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Abstract
Purpose  The current study aimed to illustrate how a non-linear mixed effect (NLME) model-based analysis may improve 
confidence in a Phase III trial through more precise estimates of the drug effect.
Methods  The FULFIL clinical trial was a Phase III study that compared 24 weeks of once daily inhaled triple therapy with 
twice daily inhaled dual therapy in patients with chronic obstructive pulmonary disease (COPD). Patient reported outcome 
data, obtained by using The Evaluating Respiratory Symptoms in COPD (E-RS:COPD) questionnaire, from the FULFIL study 
were analyzed using an NLME item-based response theory model (IRT). The change from baseline (CFB) in E-RS:COPD 
total score over 4-week intervals for each treatment arm was obtained using the IRT and compared with published results 
obtained with a mixed model repeated measures (MMRM) analysis.
Results  The IRT included a graded response model characterizing item parameters and a Weibull function combined with 
an offset function to describe the COPD symptoms-time course in patients receiving either triple therapy (n = 907) or dual 
therapy (n = 894). The IRT improved precision of the estimated drug effect compared to MMRM, resulting in a sample size 
of at least 3.64 times larger for the MMRM analysis to achieve the IRT precision in the CFB estimate.
Conclusion  This study shows the advantage of IRT over MMRM with a direct comparison of the same primary endpoint for 
the two analyses using the same observed clinical trial data, resulting in an increased confidence in Phase III.

Key Words  chronic obstructive pulmonary disease · item response theory · mixed model repeated measures · non-linear 
mixed effect model · patient-reported outcomes

Introduction

The primary reason for Phase III clinical drug develop-
ment failure is insufficient drug efficacy (55%), followed 
by safety (14%) and strategic reasons (14%) (1). Although 
the development of “ineffective” or “unsafe” compounds 
should stop during early stages of drug development, the 
proportion of failure owing to insufficient efficacy is cur-
rently larger in Phase III compared to Phase II (55% vs. 
48%) (1). The causes of such failures may include not only 

insufficient drug efficacy but also insufficient knowledge of 
the treatment effect in the target population (2) leading to 
an insufficient sample size (e.g. sample size calculated from 
a commonly overestimated true treatment effect in Phase II 
(3)), and therefore high uncertainty in the efficacy estimate. 
A model-informed drug development (MIDD) decision-
making framework has been proposed to increase Phase III 
trials probability of success through more precise estimates 
of the drug effect. This may result in an increased proportion 
of successful Phase III and IV trials (4).

Chronic Obstructive Pulmonary disease (COPD) is an 
inflammatory disease of the respiratory system, accounting 
for 54.9% of chronic respiratory diseases in 2017 (5). It was 
the third leading cause of death in 2016 and is projected to 
remain among the five leading causes of death by 2030 (6). 
The Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) strategy (7) states that commonly used maintenance 
medications in COPD are short or long acting β2 agonists 
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(SABA and LABA, respectively), short or long acting 
anticholinergic (SAMA and LAMA, respectively) or com-
bination therapies with/without addition of inhaled corticos-
teroids (ICS). The GOLD strategy recommends that patients 
with advanced COPD and persistent symptoms who are at 
risk of exacerbations use an inhaled triple therapy (ICS/
LABA/LAMA) (7). The Lung Function and Quality of life 
Assessment in COPD with Closed Triple Therapy (FULFIL) 
is the first Phase III study that compared a once-daily single-
inhaler triple therapy with a twice-daily inhaled dual therapy 
(8). Patient-Reported Outcomes (PROs) from the FULFIL 
trial (8, 9) were obtained from different tools, such as the 
Evaluating Respiratory Symptoms in COPD (E-RS:COPD) 
(10), to compare the effect of fluticasone furoate/umeclidin-
ium/vilanterol (FF/UMEC/VI) and budesonide/formoterol 
(BUD/FOR) on patient’s respiratory symptoms. PROs are 
an important aspect of drug development as they contribute 
directly with information on the patient’s own perceptions of 
their disease. The E-RS:COPD consists of 11 items from the 
14-item Exacerbations of COPD Tool (EXACT), intended to 
capture information specifically related to respiratory symp-
toms. This tool has been derived through the application of 
item and Rasch model analysis (11).

The results of the statistical analysis of E-RS:COPD total 
score (RS-Total) from the FULFIL trial (8, 9) showed that 
FF/UMEC/VI significantly improved patient respiratory 
symptoms (assessed via E-RS:COPD tool) in comparison to 
BUD/FOR (9). This statistical analysis was performed using 
a mixed model repeated measures (MMRM) approach, a 
standard statistical method used in longitudinal clinical trials 
(12). This type of analysis may result in a loss of informa-
tion and therefore a loss of precision in the efficacy estimate 
since MMRM analyzes the total score only, ignoring the 
contribution of each item in the questionnaire to the disease 
state. Moreover, in MMRM, time is handled as a discrete 
value rather than a continuous variable resulting in a fur-
ther loss of information. To include all information from 
the data and thus increase power and precision to detect a 
drug effect, a MIDD approach can be applied to analyze 
PRO data such as RS-Total using a longitudinal non-linear 
mixed effect (NLME) analysis based on item-level data (i.e. 
item response theory based model - IRT) (13). In contrast 
to MMRM, IRT utilizes all components of the composite 
observations by relating its items to an underlying disease 
state that varies among individuals and changes with time. 
IRT thus utilizes all information captured by the question-
naire instead of only the total score as MMRM does.

In the planning of Phase III, different metrics are of inter-
est for the design and analysis of trials such as the probabil-
ity of study success or the probability of making a correct 
decision (14). An MIDD framework can provide a more 
informative approach to explore these metrics and therefore 
to improve late-stage clinical development productivity (4). 

This analysis aims to illustrate how a new methodology to 
analyze PRO data using an item-based pharmacometrics 
model would improve confidence in a confirmatory stage 
by comparing the precision around the primary efficacy end-
point obtained with IRT and MMRM.

Materials and Methods

Data and Patients

The FULFIL clinical trial (NCT02345161) was a Phase III, 
randomized, double-blind, double dummy, parallel-group, 
multicenter study that compared 24 weeks of once daily 
FF/UMEC/VI (100 μg/62.5 μg/25 μg) inhalation powder 
with twice daily BUD/FOR (400 μg/12 μg) in patients 
with COPD. Patients were randomized in a 1:1 ratio to FF/
UMEC/VI or BUD/FOR. The study inclusion and exclusion 
criteria were reported elsewhere (8). In this analysis, nine 
patients were excluded from the intention to treat population 
for the following reasons: absence of E-RS:COPD score data 
for the whole study period (4 patients), dispensing errors (4 
patients), and missing recorded time (1 patient). Daily data 
records were obtained by the completion of the E-RS:COPD 
tool using an electronic diary, which did not allow patients to 
skip individual items, although missing days (where patients 
did not provide answer for any of the items) were possible 
(10). The E-RS:COPD tool contains 11 items (a subset of 
the EXACT) that capture information related to respiratory 
symptoms of COPD (breathlessness, cough, sputum produc-
tion, chest congestion and chest tightness), with seven items 
including five ordered categorical options and four items 
with four categories (Table I).

IRT Development

The IRT was developed in two steps: 1) characterization of 
the item characteristic functions (ICFs) and 2) the develop-
ment of the longitudinal model (a flow chart of the analysis 
is shown Supplementary Fig. 1).

Item Characteristics Functions

The properties of each item were determined by non-linear 
functions (the ICFs) linking the unobserved patient’s dis-
ease status, the latent variable θ, to the probability of giv-
ing a particular response for an item. Item parameters such 
as discrimination and difficulty parameters were estimated 
using an “independent occasion” approach (15). Under this 
approach, observations from each measurement occasion 
were treated as belonging to separate individuals, assuming 
a normal distribution with fixed mean and variance N(0,1) 
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of θ at baseline, and estimated mean and variance N(μ,ω2) 
at later observations.

A logistic transformation was used to model each item 
with the probability of rating a score of at least k [P(yij ≥ k)] 
and the probability of rating exactly score k [P(yij = k)] as 
shown in Eq.1 and Eq. 2, respectively. These probabilities 
are functions of θi, the latent variable of patient i, and the 
estimated fixed effect item parameters such as discrimination 
(aj) and difficulty (bj,k) parameters for item j; more specifi-
cally bj,k is the difficulty parameter for the item-score k, and 
yij corresponds to the observed data (E-RS:COPD scores) 
for an individual i and an item j.

Longitudinal Model

In this step, ICF parameters were fixed to the values obtained 
in step 1, and a data reconciliation was needed to include 
each individual’s time-course data (original IDs). This was 
done since in step 1 each time point was treated as belong-
ing to separate individuals. For the longitudinal model, the 
estimates of θi from the IRT, using ICF fixed parameters 
from step 1 were considered as the dependent variable (15) 
taking into account their uncertainty. These estimates of 
θi were obtained from an intermediate step where a large 
uncertainty for θ was considered to ensure that the total 
scores translated from the estimates of θi described the raw 
data well (as shown in Supplementary Fig. 2). The NON-
MEM control stream for this intermediate step to obtain 
θi for step 2 is available in the Supplementary material. A 
pre-specified Weibull function (Eq. 3) was used to describe 
changes in individual symptoms-time course (θi) for both 

(1)P
(

yij ≥ k
)

=
e(aj(θi−bj,k))

1 + e(aj(θi−bj,k))

(2)P
(

yij = k
)

= P
(

yij ≥ k
)

− P
(

yij ≥ k + 1
)

treatment arms. Parameters such as disease progression time 
(Tprogi), maximum response (Rmaxi) and baseline latent vari-
able (θi,t = 0) are subject-specific parameters with inter-indi-
vidual variability (IIV), including a random variable with a 
mean of 0 and variance of ω2. Tprogi was assumed to be log-
normally distributed with IIV modeled using an exponential 
function, whereas all other parameters were assumed to be 
normally distributed with an additive IIV model. Time t is 
in years and γ is the gamma value that governs the steep-
ness of the curve. Different parameters per treatment arm 
were considered. Additionally, effects of smoking status and 
geographical regions on θi,t = 0 were included in the model as 
these covariates were considered in the MMRM analysis (9).

Internal Model Evaluation

Non-parametric ICF smooth plots were developed to assess 
ICF fit (16), and the predictive performance of the model 
was assessed by using Visual Predictive Check plots (VPCs). 
The 2.5th, 50th and 97.5th percentile of the observed data 
were compared to the 95%CI for the 2.5th, 50th and 97.5th 
percentiles of the simulated (N = 500) data. At this stage, 
further changes to the Weibull model were considered if it 
was deemed necessary.

Clinical Endpoint

Clinical Endpoint Definition

The clinical endpoint was the change from baseline (CFB) 
in RS-Total over 4-week intervals for each treatment arm 
(FF/UMEC/VI and BUD/FOR). To provide context for the 
mean differences between groups and being able to compare 

(3)θi = θi,t=0 + Rmaxi ·

(

1 − e

(

−

(

ln(2)

Tprogi
· t

)�))

Table I   Content of the 
E-RS:COPD Tool

RS-Total is based on summation to yield ordinal-level scales with a range of 0–40

Item number Item-level Construct Score Symptom Construct

7 Breathless today 0–4 Breathlessness
8 Breathless with activity 0–3
9 Short of breath – personal care 0–4
10 Short of breath – indoor activities 0–3
11 Short of breath – outdoor activities 0–3
2 Cough frequency 0–4 Cough and Sputum
3 Mucus quantity 0–3
4 Difficulty with mucus 0–4
1 Congestion 0–4 Chest Symptoms
5 Discomfort 0–4
6 Tightness 0–4

1781Pharmaceutical Research (2022) 39:1779–1787



1 3

changes in PRO scores between the treatment arms, a clini-
cally meaningful CFB was defined as a change equal to 
or greater than a minimal clinically important difference 
(MCID) of 2 units (9). This means that a decrease of at least 
2 points from baseline in RS-Total was deemed clinically 
significant.

Precision in Clinical Endpoint Estimate

The point estimate and the precision in the estimated clini-
cal endpoint was obtained through model simulations, with 
inclusion of the uncertainty in the estimated longitudinal 
IRT parameters. RS-Total, linked to the individual patient 
disease status (θi), were simulated using the final IRT 
parameter estimates. The derived relationship between θ 
and RS-Total (Fig. 1) was used as a basis in the simulations. 
These stochastic simulations included parameter uncertainty 
from the estimated asymptotic variance-covariance matrix 
of the estimates by using the $PRIOR functionality in NON-
MEM. Specifically, the NWPRI subroutine was used where 
prior of fixed and random effects were assumed to be nor-
mally and inverse Wishart distributed, respectively. Degrees 
of freedom for the inverse Wishart distribution were calcu-
lated based on standard error (SE) of the obtained parameter 
estimates (17). RS-Total were simulated (N = 2000) over a 
period of 24 weeks for each treatment arm, using a large 
number of virtual subjects (Nsubj = 15,000 per arm). The 
individual average RS-Total at 4-week intervals was calcu-
lated and subtracted from the individual RS-Total at base-
line. The distribution of CFB in RS-Total for each simula-
tion (including 15,000 subjects) are illustrated in Fig. 1. The 
median, 2.5th, and 97.5th percentiles of the average CFB 
from each distribution were used to represent mean (95%CI) 
CFB in RS-Total (Fig. 1). These IRT derived values were 
compared with those (published values) obtained using the 
MMRM analysis (9).

Sample Size

The relative sample size (N) of a study analyzed using 
MMRM versus IRT can be calculated based on the precision 
(CI) of estimates for MMRM (95%CI length - CIMMRM) 
and IRT (95%CI length - CIIRT) for the same sample size 
as shown in Eq. 4. An N larger than one indicates that a 
MMRM analysis requires a larger study size to achieve the 
same precision as an IRT analysis.

Software and Estimation Method

The software NONMEM (ICON Development Solutions, 
Ellicott City, Maryland) version 7.4.4 (18) was used for mod-
eling (using the first-order conditional estimation method 
(step 2) plus Laplacian (step 1)) and simulation together with 
an Intel FORTRAN compiler and Perl-speaks-NONMEM 
(PsN, http://​psn.​sourc​eforge.​net) version 5.1.0 (19). R soft-
ware (The R Foundation for Statistical Computing) version 
3.5.2 (20) and R packages, such as Xpose4 (http: //xpose.​
sourc​eforge.​net, version 4.6.1) (21, 22) and Piraid (version 
0.4) (23) were used for data management, graphical analy-
sis, to produce summary statistics, and to examine the table 
outputs from NONMEM.

Results

Data and Patients

Data from 1801 patients (mean [standard deviation] age of 
63.9 years [8.65], 43.8% smokers at study initiation) who 
received 24 weeks of either FF/UMEC/VI (n = 907) or BUD/

(4)N =

(

CIMMRM

CIIRT

)2

Fig. 1   Schematic representation of the workflow for the simulations including parameter uncertainty. Distribution of CFB in RS-Total for each 
simulation considering 15,000 subjects and the mean (95%CI) CBF in RS-Total obtained from the average CFB of each simulation
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FOR (n = 894) were included in this analysis. Baseline char-
acteristics are shown in Table II. One-thousand six-hundred 
forty-three (91%) patients provided data up to at least week 
24 with a median (range) missing days of 5 (0–101), whereas 
158 patients (9%) stopped filling out the questionnaire after 
84 (1–160) days with 3 (0–86) missing days.

IRT and Simulations Including Parameter 
Uncertainty

ICF parameters were estimated with good precision (Sup-
plementary Table I). Item characteristic curves that illus-
trate the relationship between disease status and probability 
of giving a certain score for all items are shown in Sup-
plementary Fig. 3. Addition of an offset drug effect value 
and correlation between θi,t = 0, Rmax and offset improved 
the description of data. The offset drug effect (Eq.5) value, 
that is different between treatment arms, was assumed to 
be normally distributed with IIV modeled using an additive 
function.

Different parameters per arm were estimated with 
a median (range) relative standard error (RSE) of 0.13 
(0.02–0.75) (Table III). This model also showed an accept-
able fit to the total score data for both treatment arms. 
Specifically, the model predicts satisfactorily the median 
observed total score data, as seen with agreement between 

(5)

θi =

{

θi,t=0

θi,t=0 + Rmaxi ·

(

1 − e
(

−

(

ln(2)

Tprogi
· t
)𝛾))

+ offseti

t = 0

t > 0

Table II   Patient Characteristics 
at Baseline

In this analysis, nine patients were excluded from the intention to treat population of the FULFIL clinical 
trial (NCT02345161) for the following reasons: absence of E-RS:COPD score data for the whole study 
period (4 patients), dispensing errors (4 patients), and missing recorded time (1 patient); b RS-Total was 
calculated as the mean value during baseline period defined as from day −14 to day −1

Baseline characteristics FF/UMEC/VI (n = 907) BUD/FOR (n = 894)

Age (years) 64.2 (8.56) 63.6 (8.73)
Time with COPD (years) < 1 y: 28 (3%) < 1 y: 39 (4%)

1–5 y: 325 (36%) 1–5 y: 334 (37%)
5–10 y: 300 (33%) 5–10 y: 281 (31%)
10–15 y: 165 (18%) 10–15 y: 147 (16%)
≥ 15 y: 90 (10%) ≥ 15 y: 93 (10%)

FVC (L) 2.84 (0.80) 2.87 (0.79)
FEV1 (L) 1.25 (0.46) 1.24 (0.45)
Male (n) 675 (74%) 658 (74%)
Smoker (n) 396 (44%) 392 (44%)
COPD GOLD disease status Moderate: 298 (33%) Mild: 1 (0.1%)

Severe: 501 (55%) Moderate: 290 (32%)
Very severe: 107 (12%) Severe: 477 (53%)

Very severe: 124 (14%)
RS-Totalb 12.2 (5.85) 12.9 (5.96)

Table III   Parameter Estimates for the Longitudinal Model

Region 1 (21%): Germany, Greece, Italy; Region 2 (24%): Russian 
Federation, Ukraine; Region 3 (21%): Bulgaria, Hungary, Romania, 
Slovakia; Region 4 (18%): Czech Republic, Estonia, Poland; Region 
5 (6%): China, Republic of Korea; Region 6 (10%): Mexico; θt = 0: 
baseline latent variable; Tprog: disease progression time; Rmax: maxi-
mum response; RSE: relative standard error (for omega and sigma 
RSEs are reported on the approximate standard deviation scale); ω2: 
variance describing inter-individual variability

Parameter estimates FF/UMEC/VI BUD/FOR
Value (RSE) Value (RSE)

θt = 0 (unitless) 0.33 (0.23) 0.29 (0.28)
Tprog (year) 0.08 (0.03) 0.08 (0.03)
Rmax (unitless) −0.31 (0.11) −0.16 (0.25)
γ (unitless) 9.27 (0.13) 16.9 (0.75)
Offset (unitless) −0.27 (0.08) −0.08 (0.30)
ω2 θt = 0 1.09 (0.03) 1.47 (0.03)
ω2 Tprog 0.45 (0.03) 0.46 (0.03)
ω2 Rmax 0.89 (0.04) 0.98 (0.06)
ω2 Offset 0.37 (0.05) 0.42 (0.05)
ω2 Rmax ~ ω2 Offset 11% (0.24) –
ω2 θt = 0 ~ ω2 Offset −12% (0.20) −10% (0.27)
ω2 Rmax ~ ω2 θt = 0 – −13% (0.17)
Residual unexplained variability 0.32 (0.02)
Smoking effect on θt = 0 (additive) 0.13 (0.62)
Region 1 on θt = 0 (additive) −0.64 (0.13)
Region 3 on θt = 0 (additive) −0.61 (0.13)
Region 4 on θt = 0 (additive) −0.20 (0.40)
Region 5 on θt = 0 (additive) −0.41 (0.27)
Region 6 on θt = 0 additive) −0.98 (0.12)
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the observed and simulated data in the VPC (Supplemen-
tary Fig. 4). Goodness of fit plots are shown in Supplemen-
tary Fig. 5, and longitudinal model parameter estimates are 
shown in Table III. While typical Tprog was similar between 
the two arms, more negative Rmax (−0.31 vs. -0.16) and off-
set (−0.27 vs. -0.08) values in the FF/UMEC/VI arm, indi-
cated higher benefit of the FF/UMEC/VI treatment to the 
patient compared to the BUD/FOR arm. Model predicted 
and raw data for CFB in RS-Total at 4-week intervals are 
shown in Fig. 2. According to the IRT, in the BUD/FOR 
arm, the CFB in RS-Total score did not achieve the MCID at 
any time point, whereas in the FF/UMEC/VI arm, the mean 
CFB in RS-Total achieved the MCID from week 9 onwards, 
which is in agreement with the observed data (Fig. 2). NON-
MEM control stream and snippet of data for both models 
ICFs and longitudinal are provided in the Supplementary 
material.

Based on simulations including parameter uncertainty, 
the IRT considerably improved the precision of the drug 
effect compared to the MMRM at every time point (Fig. 3 
and Table IV). At the end of treatment (week 21–24), the 
mean (95%) CFB in RS-Total was −2.47 (−2.61, −2.30) 
with IRT compared to −2.31 (−2.62, −2.00) with MMRM in 
the FF/UMEC/VI arm, and the mean (95%) CFB in RS-Total 
was −0.97 (−1.10, −0.81) with IRT compared to −0.96 
(−1.27, −0.65) with MMRM in the BUD/FOR arm. Fur-
thermore, a relative sample size (N; obtained using Eq. 4) 
of 4.00 (FF/UMEC/VI) and 4.72 (BUD/FOR) times larger 
would be required in the MMRM analysis to achieve the 
precision obtained with the IRT analysis at the end of the 
study (week 21–24). Sample size requirements at each week 
interval are shown in Fig. 3.

Discussion

Using data from a Phase III study, a longitudinal IRT 
improved the precision in the efficacy endpoint compared 
to MMRM. The use of NLME analysis based on item-
level data (IRT) was recently proposed as an alternative to 
MMRM for evaluation of efficacy in the analysis of data 
from a Phase II study, where IRT improved the precision 
of the estimated drug effect considerably in comparison 
to MMRM (24). The benefits of using an IRT over other 
statistical methods such as least-square mean analysis have 
already been demonstrated, highlighting its higher power 
to detect a drug effect (13, 25). This could be explained 
by the fact that IRT is a more informative approach that 
not only describe the longitudinal aspects of the data but 
also accounts for information from the scores given to the 
individual items of the questionnaire. In contrast, MMRM 
ignores this information in the data since i) it is an analysis 
of total score data only and ii) each visit is modeled indepen-
dently as a factor with earlier time points contributing less 
information about the end-of-treatment response than what 
is the case for NLME model. MMRM analysis is designed 
for robustness rather than efficiency (12), hence it could be 
expected that IRT analysis is more efficient than MMRM. 
However, this study provides an insight into the magnitude 
of improvement in precision that an IRT model may provide 
and the consequences this can have on the required sample 
size.

The primary objective of the Phase III study analysis is 
the confirmation of efficacy (and safety) profiles of an inves-
tigational new drug. Overall, an increased precision around 
the efficacy estimate was observed with IRT compared to 

Fig. 2   Mean (95%CI) CFB in RS-Total at 4-week intervals for 
observed data (yellow) and predicted values from the IRT (blue). 
Green dashed line indicates the MCID target

Fig. 3   Mean (95%CI) for CFB in RS-Total at 4-week intervals sim-
ulated with IRT (blue) and published MMRM values (red). Green 
dashed line indicates the MCID target. Values correspond to the rela-
tive sample size (Eq. 4)
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MMRM. This analysis highlights that a smaller sample 
size would have been required to confirm the drug effect 
if a NLME model-based approach were to have been used 
instead of the MMRM approach. A median relative sample 
size over the 4-week intervals of 4.0 (FF/UMEC/VI) and 
4.9-fold (BUD/FOR) larger would have been required for the 
MMRM analysis to achieve the IRT precision. These values 
are comparable with a 3.5-fold smaller study size with IRT 
compared to MMRM analysis using RS-Total data from a 
Phase II trial (24). This is particularly important in cases 
where a large number of patients cannot be recruited for 
pivotal trials (e.g. rare diseases) with presumably a clearer 
benefit of using the IRT approach due to the increased uti-
lization of the information contained in the item-level data. 
Thus, the increased precision in the efficacy estimate with 
IRT can lead to a higher probability of making a correct 
decision which appears important in light of the many fail-
ures in Phase III attributed to underpowered trials.

This analysis illustrates how simulations using an IRT 
with parameter uncertainty included can be used to obtain 
the precision of the primary efficacy endpoint. A large num-
ber of virtual subjects (15,000) were used in the simulations 
to make sure that uncertainty comes mainly from the model 
parameter estimates rather than the sample size. The SEs 
associated with each parameter estimates were obtained 
from the variance-covariance matrix in NONMEM. To fur-
ther investigate how SEs obtained from different techniques 
such as bootstrap or sampling importance resampling would 
have impacted the precision in the efficacy endpoint was not 
in the scope of this study; however, it would be of interest to 
investigate how this would affect the calculated sample size.

This analysis is not exempt of limitations, which are 
described as follow. A predetermined (decided before start 
analyzing the data) longitudinal model (Weibull function) 

was considered; however, the addition of an extra parameter 
(offset) was required to describe the rapid onset of bron-
chodilator effects in both treatment arms, and thus improve 
the predictive performance of the model (based on the VPC 
plot). The absence of this parameter in the model would have 
led to a poorer description of the data, which is not neces-
sarily related to a worse or better precision and/or relative 
sample size (26). The authors acknowledge that, in order to 
use a pharmacometric model as primary analysis in confirm-
atory trials, this model need to be pre-specified to avoid the 
risk of type 1 error inflation due to multiple testing during 
model building. One benefit of MMRM in this aspect is its 
flexibility and the fact that can adequately be pre-specified, 
though some assumptions are still required (12). Further-
more, in this analysis, model uncertainty (e.g. uncertainty 
from the structural part of model or from the random effects) 
and its impact on the precision around the efficacy endpoint 
was also not investigated. To mitigate model uncertainty 
in a NLME model-based analysis, it has been proposed to 
conduct model averaging (27, 28). Model averaging would 
cover the model space by assigning a goodness-of-fit derived 
weight to the different proposed structural models, thereby 
including model uncertainty for a pre-specified analysis. 
Lastly, it can be argued that a simpler NLME model for 
the total score as one continuous endpoint could achieve 
similar results, in terms of precision and power, than an IRT-
based model analysis when assessing treatment effect on the 
CFB of total scores. A formal comparison between these 
two types of analyses was not performed in this study; how-
ever, previous work has suggested that IRT-based models are 
more informative and require sample size that are approx-
imately 20–40% smaller than analysis of total score data 
(13, 29–31). Despite these limitations, this analysis shows 
the advantage of NLME analysis with a direct comparison 

Table IV   Mean (95%CI) Change from Baseline (CFB) in RS-Total for IRM and MMRM at 4-week Intervals

FF/UMEC/VI BUD/FOR

Week interval CFB in RS-Total. Mean (95% CI) [SE] CFB in RS-Total. Mean (95% CI) [SE]
MMRM IRM MMRM IRM

1–4 −1.45 (−1.66, −1.24) −1.33 (−1.44, −1.22) −0.50 (−0.71, −0.29) −0.37 (−0.45, −0.28)
[0.11] [0.06] [0.11] [0.04]

5–8 −2.00 (−2.25, −1.75) −1.81 (−1.93, −1.67) −0.77 (−1.02, −0.52) −0.65 (−0.74, −0.53)
[0.13] [0.07] [0.13] [0.05]

9–12 −2.23 (−2.51, −1.95) −2.17 (−2.30, −2.02) −1.05 (−1.33, −0.77) −0.84 (−0.95, −0.69)
[0.14] [0.07] [0.14] [0.07]

13–16 −2.42 (−2.73, −2.11) −2.35 (−2.49, −2.18) −1.09 (−1.39, −0.79) −0.92 (−1.04, −0.77)
[0.15] [0.08] [0.15] [0.07]

17–20 −2.43 (−2.74, −2.12) −2.43 (−2.57, −2.26) −1.02 (−1.33, −0.71) −0.96 (−1.08, −0.80)
[0.16] [0.08] [0.16] [0.07]

21–24 −2.31 (−2.62, −2.00) −2.47 (−2.61, −2.30) −0.96 (−1.27, −0.64) −0.97 (−1.10, −0.81)
[0.16] [0.08] [0.16] [0.07]
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of the same primary endpoint for the two methods (IRT 
and MMRM) using observed clinical trial data rather than 
focusing on drug effect parameters which are often unob-
served. Based on simulations, it has been shown already 
that a NLME analysis can be more powerful than MMRM 
in some (albeit not all) scenarios (32).

Conclusions

The positive impact of using a NLME model-based approach 
in decision-making during drug development has already 
been shown (4, 33). This analysis shows the advantage of 
using a NLME model based on item level data over a stand-
ard approach used today in drug development (MMRM) for 
the same endpoint, increasing the precision in the efficacy 
estimate and thereby significantly reducing the required sam-
ple size to confirm drug effect.
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