning the raw phase contrast image ( ×n ) upon the spatial resolution of the phase-
retrieved images, using the PM and GPM methods. (a) Plots the transfer function fractional difference, Eq. 
(12), along the (kx , ky = 0) line, for various levels of rebinning. Here the filter conditions were chosen to initially 
match the detector PSF and the conditions used in (b) which shows the Pearson VII fit reconstructions of 
imaging system PSF measurements conducted at the outer edge of a cylindrical PMMA phantom, shown in 
inset.
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Figure 4.  PSFs measured by azimuthally averaging the outer edge PMMA cylinders in CT recorded at 2 m 
propagation distance with 24 keV beam energy using (a) a Advacam Modupix and (b) a LAMBDA photon-
counting detector. Voxel size = 55µm . The PMMA cyclinder used in (a) contains an off-centre circular cavity 
while the cylinder in (b) is solid PMMA nearing the detector width in size.
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top of the image, our radial analysis used an arc from 235◦ to 270◦ , where the shape of the phantom was consist-
ent. These conditions provided a percentage improvement in the PSF FWHM of 14(1)% when using the GPM, 
accompanied by a drop in SNR from 27± 6 to 25± 5.

Next, we show the application of the GPM to a complex sample of biomedical relevance using a direct 
detector. We collected a CT scan of the thorax of a recently-deceased juvenile rat. The lung inflation was fixed 
and the rat set in a plastic tube with agarose to prevent motion during imaging. Imaging was performed, again 
using the LAMBDA photon counting detector, at a 2m propagation distance and a beam energy of 26 keV at the 
IMBL. The energy threshold of the detector was set to 6 keV and phase retrieval was performed on the lung-air 
interface, using water as an analogous material. Figure 5b shows an interleaved CT slice where the red pixel 
columns are from a GPM-reconstructed slice, Fig. 5c, and the blue columns are from a PM-reconstructed slice, 
Fig. 5a. At small scales, the difference between each resolution is subtle; however, expanding the inset in Fig. 5c 
as in Fig. 5d, shows a much clearer difference between the two methods. Where the PM columns look blurred, 
the GPM columns appear sharper, with higher definition between the airways (including the alveoli) and the 
soft tissues. We reiterate that this straightforward improvement to spatial resolution achievable by the GPM 
when using direct detectors is a consequence of the single-pixel PSFs they possess and hence would equivalently 
improve data recorded with indirect detectors of similar PSF. Similarly, methods allowing sub-pixel resolution 
through localisation of charge clouds caused by X-ray interaction with the detector, performed with  indirect25–27 
and direct  detectors28,29, would likely benefit further from the GPM rederivation.

Rederivation of additional phase retrieval algorithms using discrete mathematics
The GPM rederivation is achieved through a modified version of the Fourier derivative theorem. In a continuous 
domain, the Fourier derivative theorem is expressed as

but in a discrete domain we need to incorporate the discrete representation of the Laplacian, described  in18 
through the 5 point approximation, giving

Given the improvement to spatial resolution comes from the modified Fourier derivative theorem, we infer the 
same benefit can be replicated in other phase retrieval algorithms that use Fourier transforms. Here, we con-
sider two algorithms used commonly in propagation-based phase contrast imaging that also utilize the discrete 
Fourier transform. First, we look at the two-material phase retrieval algorithm of Beltran et al.7, followed by the 
dual-energy algorithm for decomposing images into their photoelectric and Compton scatter  components30. 
We provide experimental validation of improvements in spatial resolution, achieved through implementation 
of the discrete Fourier derivative theorem in Eq. (16). We use these to demonstrate the benefit of applying Eq. 
(16) to derivations in place of Eq. (15). Note that this is not an exhaustive list of all the possible extensions, and 
we welcome further applications of this approach.

(15)∇F [f (x, y)] = −ik⊥PMF [f (x, y)],

(16)∇DFT[f (x, y)] = −ik⊥GPMDFT[f (x, y)].

Figure 5.  CT slices of a rat lung reconstructed from phase retrieved projections using either the (a) PM or (c) 
GPM algorithms. (b) Shows an interleaved image of the two methods, with a blue band along the bottom in 
columns from the PM method and a red band along the top in columns from the GPM, with an inset region in 
(b) bounded by dashed green lines magnified in (d) for direct comparison of the two methods.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18469  | https://doi.org/10.1038/s41598-022-19940-9

www.nature.com/scientificreports/

Two‑material phase retrieval algorithm. We focus on the highly-stable two-material propagation-
based phase retrieval algorithm developed by Beltran et  al.7. This algorithm was designed used to correctly 
reconstruct the projected thickness of one material embedded within another, rather than just focussing on a 
single material within air. This method requires knowledge of the complex refractive indices of both materials 
and, for quantitative measures, their total projected thickness

with T1 and T2 representing the spatially variant thickness of each material. However, when combined with CT, it 
is not necessary to isolate materials in projection as they are spatially separated by backprojection. Croton et al.8 
showed that it is therefore not necessary to know A(x, y) for use with CT. This simplifies the algorithm to a low-
pass filter that specifically matches the fringe enhancement effects at the boundary between the two materials, 
creating a noise-reduced representation of the absorption contrast image, given by

Modifying Eq. (18) to use a discrete representation of the Fourier derivative theorem, Eq. (16), gives

We imaged a cylindrical PMMA phantom with three cylindrical cavities; one filled with an aluminium rod and 
the other two with air. Figure 6 shows a radial PSF fit around the Aluminium inset, recorded using the LAMBDA 
photon-counting detector at a propagation distance of 2m and an X-ray energy of 40 keV at the IMBL. Here 
the GPM rederivation shows an 11(3)% improvement in spatial resolution at the aluminium-PMMA boundary 
compared to the original method.

Dual‑energy material decomposition. Phase retrieval algorithms for PBI have recently been developed 
to use the phase and attenuation components to enable material  decomposition31,32 or to separate attenuation 
from phase  effects30. The methods rely on the acquisition of PBI images at a minimum of two different X-ray 
wavelengths. Here we further generalise the phase retrieval algorithm of Gursoy and  Das30, which uses the 
Alvarez-Macovski (AM) model of X-ray  attenuation33, and begins from the linearised TIE

where I(E), µ(E) and δ(E) are discrete image maps of the spatially variant contact intensity, linear attenuation 
coefficient, and refractive index decrement and are all functions of energy, E. Integrations are performed along 
the optical axis, labelled as z. To change basis, µ(E) is represented as a linear combination of photoelectric 
absorption and Compton scattering. Photoelectric absorption is proportional to E−3 while Compton scattering 
is proportional to both the electron density, ρe , and the Klein–Nishina cross section, σKN(E) . Since δ(E) is also a 
function of electron density δ(E) = (ρeh

2c2re)/(2πE
2) , where h is Planck’s constant, c is the speed of light and 

re is the classical electron radius, allows the Compton and phase terms to be coupled together. This coupling 
allows us to solve for the attenuation and phase, or alternatively the projected electron density, using PBI images 
acquired using at least two energies as a matrix equation:

(17)A(x, y) = T1(x, y)+ T2(x, y),

(18)IB-PM(x, y, z = 0) = F
−1

[

F [I(x, y, z = �)/I0]

1+ (δ2−δ1)�
µ2−µ1

k
2
⊥PM

]

.

(19)IB-GPM(x, y, z = 0) = DFT−1

[

DFT[I(x, y, z = �)/I0]

1+ (δ2−δ1)�
µ2−µ1

k
2
⊥GPM

]

.

(20)−F ln I(E) = F

[
∫

µ(E)dz

]

+�k2⊥PMF

[
∫

δ(E)dz

]

,
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Figure 6.  Pearson VII fit comparison of spatial resolution achieved through a PM and GPM application of 
the Beltran two-material phase retrieval algorithm, featuring a PMMA phantom with aluminium inset. Data 
was recorded using the LAMBDA detector at a propagation distance of 2m , and spatial resolution analysis was 
performed using the aluminium-PMMA material interface.
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where χA = (h2c2re�)/(2πE2A) and χB = (h2c2re�)(2πE2B) . Equation (21) can then be inverted to solve for 
P, the photoelectric component, and 

∫

ρe . Details of this inversion can be found in Schaff et al.22. Schaff et al. 
showed that the reconstruction of 

∫

ρe is highly robust as the combined phase and Compton signals provide a 
solution that includes a low-pass Fourier filter term that smooths noise. Such smoothing is akin to the single 
image phase retrieval algorithms in Paganin et al.4 and Beltran et al.7. Here, we generalise Eq. (21) using a dis-
cretised version of the Fourier derivative theorem by replacing k2⊥PM with k2⊥GPM . We focus our study on the 
stable electron density results.

To explore the benefit of the modified derivation in improving spatial resolution, we performed 180◦ CTs of 
a dual-material phantom, again using the LAMBDA detector at IMBL. We used the same cylindrical PMMA 
and aluminium phantom described in the previous section. Given that the highly-attenuating aluminium rod 
was approximately 5mm in diameter, we opted for higher energies, 30 keV and 40 keV , than in our previous 
studies, to reduce beam hardening artefacts. Figure 7 shows slices of the electron density maps calculated from 
Eq. (21) using dual-energy recordings at 30 keV and 40 keV . Figure 7a uses a propagation distance of 1m and 
Fig. 7b uses 2m propagation distance. The 1 m propagation distance provides a region entirely within the valid-
ity of the TIE, but possesses significant ring artefacts due to limited SNR enhancement from phase retrieval. 
The 2m distance provides a stronger SNR enhancement, while sitting at the edge of the TIE validity; signified 
by the slight fringes on either side of the Pearson VII fits in Fig. 7b. At a 1m propagation distance, Eq. (14) gives 
a 16(6)% improvement in the PSF, while the 2m propagation gives a 29(2)% improvement. Each PSF fit uses a 
30◦ arc of the outer PMMA edge, (a) using the angular range 202.5◦ to 247.5◦ and (b) using the range 45◦ to 90◦ . 
Overall, we find using the discretized Fourier derivative theorem provides increased spatial resolution when 
applied to the Alvarez–Macovski-based dual-energy reconstruction of electron density and would likely improve 
resolution for material decomposition too.

Conclusion
Paganin et al.18 presented a rederivation of the PBI phase retrieval algorithm of Paganin et al.4, implementing a 
discretized form of the Laplacian, and provided a theoretical grounding for its ability to increase spatial resolu-
tion in processed images. We expand on this result by first considering how the point spread function affects the 
algorithm. Using theory and simulation, we demonstrated that for detectors with a PSF larger than the pixel size, 
the spatial frequency filter used in discretized phase retrieval becomes comparable to the standard approach, 
hence the total gain in spatial resolution may be minimal. We verified experimentally that the magnitude of any 
improvement is highly dependent upon the width of the detector PSF using PBI-CT scans with both direct and 
indirect detectors. For detector systems with PSF widths of several pixels or more, typical of unbinned indirect 
detectors, we saw negligible improvement to spatial resolution due to the broad PSF suppressing high spatial 
frequency content before it could be boosted; however, by rebinning the same data to reduce the effective PSF 
width (expressed in pixels), the GPM achieved up to a 16(2)% improvement in spatial resolution compared to 
PM, only after binning by a factor of 8. Conversely, detector systems effectively possessing single pixel width 
PSFs, commonly found in indirect detectors, showed up to 17(2)% improvement in spatial resolution. We next 
extended the concept of the more accurate discrete Fourier formalism to other stable phase retrieval algorithms. 
For the two material algorithm of Beltran et al.5, we found the spatial resolution was improved by 11(3)% using 
a direct detector. Furthermore, 3D maps electron density recovered using the dual-energy algorithm of Schaff 
et al.22 with 29(2)% resolution improvement. We speculate that similar spatial resolution improvements could 
be gained for other algorithms that use the Fourier derivative theorem in a discrete setting.

Although the improvements in resolution afforded by the discrete phase retrieval algorithms may only be 
modest, the most important benefit is the knowledge that the object has been reconstructed more faithfully than 
was previously achieved. Given the increasing popularity of direct, photon-counting detectors for dose reduction 

(21)
[

E−3
A σKN (EA)+ χAk

2
⊥PM

E−3
B σKN (EB)+ χBk

2
⊥PM

] [

FP
F

∫

ρe

]

=

[

−F ln I(EA)
−F ln I(EB)

]

,

−200 −100 0 100 200
Distance from phantom edge (µm)

∂
In
te
ns
ity
/ ∂

r

∇F [f(x)]: Γ =76±3µm
∇DFT[f(x)]:Γ =66±2µm

a)

−200 −100 0 100
Distance from phantom edge (µm)

∂
In
te
ns
ity
/∂

r

∇F [f(x)]: Γ =78±3µm
∇DFT[f(x)]:Γ =58±1µm

b)

Figure 7.  PSF comparison of the dual-energy phase retrieval images showing reconstructed slices of electron 
density maps shown in the graph inset. PSFs have been fit with Pearson VII functions for quantifying the PSF 
FWHM. (a) Shows a spatial resolution improvement of 16(6)% at 1m propagation distance, while (b) shows 
the same phantom at 2m propagation distance showing a 29(2)% improvement, likely due to the higher SNR 
afforded by low-pass filtering in the phase retrieval algorithm.
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and spectral imaging, and the superior performance of these discrete Fourier transform-based algorithms when 
using photon-counting detectors, we anticipate that these rederived phase retrieval algorithms will be of increas-
ing importance in future phase contrast work.

Data availability
The datasets used and/or analysed for this manuscript are available from the corresponding author on reason-
able request.

Received: 5 April 2022; Accepted: 6 September 2022

References
 1. Kroft, L. J. M. et al. Added value of ultra-low-dose computed tomography, dose equivalent to chest X-ray radiography, for diagnos-

ing chest pathology. J. Thorac. Imaging 34, 179–186. https:// doi. org/ 10. 1097/ RTI. 00000 00000 000404 (2019).
 2. Ball, L. et al. Ultra-low-dose sequential computed tomography for quantitative lung aeration assessment—A translational study. 

Intensive Care Med. Exp. 5, 1–11. https:// doi. org/ 10. 1186/ s40635- 017- 0133-6 (2017).
 3. Kitchen, M. J. et al. CT dose reduction factors in the thousands using X-ray phase contrast. Sci. Rep. 7, 15953. https:// doi. org/ 10. 

1038/ s41598- 017- 16264-x (2017).
 4. Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single 

defocused image of a homogeneous object. J. Microsc. 206, 33–40. https:// doi. org/ 10. 1046/j. 1365- 2818. 2002. 01010.x (2002).
 5. Beltran, M. A. et al. Interface-specific X-ray phase retrieval tomography of complex biological organs. Phys. Med. Biol. 56, 7353–

7369. https:// doi. org/ 10. 1088/ 0031- 9155/ 56/ 23/ 002 (2011).
 6. Gureyev, T. E., Nesterets, Y. I., Kozlov, A., Paganin, D. M. & Quiney, H. M. On the unreasonable effectiveness of transport of 

intensity imaging and optical deconvolution. JOSA A 34, 2251–2260. https:// doi. org/ 10. 1364/ JOSAA. 34. 002251 (2017).
 7. Beltran, M. A., Paganin, D. M., Uesugi, K. & Kitchen, M. J. 2D and 3D X-ray phase retrieval of multi-material objects using a single 

defocus distance. Opt. Express 18, 6423–6436. https:// doi. org/ 10. 1364/ OE. 18. 006423 (2010).
 8. Croton, L. C. P. et al. In situ phase contrast X-ray brain CT. Sci. Rep. 8, 11412. https:// doi. org/ 10. 1038/ s41598- 018- 29841-5 (2018).
 9. Mookhoek, S. D. et al. Applying SEM-based X-ray microtomography to observe self-healing in solvent encapsulated thermoplastic 

materials. Adv. Eng. Mater. 12, 228–234. https:// doi. org/ 10. 1002/ adem. 20090 0289 (2010).
 10. Yang, S. et al. A data-constrained modelling approach to sandstone microstructure characterisation. J. Pet. Sci. Eng. 105, 76–83 

(2013).
 11. Wang, H. et al. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron 

X-ray CT. Sci. World J. 2015, 414262. https:// doi. org/ 10. 1155/ 2015/ 414262 (2015).
 12. Marinescu, M. et al. Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide 

nanoparticles in the brain. Mol. Imaging Biol. 15, 552–559. https:// doi. org/ 10. 1007/ s11307- 013- 0639-6 (2013).
 13. Rositi, H. et al. Information-based analysis of X-ray in-line phase tomography with application to the detection of iron oxide 

nanoparticles in the brain. Opt. Express 21, 27185–27196. https:// doi. org/ 10. 1364/ OE. 21. 027185 (2013).
 14. Lovric, G. et al. Dose optimization approach to fast X-ray microtomography of the lung alveoli. J. Appl. Crystallogr. 46, 856–860. 

https:// doi. org/ 10. 1107/ S0021 88981 30055 91 (2013).
 15. Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. ANKAphase: Software for single-distance phase retrieval from inline X-ray 

phase-contrast radiographs. J. Synchrotron Radiat. 18, 617–29. https:// doi. org/ 10. 1107/ S0909 04951 10028 95 (2011).
 16. Mirone, A., Gouillart, E., Brun, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic 

reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam 
Interact. Mater. Atoms 324, 41–48. https:// doi. org/ 10. 1016/j. nimb. 2013. 09. 030 (2013).

 17. Irvine, S. et al. Simple merging technique for improving resolution in qualitative single image phase contrast tomography. Opt. 
Express 22, 27257–27269. https:// doi. org/ 10. 1364/ OE. 22. 027257 (2014).

 18. Paganin, D. M. et al. Boosting spatial resolution by incorporating periodic boundary conditions into single-distance hard-X-ray 
phase retrieval. J. Opt. 22, 115607. https:// doi. org/ 10. 1088/ 2040- 8986/ abbab9 (2020).

 19. Beltran, M. A., Paganin, D. M. & Pelliccia, D. Phase-and-amplitude recovery from a single phase-contrast image using partially 
spatially coherent X-ray radiation. J. Opt. 20, 055605. https:// doi. org/ 10. 1088/ 2040- 8986/ aabbdd (2018).

 20. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN (2nd edition): The Art of Scientific 
Computing (Cambridge University Press, 1992).

 21. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Courier 
Corporation, 1965).

 22. Schaff, F., Morgan, K. S., Paganin, D. M. & Kitchen, M. J. Spectral X-ray imaging: Conditions under which propagation-based 
phase-contrast is beneficial. Phys. Med. Biol. 65, 205006. https:// doi. org/ 10. 1088/ 1361- 6560/ aba318 (2020).

 23. Morgan, K. S., Siu, K. K. W. & Paganin, D. M. The projection approximation and edge contrast for X-ray propagation-based phase 
contrast imaging of a cylindrical edge. Opt. Express 18, 9865–9878. https:// doi. org/ 10. 1364/ OE. 18. 009865 (2010).

 24. Zuo, C. et al. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 135, 106187. https:// doi. org/ 10. 1016/j. optla seng. 2020. 
106187 (2020).

 25. Lumb, D. H. & Holland, A. D. Event recognition techniques in CCD X-ray detectors for astronomy. Nucl. Instrum. Methods Phys. 
Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 273, 696–700. https:// doi. org/ 10. 1016/ 0168- 9002(88) 90081-2 (1988).

 26. O’Connell, D. W. et al. Photon-counting, energy-resolving and super-resolution phase contrast X-ray imaging using an integrating 
detector. Opt. Express 28, 7080–7094. https:// doi. org/ 10. 1364/ OE. 384928 (2020).

 27. Nowak, S. H. et al. Sub-pixel resolution with a color X-ray camera. J. Analyt. At. Spectrom. 30, 1890–1897. https:// doi. org/ 10. 1039/ 
C5JA0 0028A (2015).

 28. Cartier, S. et al. Micrometer-resolution imaging using MÖNCH: Towards G2-less grating interferometry. J. Synchrotron Radiat. 
23, 1462–1473. https:// doi. org/ 10. 1107/ S1600 57751 60147 88 (2016).

 29. Dreier, E. S. et al. Tracking based, high-resolution single-shot multimodal X-ray imaging in the laboratory enabled by the sub-pixel 
resolution capabilities of the MÖNCH detector. Appl. Phys. Lett. 117, 264101. https:// doi. org/ 10. 1063/5. 00277 63 (2020).

 30. Gürsoy, D. & Das, M. Single-step absorption and phase retrieval with polychromatic X rays using a spectral detector. Opt. Lett. 
38, 1461–1463. https:// doi. org/ 10. 1364/ OL. 38. 001461 (2013).

 31. Schaff, F. et al. Material decomposition using spectral propagation-based phase-contrast X-ray imaging. IEEE Trans. Med. Imaging 
39, 3891–3899. https:// doi. org/ 10. 1109/ TMI. 2020. 30068 15 (2020).

 32. Li, H. T., Schaff, F., Croton, L. C. P., Morgan, K. S. & Kitchen, M. J. Quantitative material decomposition using linear iterative near-
field phase retrieval dual-energy X-ray imaging. Phys. Med. Biol. 65, 185014. https:// doi. org/ 10. 1088/ 1361- 6560/ ab9558 (2020).

 33. Alvarez, R. E. & Macovski, A. Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 21, 733–744. 
https:// doi. org/ 10. 1088/ 0031- 9155/ 21/5/ 002 (1976).

https://doi.org/10.1097/RTI.0000000000000404
https://doi.org/10.1186/s40635-017-0133-6
https://doi.org/10.1038/s41598-017-16264-x
https://doi.org/10.1038/s41598-017-16264-x
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1088/0031-9155/56/23/002
https://doi.org/10.1364/JOSAA.34.002251
https://doi.org/10.1364/OE.18.006423
https://doi.org/10.1038/s41598-018-29841-5
https://doi.org/10.1002/adem.200900289
https://doi.org/10.1155/2015/414262
https://doi.org/10.1007/s11307-013-0639-6
https://doi.org/10.1364/OE.21.027185
https://doi.org/10.1107/S0021889813005591
https://doi.org/10.1107/S0909049511002895
https://doi.org/10.1016/j.nimb.2013.09.030
https://doi.org/10.1364/OE.22.027257
https://doi.org/10.1088/2040-8986/abbab9
https://doi.org/10.1088/2040-8986/aabbdd
https://doi.org/10.1088/1361-6560/aba318
https://doi.org/10.1364/OE.18.009865
https://doi.org/10.1016/j.optlaseng.2020.106187
https://doi.org/10.1016/j.optlaseng.2020.106187
https://doi.org/10.1016/0168-9002(88)90081-2
https://doi.org/10.1364/OE.384928
https://doi.org/10.1039/C5JA00028A
https://doi.org/10.1039/C5JA00028A
https://doi.org/10.1107/S1600577516014788
https://doi.org/10.1063/5.0027763
https://doi.org/10.1364/OL.38.001461
https://doi.org/10.1109/TMI.2020.3006815
https://doi.org/10.1088/1361-6560/ab9558
https://doi.org/10.1088/0031-9155/21/5/002


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18469  | https://doi.org/10.1038/s41598-022-19940-9

www.nature.com/scientificreports/

Acknowledgements
We would like to thank David Paganin for helpful discussion on the GPM method and, likewise, Florian Schaff 
for discussion on implementation of the dual-energy phase retrieval algorithm. This work was funded in part 
by the Japan Synchrotron Radiation Research Institute (JASRI) under Project 2019B0150, in part by the Future 
Fellowship Schemes under Grant FT160100454 and Grant FT180100374, in part by the International Synchrotron 
Access Program (ISAP) managed by the Australian Synchrotron, a part of the Australian Nuclear Science and 
Technology Organisation (ANSTO) under Grant AS/IA193/16034, in part by the Australian Synchrotron under 
Grant AS193/IMBL/15223. We also thank C.J. Hall and A. Maksimenko for aiding in experimentation at the 
IMBL. The work of James A. Pollock was supported in part by the Research Training Program (RTP) Scholarship 
and in part by the J. L. Williams Top Up Scholarship.

Author contributions
J.A.P. was a part of all data collection and performed the subsequent anaylsis and manuscript writing. M.K., K.M., 
L.C.P.C., M.K.C and G.R. contributed to collecting data and editing the manuscript. N.Y and H.S as beamline 
scientists at the Japanese synchrotron Spring-8 had a crucial role in the experiments performed on the 20B2 
beamline. All authors contributed to the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.A.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Precise phase retrieval for propagation-based images using discrete mathematics
	Simulated analysis in projection
	Analysis of system transfer functions. 
	Spatial resolution improvement in projection images. 

	Experimental analysis in CT
	Indirect X-ray detectors. 
	Direct X-ray detectors. 

	Rederivation of additional phase retrieval algorithms using discrete mathematics
	Two-material phase retrieval algorithm. 
	Dual-energy material decomposition. 

	Conclusion
	References
	Acknowledgements


