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Abstract: Inflammation has been reported to be intimately linked to the development or worsening of
several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular
disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury
and genomic changes induced by constant low-grade inflammation in and around the affected tissue
or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating
effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective
therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been
used to treat various human illnesses, and their continual use has persevered throughout the ages.
This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as
cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin,
a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally,
inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives
ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing
edema, further inflammation, and demyelination. As the dearth of safe anti-inflammatory therapies
is dire in the case of CNS-related disorders, we reviewed the neuroprotective actions of apigenin and
other flavonoids. Existing epidemiological and pre-clinical studies present considerable evidence in
favor of developing apigenin as a natural alternative therapy against chronic inflammatory conditions.

Keywords: natural products; flavonoids; apigenin; dendritic cells; neuroinflammation;
chronic inflammation

1. Introduction

Cellular inflammation can be the driving factor in many diseases, leading to either untimely cell
death, causing organ-specific damage, or cell stimulation, initiating the formation of various tumors.
Chronic inflammation is seen to be integral to the development of various diseases including diabetes,
heart disease, cancer, digestive disorders, autoimmune diseases, or neurodegenerative disorders [1,2].
Because inflammation is the result of the immune system’s protective response to invading pathogens
or endogenous signals like damaged cells, it has long been associated with the symptomatology of
infectious diseases. However, a growing body of epidemiological evidence suggests that inflammation
may also be linked to non-infectious diseases because of an imbalance in physiological immune
responses [1,3]. According to the World Health Organization (WHO), chronic inflammation and its
related diseases pose the greatest threat to public health, and a steady rise in the prevalence of such
diseases is anticipated for the next 30 years in the United States alone [4]. Thus, recognizing and
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understanding the involvement of inflammatory processes underlining different disorders will pave
the way to development of a new class of drugs to help curb the tide of chronic inflammatory diseases.

Inflammation is characterized by the protective response of the immune system that involves
the recognition of highly conserved pathogenic structures (pathogen-associated molecular patterns
(PAMPs)) or endogenous non-infectious molecules (damage-associated molecular patterns (DAMPs)
or alarmins or cell-death associated molecules) by pathogen-recognition receptors (PRRs) [2,3,5].
The activation of these receptors leads to the production of various pro-inflammatory cytokines such
as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and chemokines through the induction of the
nuclear factor-kappa B (NF-κB) pathway and NLRP3 (NOD-, LRR-, and pyrin domain-containing 3)
inflammasome activation. The inflammatory pathways, such as the mitogen-activated protein kinase
(MAPK), Janus kinase/signal transducers and activators of transcription (JAK-STAT), and especially the
NF-κB pathway, help orchestrate the inflammatory responses through the production of inflammatory
cytokines and mediators, cell proliferation and survival, T-cell differentiation, and dendritic cell (DC)
maturation [6]. The role of the cytokines and chemokines is to recruit additional immune cells to the site
of infection, including circulating neutrophils that enhance microbial killing through the production of
interferon (IFN)-γ, proteases, and reactive oxygen species (ROS). Cytokines also induce the production
of cyclooxygenase-2 (COX-2), an enzyme that catalyzes the production of prostaglandins, which are
key mediators of inflammation [7]. Additionally, dendritic cells, the most potent antigen presenting
cells of the immune system, also aid in activating the adaptive immune response through naïve T-cell
polarization and B-cell activation. Elimination of the foreign/endogenous agent and reprogramming
of the effector cells to effectively end the production of inflammatory mediators then leads to resolution
of inflammation and return to homeostasis. However, failure to do so leads to prolonged periods of
unresolved inflammation that becomes a contributing factor in almost all chronic or degenerative
diseases. Therefore, there is a need to develop therapies targeting underlying inflammation to achieve
therapeutic advances targeting most of these degenerative disorders that currently have no cure.

Chronic inflammation is the leading cause of death worldwide, where three of every five
individuals die as a result of chronic inflammatory diseases like diabetes, heart disorders, cancer,
stroke, and obesity [4]. It constitutes a significant economic burden due to life-long debilitation leading
to high therapy cost and lost wages [8,9]. Furthermore, existing therapies are rarely curative, mostly
disease-modifying with low success rates, and have adverse and sometimes life-threatening side
effects [10,11]. Commonly prescribed anti-inflammatory drugs include Metformin, non-steroidal
anti-inflammatory drugs (NSAIDs), statins, and corticosteroids, which alleviate inflammation through
several mechanisms [4,10]. Novel therapies targeting specific cells of the immune system, for example,
T-cell targeted therapies (Laquinimod, Tacrolimus, Edratide), various anti-B-cell targets (Rituximab,
BLyS), and cytokine inhibitors (adalimumab, infliximab), have also been employed in disease
management and treatment with varying results [11–14]. However, there is still a pressing need
to develop safer and cost-effective therapeutic alternatives. Natural products, which are classically
defined as compounds derived from natural sources such as plants, animals, and micro-organisms,
have been used for many millennia to treat a number of human ailments [15,16]. These compounds
have historically served as important leads for pharmaceutical companies in the development
of synthetic drugs, which were initially produced in the form of crude compilations and more
recently, with the advent of combinatorial chemistry and sophisticated techniques like genomics and
proteomics, consist of purified compounds [17–20]. Also, synthetic derivates of natural compounds
with certain enhanced characteristics can also be engineered. In fact, about 34% of the U.S. Food
and Drug Administration (FDA)-approved medicines between 1981 and 2010 are natural products or
derivatives of natural products including anti-cancer drugs and immunosuppressants [21]. Although,
combinatorial chemistry has also resulted in the relative ease with which synthetic libraries of small
molecule drugs can be generated, scaling back natural product-based drug discovery [22,23]. However,
seminal discoveries like that the first naturally derived medicine, morphine, to those of penicillin and
streptomycin and the more recent anti-parasitic drugs avermectins and artemisinin, show that natural
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products are definitely the best source of drugs [24,25]. With newer techniques comes the knowledge
of the structures of the different natural compounds, which in turn allows for understanding their
specific mechanism of action in health and disease.

As seen with their role in the treatment of several diseases including malaria, cancer, and diabetes,
natural products have been reported to have inhibitory effects on inflammation. In the past several
decades, numerous studies have reported the anti-inflammatory activities of various plants, plant extracts,
or purified compounds derived from plant and other natural sources [26–28]. Various plant-derived
compounds including curcumin, resveratrol, and capsaicin inhibit inflammation through reduction
in the levels of several cytokines including IL-1β, IL-6, and TNF-α, and the suppression of COX-2,
prostaglandins, and inflammatory pathways [29]. Active organosulphur compounds in garlic such as
ajoene, alliin, and allicin work by reducing levels of pro-inflammatory cytokines while increasing levels
of anti-inflammatory IL-10 [30]. Natural products derived from marine flora including those of coral
and algal origin also inhibit inflammation through suppression of IL-6, TNF-α, and nitric oxide (NO)
release and inhibition of COX-2, inducible NO synthase (iNOS), and NF-κB activity [31,32]. Another
group of plant-derived natural products is the polyphenolic bioactive components of various plants and
vegetables known as ‘flavonoids’. The word flavonoid is a derivative of the latin word flavus, meaning
‘yellow’, indicating the color of these compounds in their natural form [33–35]. Flavonoids, as secondary
metabolites in numerous fruits, herbs, root, stems, bark, flowers, grains, tea, and wine, impart both
color and protection to the plants and make them safe for consumption, for which they are also termed
as ‘phytonutrients’. Because of their broad spectrum of biological activity and attractive properties
such as anti-oxidant, anti-mutagenic, anti-inflammatory, and anti-viral effects, these compounds present
an indispensable library of compounds that can be developed as therapeutic entities. This review
will focus on the anti-inflammatory activities of various flavonoids that can potentially work against
several chronic diseases. We will then briefly showcase the known anti-inflammatory properties of
a comparatively less-toxic flavonoid, apigenin, to assess its potential as a drug lead against chronic
neuroinflammatory diseases.

2. Flavonoids in Health and Disease

Flavonoids are a multi-functional group that possess substantial characteristics that can be
exploited for the development of therapeutic agents targeting several chronic diseases. They have
been seen to exert a wide range of pharmacological effects, such as anti-oxidant, anti-tumor, anti-viral,
anti-allergic, anti-inflammatory, and anti-viral effects. These protective biological properties are mostly
due to the phenolic structure of these flavonoids.

2.1. Chemical Structure

Flavonoids belong to the group of polyphenolic natural compounds, with more than 4000
identified varieties. This variation is the result of the modifications that are possible to the carbon
skeleton, which is common to all flavonoids and consists of a flavan system of two benzene rings
(denoted as A and B) that are linked together by a heterocyclic pyrene ring (denoted as C) [36].
The chemical diversity of flavonoids is based on two structural variations; namely the pattern of
substitution of the C ring that depends on the carbon on which the B ring is attached, and the degree
of oxidation of the C ring [33,37]. The basic flavonoid structure is aglycone, but they typically occur
in nature as glycoside and methylated derivatives, which are products of secondary metabolism in
plants [36].

Certain structural modifications can also favor the anti-inflammatory activities of the flavonoid
families. Current understanding of the structural requirements dictates that the unsaturation of the C ring,
the presence of a carbonyl group on C-4, the number and position of hydroxyl groups, and glycosylation
status affect the anti-inflammatory properties of flavonoids [38,39]. For example, the presence of
a catechol group in the B ring of the flavonoid quercetin confers potent anti-inflammatory activity, while
the addition of one hydroxyl group on position 2′ of the B ring of morin abolishes any anti-inflammatory
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properties [38]. Additionally, the hydroxylation pattern of the B ring of certain flavonoids promotes the
inhibition of cytokine secretion by mast cells and macrophages [40]. Glycosylation of flavonoids has
been linked to a reduction in the inhibitory effect on inflammation because glycoside derivatives are
more readily absorbed than aglycones.

2.2. Subclasses

On the basis of the molecular structure, flavonoids can be divided into different subclasses
(as described in detail in Table 1) as follows: flavonols (e.g., quercetin, kaempferol, myricetin,
and fisetin), flavones (e.g., apigenin and luteolin), flavanones (e.g., hesperetin and naringenin),
flavononols, anthocyanidins, and isoflavones [33,36]. The various compounds within a specific
subclass differ in the pattern of substitution of the A and B rings. The process of flavonoid biosynthesis
is conserved in plant, where the action of enzymes modifies the basic flavonoid structure, leading to
various intermediary compounds or flavonoid subclasses. The C ring of the flavonoid precursors,
chalcones, closes to form a chromone unit, resulting in the formation of flavanones. Oxidation at the
third carbon of flavanones produces the flavanols. Flavones are then formed by a double bond at
C-2. The reduction of flavonols produces flavan-3-ols such as anthocyanidins [38]. These subclasses
have varying distribution among the different natural sources, for example, flavonols and flavones are
typically abundant in onions and tea.
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Table 1. Subclasses of flavonoids. ERK—extracellular signal-regulated kinases, NF-κB—nuclear factor-kappa B; MAPK—mitogen-activated protein kinase;
ROS—reactive oxygen species; COX-2—cyclooxygenase-2; IL—interleukin; TNF—tumor necrosis factor; iNOS—inducible NO synthase; PKC—protein kinase
C, MDA—malondialdehyde , MMP—matrix metalloproteinase, FAK—focal adhesion kinase.

Class of Flavonoids Chemical Structure Dietary Source Compound Molecular Targets Biological Function Reference

Flavanol Tea, red wine, red grapes Catechin, Epigallocatechin ↓ ERK, NF-κB, Rac1, AP-1, p38 Anti-carcinogenic [2,9]

Flavone Fruit skins, red pepper, and
tomato skin

Apigenin, Chrysin, and
Luteolin

↓ Akt, ERK, caspase-12,
caspase-3, MAPK, ROS, COX-2,

IL-6, TNF-α, IL-1 β , iNOS, PGE2

Anti-inflammatory,
anti-carcinogenic,
neuroprotective

[10–13]

Flavonol Onion, red wine, olive oil,
berries, and grapefruit

Quercetin, Kaempferol,
Myricetin, and Fisetin

↓ PKC, AP-1, H2O2, iNOS, MDA,
citrate synthase, MMP-9,MMP-2,

COX-2,ERK

Antioxidant,
anti-inflammatory,

neuroprotective reduce risk
of vascular disease

[2,14]

Flavanone Citrus fruits, grapefruits,
lemons, and oranges Hesperetin, Naringenin

↓ROS, glutathione reductase,
iNOS, 3-nitropropionic acid,
COX2, NF-κB, IL-1β, TNF-α

Blood lipid-lowering and
cholesterol-lowering

agents, antiviral,
antioxidant

[14]

Isoflavone Soyabean Genistin, Daidzin ↓ FAK, MAPK, NF-κB, AP-1,
MMP-9, MMP-2

Anti-inflammatory,
anti-cancer

Anthocyanidin Cherry, Elsberry, and
strawberry Apigenidin, Cyanidin ↓MMP-9, MMP-2, ERK, AP-1,

NFKB, MAPK,

Anti-inflammatory,
antioxidant, anticancer,

cardioprotective

Flavanonol Limon, aurantium, Milk
thistle Taxifolin, Silibinin ↓ H2O2, iNOS, COX-2, IL-1β,

TNF-α, NF-κB, IL-8, ROS

antioxidant,
anti-inflammatory,
neuroprotective,

antiallergic, antitumor
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2.3. Health Benefits

A wide range of biological activities have been attributed to the flavonoid group of natural
products. These include anti-oxidant, anti-inflammatory, anti-mutagenic, anti-viral, and anti-allergic
properties. Owing to their structure, flavonoids exert various protective effects against several chronic
diseases like cancer, diabetes, and cardiovascular disorders, as well as neurodegenerative conditions.
By complexing with oxidizing species, hydroxyl groups in flavonoids render these compounds the
ability to scavenge and stabilize free radicals, reducing oxidative damage, which is the hallmark of
several chronic diseases [36,41]. Here, we review the effects of flavonoids on various inflammatory
processes that cause or further exacerbate chronic diseases.

2.4. Flavonoids in Diseases of Chronic Inflammation

Flavonoids comprise a wide variety of biologically active compounds, many of which have been
used as components of various medicinal preparations over thousands of years to treat several human
illnesses. Most of the non-infectious diseases develop or are considerably worsened by the presence
of persistent chronic inflammation. Here, we will explore the characteristic functions of flavonoids
that help combat many inflammatory processes underlying several chronic conditions such as cancer,
obesity, and neuroinflammation.

2.4.1. Flavonoids in Cancer

German pathologist, Rudolf Virchow, was the first to find a link between inflammation and cancer
development. Since then, epidemiological studies have established a correlation of at least 20% of
cancers, including lung, prostrate, bladder, pancreatic, esophageal, and melanoma, with long-term
inflammation [42,43]. Chronic unregulated inflammation results in the persistent production of harmful
ROS that can lead to DNA damage and genomic alterations, causing the initiation of tumor growth.
There is also a continuous generation of inflammatory mediators such as IFN-γ, TNF, IL-1α/β, or IL-6
and proangiogenic growth factors such as cytokines and vascular endothelial growth factor (VEGF)
that promote tumor neovascularization, which brings the much-needed blood supply, nourishing
the growing tumor. Finally, inflammation promotes tumor dissemination through the production
of extracellular matrix degrading enzymes, the matrix metalloproteinases (MMPs) [44]. All these
factors are either produced by tumor infiltrating immune cells such as macrophages, dendritic cells,
neutrophils, lymphocytes, and natural killer cells or by the cancer cells themselves to stimulate their
growth and survival. The key inflammatory pathway, NF-κB, plays an important role in cancer cell
survival by allowing these cells to escape apoptosis [45]. Consequently, therapeutic agents that target
these inflammatory factors and pathways will serve as a means to treat or prevent cancer development.

Because flavonoids possess several anti-inflammatory properties, they can serve as potent
anti-cancer phytochemicals (Figure 1) that exert their activity by several mechanisms such as carcinogen
inactivation, triggering cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis [46–50].
Flavonoids have been shown to inhibit tumor cell proliferation via inhibition of ROS formation, as well as
suppression of xanthine oxidase, COX-2, and 5-LOX, which are the major catalysts for tumor promotion
and progression (reviewed in the work of [51]). Mojzis et al. reported that flavonoids are able to
exert anti-angiogenic effects by regulating the expression of VEGF, MMPs, and epidermal growth
factor receptor (EGFR), as well as by inhibiting the proangiogenic signaling pathways including the
NF-κB, PI3-K/AKt, and ERK1/2 pathways [52]. Accumulating evidence reported that cyclin dependent
kinases (CDKs) are key regulators of cell cycle progression, immune cell activation, neoangiogenesis,
and inflammation [53]. In addition, it has been seen that various types of cancers are associated with
hyper-activation of CDKs, because of mutation of CDK genes or CDK inhibitor genes. Flavonoids have
been shown to induce cell cycle arrest at both checkpoints G1/S and G2/M through CDK inhibition
in human breast cancer and melanoma cells [51]. Flavonoids such as isoflavones and their metabolites
also induce cancer cell apoptosis in cells derived from human gastric cancer [50] by inhibiting DNA
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topoisomerase I/II activity, decreased production of ROS, regulation of heat shock protein expression,
modulation of signaling pathways, suppression of NF-κB, activation of endonuclease, and suppression
of Mcl-1 protein.

Figure 1. Flavonoids in cancer. Flavonoids exert their anti-inflammatory activities by reducing the
production of reactive oxygen species (ROS) and the down-regulation of several inflammatory mediators
through key inhibition of signaling pathways. NF-κB—nuclear factor-kappa B; MAPK—mitogen-activated
protein kinase; STAT—signal transducers and activators of transcription.

2.4.2. Flavonoids in Diabetes

Inflammation has long been associated with the promotion of type 1 diabetes, however, more
recently, chronic low-grade inflammation has been deemed responsible for onset and/or exacerbation
of type 2 diabetes, diabetes mellitus [54]. Type 2 diabetes is associated with impaired insulin secretion
and insulin resistance. Nutrient excesses such as hyperglycemia and elevated free fatty acids, as seen
in type 2 diabetes, cause oxidative stress, endoplasmic reticulum stress, amyloid and lipid deposition,
lipotoxicity, and glucotoxicity induced by inflammatory processes. Metabolic dysregulation associated
with diabetes is said to induce a proinflammatory response in macrophages residing in the adipose
tissue, islets, and vasculature, and their infiltration into the adipocytes is directly proportional to cell
size [55]. Cellular stresses are induced by the activation of thioredoxin-interacting protein and NLRP3
inflammasome, releasing increased amounts of IL-1β, contributing to β-cell dysfunction and insulin
resistance [56]. Macrophages, endothelial cells, and adipocytes also produce acute-phase proteins
such as C-reactive protein (CRP) and serum amyloid A (SAA) in response to elevated levels of IL-6.
Additionally, proinflammatory cytokine TNF-α released within the adipose tissue promotes lipolysis
and increases free fatty acids [57].

Several studies have reported the beneficial properties of flavonoids that promote their use as
a supplementary treatment for diabetes mellitus [58]. It has been seen that flavonoids can modulate
carbohydrate and lipid metabolism, attenuate hyperglycemia, insulin resistance, alleviate oxidative
stress and stress-sensitive signaling pathways, and inflammatory processes [59]. Flavonoids morin,
hesperidin, rutin, (rats), and chrysin (mice) were effective in reducing inflammatory cytokines IL-1β,
IL-6, and TNF-α in diabetic animals, significantly improving hyperglycemia, glucose intolerance,
and insulin resistance [60–63]. Diabetes mellitus can eventually cause secondary damage to various
organs of the affected individual such as eyes, kidneys, nerves, and heart [64]. Flavonoids not only
help restore glucose homoeostasis attenuating the diabetic condition, but also regulate the secondary
damage to the various peripheral organs. Hesperidin reversed neuropathic pain and improved heart
function in diabetic rats [63,65]. Chrysin improves cognition, prevents the development of diabetic
neuropathy, and improves renal pathology in diabetic rats [66,67].

Peroxisome proliferator-activated receptor gamma (PPAR-γ), a nuclear receptor found in
adipocytes and macrophages, stimulates adipogenesis, lipid uptake, and inulin sensitivity and
regulates inflammation and glucose metabolism through upregulation of adipokines and glucose
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transporter, GLUT4, as well as fatty acid binding and transport proteins, respectively [68,69]. Certain
flavonoids such as naringenin, luteolin, and quercetin alter PPAR-γ activation and increase insulin
sensitivity [70]. PPAR-γ also induces various adipokines including leptin, adiponectin, and resistin,
which play crucial roles in glucose homeostasis and regulate inflammation [70]. Adiponectin has
been seen to inhibit the release of pro-inflammatory cytokines such as TNF-α and IL-6. Luteolin,
abundant in vegetables and fruits including celery, parsley, carrots, and apple skins, potentiates insulin
action and increases expression and transcriptional activation of PPAR-γ and expression of the PPAR-γ
target genes, increasing expression of adiponectin, leptin, and GLUT4 in 3T3-L1 adipocytes, as well as
in primary mouse adipose cells [71]. Liu et. al. reported that the decrease in circulating level of
inflammatory molecules MCP-1, resistin, and the elevation of adiponectin level in obese mice may be
attributed to luteolin, which, in turn, mediates beneficial effects on metabolic pathways implicated in
insulin resistance and type 2 diabetes pathophysiology [72].

2.4.3. Flavonoids in Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is characterized by chronic and uncontrolled gastrointestinal
inflammation, associated with both impaired epithelial mucosal barrier and altered innate and adaptive
immune responses [73,74]. IBD presents as two main clinical and pathological subtypes, Crohn’s
disease (CD) and ulcerative colitis (UC). Both forms of IBD result in poor quality of life and require
prolonged medical and/or surgical interventions. CD can affect any part of the gastrointestinal tract,
from the mouth to the anus, but it is usually, although not always, localized in the distal small bowel
and/or colon. In contrast, UC is restricted to the colon and the rectum. Although several theories
have been put forth to explain IBD pathogenesis, the exact cause of IBD still remains elusive [73,75].
IBD patients who exhibit a dysfunctional intestinal epithelium barrier with higher tight junction
permeability develop an exaggerated immune response in the gut towards the intestinal microbiota.
Several elements of the mucosal immune system including intestinal epithelial cells, innate immune
cells such as dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system
such as T cells and B cells, along with cytokines and chemokines, have been shown to participate in
the pathogenesis of IBD [75]. Tolerance to commensal flora in IBD is lost as a result of dendritic cell
overactivation and the resultant loss of regulatory T cells and strong induction of proinflammatory
effectors such as Th1, Th17, and natural killer (NK) cells [76,77]. Additionally, a variety of cell adhesion
molecules (CAMs), including intracellular CAM-1 (ICAM-1) and vascular CAM (VCAM-1) and
chemokines such as IL-1β, IL-6, and TNF-α, have been shown to be activated by endothelial cells,
which are responsible for the recruitment of leukocyte and promoting inflammatory responses [78].

As the exact etiology of IBD is not well understood, there is no specific treatment available to
cure the disease. Hence, flavonoids, which are known to have a range of biological activities, could
be beneficial in the treatment for IBD [79–81]. Flavonoids such as apigenin and epigallocathechin
gallate have been shown to inhibit the activation of immune cells and the downstream chemokines
and cytokines [82], thereby it may considered as a natural inhibitor and can prevent the activation of
an innate and adaptive immune system [79]. A number of studies have published the anti-inflammatory
impact of flavonoids in several experimental models of colitis (reviewed in the work of [75]). Flavonoids
belonging to different subclasses such as chalcones (cardamonin), isoflavones (genistein, daidzein,
glabridin), anthocyanidins (cyanidin-3-glucoside (C3G)), flavonols (quercetin, quercitrin, rutin),
flavanones (naringenin), flavones (baicalin, chrysin), and catechins (epigallocatechin-3-gallate) have
shown profound intestinal anti-inflammatory activity. Of these, accumulating evidence has shown
that quercetin inhibits bacterial lipopolysaccharide (LPS)-induced iNOS and TNF-α secretion in
macrophages, LPS-induced IL-1β, TNF-α secretion in RAW2647 and cytokine induced expression
of VCAM-1 and ICAM-1, and E-selection in HUVECs (reviewed in the work of [83]). Glycones
have been more effective in curbing intestinal inflammation as they are metabolized in the colon,
where the aglycone form is then released as opposed to the early absorption of aglycones in
the intestines. Quercetin glycosides quercetrin and rutin have more potent effects on disease
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outcomes than the aglycone [84,85]. Quercetrin reduces colonic inflammation in rats through
modulation of the NF-kB pathway and subsequent inhibition of cytokines, as well as iNOS in vivo [86].
Naringenin (4’,5,7-trihydroxy avanone-7-rhamnoglucoside), which belongs to the flavanone class,
is shown to attenuate the severity of colitis by inhibiting myeloid derived suppressor cells (MDDCs),
pro-inflammatory mediators, and the NF-kB/IL-6/STAT-3 cascade in colorectal tissues [87].

2.4.4. Flavonoids in Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is rapidly emerging as the most common etiological
factor for chronic liver disease, largely because of the growing prevalence of insulin resistance, obesity,
and diabetes [88,89]. As the name suggests, NAFLD is characterized by the deposition of free fatty
acids and triglycerides in hepatocytes and can lead to further complications such as liver fibrosis,
cirrhosis, and hepatocellular carcinoma [89,90]. NAFLD comprises a spectrum of disorders including
simple steatosis in the absence of inflammation and hepatocellular damage and the more severe form
of NAFLD, nonalcoholic steatohepatitis (NASH), characterized by lobular inflammation [91]. Much
remains to be elucidated about the pathogenesis of both NAFLD and NASH, however, attempts
to depict a ‘two-hit’ hypothesis of disease pathogenesis have been made. Hepatic steatosis due to
deposition of triglycerides coming from lipolysis of adipose tissue, from de novo synthesis, or from the
diet triggered by insulin resistance constitutes the first ‘hit’ [90,92]. Excessive accumulation of fat and
the presence of circulating free fatty acids contribute to oxidative damage, immune system activation,
and dysregulation of cytokine pathways through recognition by PRRs such as toll-like receptors
(TLR)s, in particular, TLR4 [92]. Lipid accumulation in the liver leads to increased transcription and
the release of IL-6, TNF-α, and C-reactive protein, leading to chronic low-grade inflammation through
the reduction of the anti-inflammatory adiponectin, which sensitizes hepatocytes to insulin [90].

Because the pathogenesis of NAFLD is multifaceted, so far there is no evidence-based treatment for
this disease. In this aspect, bioactive compounds such as flavonoids that can modulate various pathways
are ideal candidates for therapeutic development against NAFLD. Flavonoids have been shown to
have beneficial effects on lipid metabolism, insulin resistance, oxidative stress, and inflammation,
the major causative factors of NAFLD [93]. The anti-inflammatory effects of silymarin, a flavonoid
mix derived from milk thistle, have been documented in animal models of NAFLD [94]. Silibinin,
the most active component of silymarin, decreased hepatic NF-κB activation and decreased levels of
ROS and iNOS in a mouse model of NASH [95]. Silymarin was also reported to have reduced the
expression of inflammatory TNF-α mRNA in the liver of methionine- and choline-deficient (MCD)
diet induced NASH in insulin-resistant rats [96]. Isoflavones found in soybeans and their derivatives
have also shown beneficial effects on NAFLD in in vivo animal studies. Genistein, a soy phytoestrogen,
has been reported to show anti-inflammatory effects through reduction of TNF-α and IL-1β mRNA
expression in nonalcoholic fatty liver disease db/db mice [97]. Genistein administration in NASH rats
induced by a high fat diet alleviated liver damage through inhibition of inflammatory processes by
reducing serum levels of TNF-α and IL-6 and inhibiting IκB-α phosphorylation, nuclear translocation
of NF-κB p65 subunit, and activation of c-Jun N-terminal kinase (JNK) [98]. C57BL/6 mice on
a cholesterol-enriched diet supplemented with the isoflavone, 2-heptyl-formononetin, demonstrated
lowered hepatic inflammation through a reduction in TNF-α levels and macrophage infiltration [99].
Both quercetin and its glycoside rutin showed reduction in inflammatory markers TNF-α and IL-6 in
NASH mice [100,101]. Other flavonoids such as cyanidin 3-O-β-D-glucoside and xanthohumol also
inhibit inflammatory pathways through ROS inhibition and suppression of NF-κB and its dependent
genes in animal models [102,103].

2.4.5. Flavonoids in Cardiovascular Disorders

Inflammatory mediators are both a predictive and a causative factor in the pathogenesis of
cardiovascular disorders. Acute myocardial infarction (AMI) is the result of rupture of an atherosclerotic
plaque, leading to thrombus formation and loss of blood flow causing ischemia in the area distal to
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the occlusion [104]. Prolonged myocardial ischemia leads to cardiomyocyte injury releasing DAMPS,
which activate platelets and leucocytes; recruit neutrophils; and lead to endothelial cell injury and
the production of ROS, proteases, and cytokines. Additionally, the NLRP3 inflammasome is activated
in myocardial ischemia, which in turn binds to and activates caspase 1, which is responsible for the
conversion of IL-1β to its active form. Of all the cytokines, TNF-α, IL-1β, and IL-6 play central roles in
AMI, causing the secretion of other cytokines, chemokines, and adhesion molecules augmenting further
leucocyte infiltration. Similarly, immune cells and released mediators also play a critical role in the
initiation and progression of atherosclerosis [105]. Plaque formation is initiated by the accumulation of
low-density lipoproteins (LDLs) in the subendothelial layers of the arteries, leading to endothelial injury
and dysfunction. This subsequently leads to formation of ROS, which oxidize the LDLs and contribute
to plaque formation. Activated endothelial cells further release leucocyte adhesion molecules such as
vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and selectins,
which, together with chemokines such as CCR2, and CCR5, recruit circulating monocytes. Monocytes
then differentiate in situ to macrophages that convert to foam cells via uptake of oxidized LDLs and
release a milieu of cytokines such as TNF-α, IL-1, IL-3, IL-8, and IL-18.

Manipulation of these inflammatory events is crucial in the prevention and management of
cardiovascular diseases. Because of the phenol hydroxy groups present in flavonoids, these compounds
possess remarkable anti-oxidant and free-radical scavenging properties. Thus, these polyphenols are
able to show promising effects in the management of cardiovascular injury. In vitro evidence shows
that quercetin reduces LDL oxidation at physiological levels in human umbilical vein endothelial
cells [106]. Similar reduction in macrophage-mediated LDL oxidation was seen after treatment with
fisetin and proanthocyanidins [107]. Quercetin was also shown to decrease the level of proinflammatory
mediators such as TNF-α, IL-6, MIP-1α, and P-selectin in murine RAW264.7 macrophages [108].
Further, quercetin treatment can potentially disrupt atherosclerotic plaques through the inhibition
of matrix metalloproteinase 1 [109]. Soy isoflavone administration reduced the risk of chronic
inflammation-mediated cardiovascular disease by reducing the endothelial production of TNF-α
in a mouse model [110]. Isoflavones have also been reported to protect against inflammatory vascular
disease through the inhibition of monocyte recruitment across the endothelium. Additionally, several
flavonoids such as apigenin, chrysin, and kaempferol have been shown to inhibit the expression of
adhesion molecules on human aortic endothelial cells, thereby limiting leucocyte infiltration [111].

2.4.6. Flavonoids in Neuroinflammation

Neuroinflammation is the accompanying factor in several neurodegenerative diseases such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis
(MS). These neurodegenerative diseases result in the progressive and irreversible loss of neurons in
the brain [112]. Activation of central nervous system (CNS)-resident microglial cells is one of the
crucial events in the inflammatory cascade, which leads to the progression of neurodegeneration [113].
Prolonged activation of microglial cells may contribute to neurodegeneration through the release of
pro-inflammatory mediators such as prostaglandins, NO, TNF-α, IL-6, and IL-1β, resulting in chronic
CNS neuroinflammation [114]. These inflammatory events contribute to the apoptotic cell death of
neurons in many neurodegenerative diseases. Additionally, encephalitogenic inflammatory CD4+ T
cells such as Th1, Th17, granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+
T-cells, and γδT-cells play very crucial roles in the initiation and propagation of neuroinflammation
in autoimmune diseases such as MS. T cells become activated by antigen presenting cells (APCs)
such as dendritic cells (DC) and macrophages. DCs are the most efficient professional APCs and play
an important role in various autoimmune and neuroinflammatory diseases [115–117]. Our earlier
studies have reported that DCs can migrate into diverse regions of the CNS [118] in response to
neuroinflammatory signals (i.e., chemokine CCL2) both in vitro and in vivo [119]. Additionally,
increased frequencies of both plasmacytoid and myeloid DCs (pDC and mDC) have been reported in
the cerebrospinal fluid (CSF) of MS patients [120]. In fact, CD11c+ DCs were shown to be sufficient
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to present myelin antigen to naive T cells, leading to the development of experimental autoimmune
encephalomyelitis (EAE) in mice [121]. Hence, therapeutic agents targeting DC function and their
migration across the inflamed blood–brain barrier (BBB) under neuroinflammatory conditions will
be of vital importance in the treatment of neurodegenerative diseases such as MS. The treatments
currently available are rarely curative and have serious side effects.

Natural flavonoids have been shown to exert neuroprotective properties by inhibiting the release
of pro-inflammatory cytokines. Flavonoids exert an anti-inflammatory effect via interfering with the
development of inflammatory mediators such as IL-6, TNF-α, and IL-1β in several cell lines through
the MAPK signaling pathway [122]. TNF-α and iNOS expression has been seen to be regulated by
inhibiting MAPK signaling cascade molecules such as p38 or ERK1/2. Accumulating evidence has
reported that flavonoids can modulate the activity of various metabolic pathways to reduce neuronal
dysfunction. Moreover, flavonoids have been found to delay or prevent the onset of neurodegenerative
diseases at their effective doses in various animal models [123]. Wogonin, baicalein, curcumin,
apigenin, quercetin, luteolin, and many other flavonoids have been shown to exhibit neuroprotective
effects. Wogonin and baicalein have been shown to exert various anti-inflammatory effects through
the inhibition of inflammatory microglia. It has been seen that wogonin can inhibit the LPS induced
production of NO, inducible NO synthase (iNOS), and NF-κB activation in microglia. LPS induced
NF-κB activity in BV-2 microglial cells was shown to be inhibited by the flavonoid baicalein without
interfering activation of caspase-11, activator of transcription (STAT-1), and induction of interferon
regulatory factor (IRF-1) [124]. Further, curcumin inhibits the apoptosis of pre-oligodendrocyte
mediated expression of iNOS, NO, and COX-2 in LPS activated microglia [125]. Luteolin exerts its
immunomodulatory effects on peripheral blood mononuclear cells (PBMC) derived from MS patients.
Luteolin has been seen to suppress the PBMC production of several pro-inflammatory cytokines such as
IL-1β, metalloproteinase-9 (MMP-9), and TNF-α, which play very crucial roles in the pathogenesis
of MS [126]. Isoflavones such as daidzein and genistein inhibit TNF-α, IL-1, IL-6, iNOS, and COX-2
via suppression of ERβ and NF-κB, respectively, in primary astrocytes. Several flavonoids reportedly
suppress the inflammatory activity of DCs. Luteolin inhibits LPS-induced NF-κB signaling through
the suppression of IκB kinase activity in murine bone-marrow derived DCs. Flavonoids such as
silibinin, taxifolin, and epigallocatechin inhibited the immunostimulatory effects of DCs via different
mechanisms such as suppression of MAPK, impaired p65 translocation, and endocytic ability [127–130].
However, the effects of flavonoids on DC function in the context of neuroinflammatory diseases are
relatively unknown.

Apigenin, a polyphenolic flavonoid, abundant in chamomile plant and also found in other sources
such as parsley, celery, and grape fruit, is a relatively less toxic and non-mutagenic compound among
the various flavones. Apigenin can also cross the blood–brain barrier (BBB) and has been shown
to exert anti-inflammatory effects on BV-2 and primary microglial cells through inhibition of p38
and JNK. Apigenin prevents neuronal apoptosis by protecting the neurons against inflammatory
stresses [131]. The anti-inflammatory and neuroprotective effects of apigenin have not yet been
extensively characterized. Utilizing EAE models of MS, we recently observed a significant reduction
in disease severity accompanied by an increased retention of immune cells in the periphery upon
treatment with apigenin [132]. These results were supported by decreased immune cell infiltration
and reduced demyelination in the CNS of the apigenin-treated EAE mice. We hypothesized that the
neuroprotective effects of apigenin in EAE were due to its inhibition of DC phenotypical and functional
maturation and its subsequent polarization of CD4 T helper cells (unpublished data). Because of its
relatively long half-life, delayed plasma clearance, and slow metabolism in the liver [133], apigenin has
considerable potential to be developed as a safer, more cost-effective treatment for neurodegenerative
diseases. Here, we shall review the anti-inflammatory properties of apigenin that have been extensively
characterized in various disease systems and debate its potential as a therapeutic drug candidate for
neuroinflammatory conditions like MS.
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3. Role of Apigenin as an Anti-Inflammatory Agent

As the health effects of polyphenols depend on intake and bioavailability, the biological activities
of apigenin (4’,5,7-trihydroxyflavone), an abundantly occurring flavone have, been extensively
studied [134,135]. Much like the family to which it belongs, apigenin possesses a wide array of
biological properties including anti-oxidant, anti-cancer, and anti-inflammatory actions [136–138].
As a result, apigenin has gained a lot of interest in the past few years as a potential therapeutic agent
to treat various diseases such as cancer, diabetes, cardiovascular, and neurological disorders [139]
(Figure 2).

Figure 2. Role of apigenin in chronic inflammatory diseases. Apigenin as an anti-inflammatory
compound acts as a protective agent in several disorders via inhibition of key inflammatory mediators,
signaling pathways, and molecules. COX-2—cyclooxygenase-2; IL—interleukin; TNF—tumor necrosis
factor; NO—nitric oxide.

3.1. Protective Effects of Apigenin Across a Spectrum Of Chronic Diseases

According to the National Cholesterol Education Program’s Adult Treatment Panel III (NCEP:
ATP III), metabolic syndrome is associated with abdominal obesity, dyslipidemia, hyperglycemia,
inflammation, insulin resistance, or diabetes mellitus, as well as an increased risk of developing
cardiovascular disease. Obesity is attributed to adipose tissue dysfunction and expanded adipose
tissue mass, which can lead to the upregulation of proinflammatory cytokines such as TNF-α and
IL-6, resulting in a state of chronic low-grade inflammation, as previously discussed. Apigenin
has been shown to inhibit an important inflammatory biomarker, CD38, in a metabolic syndrome
model, as well as decrease adipose tissue mass and the levels of proinflammatory cytokines [140].
Additionally, Feng et al. have reportedly shown that apigenin improves obesity and obesity induced
inflammation [141]. Apigenin has also been reported to attenuate inflammation and the resultant
pathological alterations in rats fed with a high fat, fructose diet [142]. In diabetic rats, apigenin reduces
metabolic inflammation by successfully polarizing infiltrating macrophages to an anti-inflammatory
M2 phenotype by binding and activating PPAR-γ and the subsequent suppression of the NF-κB
pathway [141]. Apigenin also ameliorated renal dysfunction in diabetic rats by suppressing
inflammation through reduced secretion of TNF-α and IL-6 via MAPK inhibition. Histopathology
confirmed reduced inflammation in the renal tissue along with reduction in collagen deposition and
glomerulosclerosis [143].

Apigenin served as a potent therapy against UC in C57BL/6 mice through the inhibition of
inflammatory cytokines,and COX-2, and through the reduction in immune cell infiltration in colon
tissues [144]. Because NF-κB activation upregulates epithelial cell permeability, promoting colonic
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inflammation, testing apigenin effect in vitro on colon carcinoma cells HCT-116 demonstrated NF-κB
downregulation in a dose-dependent manner. Apigenin also reduced levels of matrix metalloproteinase
(MMP-3), which aids in extracellular remodeling, contributing to colonic inflammation, thereby
showing protective effects in a murine DSS (dextran sulphate sodium) colitis model [145]. The use
of a soluble form of apigenin showed amelioration of in colitis models in rats through the inhibition
of various inflammatory markers such as TNF-α, transforming growth factor-b, IL-6, intercellular
adhesion molecule 1, or chemokine (C–C motif) ligand 2 [146].

Inflammation in NAFLD is one of the main causes of insulin resistance with inflammatory markers
such as TNF-α and IL-6 suppressing insulin receptor signaling, thus blocking the action of insulin
in hepatocytes. In NASH mice fed with a high fat diet, apigenin ameliorated inflammation through
reduction of plasma levels of MCP-1, IFN-γ, TNF-α, and IL-6 [147].

Beneficial aspects of apigenin activity help to ameliorate inflammation-mediated cardiac injury,
indicating a role for apigenin as a therapeutic agent against cardiovascular diseases. In an LPS-induced
model of myocardial injury, apigenin relieved injury by modulating both oxidative stress and
inflammatory cytokines such as TNF-α, IL-1β, MIP-1α, and MIP-2 through NF-κB regulation [148].
Macrophages loaded with oxidized LDLs contribute significantly towards the progression of
atherosclerotic plaques. Apigenin was shown to induce apoptosis of murine peritoneal macrophages
through reduction in expression of anti-apoptotic plasminogen activator inhibitor 2 [149]. Apigenin
can promote apoptosis in foam cells through inhibition of autophagy and subsequently reduce the
foam-cell mediated secretion of proinflammatory cytokines during atherogenesis [150]. Additionally,
apigenin helped in cholesterol efflux from macrophages in atherosclerotic lesions in apoE−/−mice
challenged with LPS through the increased expression of ATP binding cassette A1 (ABCA1) and
reduced expression of proinflammatory cytokines, and reduced levels of NF-κB and TLR-4 [151].

Several studies have investigated the anti-cancer effects of apigenin and shown its ability to suppress
cancer cell proliferation in various types of tumors, including pancreatic, colorectal, liver, blood, lung,
cervical, prostate, breast, thyroid, skin, head, and neck [152–154]. Because inflammatory molecules
modulate the physiological and pathological states of cancer and its surrounding microenvironment,
and tumor initiation is said to occur as a result of prolonged exposure to inflammatory conditions,
inhibition of inflammatory molecules could be a promising approach to managing cancer [155]. The NF-κB
pathway and its associated molecules are key regulators of cancer cell survival and proliferation through
increased expression of cell cycle related VEGF, inflammatory cytokines, and metastatic genes such as
COX-2 [152]. Apigenin reduced prostate tumor volumes in mouse models through suppression of NF-κB
activation [156]. In non-small cell lung cancer cell line A549, apigenin blocks the nuclear translocation of
NF-κB, thereby suppressing the expression of tumorigenic genes such as Bcl-2, Mcl-1, and Bcl-xL. Apigenin
also inhibits several signaling pathways including NF-κB and MAPK, inducing anti-cancer effects in
malignant mesothelioma [157].

Macrophages are the most abundant innate immune cells in the tumor microenvironment that
contribute to chronic low-grade inflammation, leading to tumor growth and metastasis through
tumor neovascularization and matrix remodeling [158]. Apigenin induced apoptosis in mouse
ANA-1 macrophage cell line through regulation of MAPK pathway and suppression of anti-apoptotic
gene Bcl-2 [159]. Exposure to ultraviolet B (UVB) radiation results in acute inflammation due to
production of various cytokines and chemokines via COX-2 expression and the resultant recruitment
of neutrophils, monocytes, and macrophages, leading to acute responses such as skin edema or
chronic inflammation, fibrosis, and cancer. Apigenin suppresses UVB-induced skin carcinogenesis
through inhibition of inflammatory COX-2 and restoration of anti-angiogenic and anti-inflammatory
thrombospondin-1 [160]. TNF-α contributes to breast cancer metastasis through the recruitment of
tumor-infiltrating macrophages, neutrophils, and T cells, leading to immune evasion, tumor growth,
and metastasis. Apigenin was shown to down-modulate TNF-α mediated upregulation of chemotactic
protein, CCL2, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1α, and IL-6 in human
triple-negative cells (MDA-MB-231 cells) [161].
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Apigenin, found abundantly in a variety of plants, herbs, and spices [136,162], has been utilized
for centuries to treat diseases such as asthma, insomnia, Parkinson’s, neuralgia, and shingles [162,163],
suggesting its potential use for both peripheral and CNS disorders. Apigenin has been shown to exert
its neuroprotective effect via suppressing the expression of an inducible form of nitric oxide synthase
(iNOS) and nitric oxide (NO) in microglial cells and macrophages [131]. Also, through regulation
of adhesion molecules such as VCAM-1, ICAM-1, and E-selectin [164], which play a critical role in
controlling leukocyte migration across the endothelial cells of BBB, apigenin might inhibit immune
cells’ entry into the CNS and prevent neuroinflammation. However, it remains elusive whether
apigenin or other flavones could serve as a potential treatment for neuroinflammatory disorders
like multiple sclerosis, which affects approximately 400,000 people in the United States alone. Very
little is known about the neuroprotective effects of apigenin and its related mechanism of action.
In order to assess the therapeutic potential of apigenin in regulating neuroinflammation, we tested its
efficacy in EAE models of relapse-remitting MS wherein apigenin reduced disease severity through
inhibiting immune cell infiltration into the CNS and subsequent reduction in demyelination [132].
MS is an autoimmune disease with an as yet unknown etiologic agent mediated by an immunogenic
response of auto-inflammatory T cells against the myelin sheath protecting the neurons. Dysregulation
of DC function in MS can result from several possible reasons, which include, but are not limited to
T-cell anergy in response to persistent antigens displayed by long-lived lymphoid DCs and functional
abnormality of DCs (Figure 3). The infiltration of DCs from the periphery during neuroinflammatory
autoimmunity has been studied extensively, particularly in EAE models of MS wherein DCs infiltrating
from the blood increase with the increasing clinical severity of EAE. In fact, evidence shows that they
interact with naive CD4+ T cells, driving Th17 differentiation, a T cell subset involved in chronic
inflammatory disease [165,166]. Hence, the regulation of DC functions and its transmigration into
the CNS holds the key to prevent the detrimental effects of immune infiltration in MS. Current MS
therapies such as Natalizumab and dimethyl fumarate (DMF) that regulate leucocyte entry into the
CNS have shown potential in controlling symptoms and relapse [167]. However, most of these do
not control the progressive form of the MS and are often associated with significant side effects,
emphasizing the need for and value of identifying safer, alternate therapies that could provide clinical
level benefits for the debilitating diseases of the CNS.

Figure 3. Role of dendritic cells (DCs) and T cells in the development and progression of multiple
sclerosis (MS). MS is an immune mediated disease characterized by an initial inflammatory event
consisting of presentation of as yet unknown antigens to CD8 T cells, their entry across the blood–brain
barrier (BBB) into the central nervous system (CNS), and their subsequent reactivation by CNS resident
DCs and microglial cells. This results in an inflammatory cascade involving secretion of several
proinflammatory mediators such as cytokines IL-1β, IL-17, and TNF- α. The release of these cytokines
initiates the degenerative phase that is characterized by increase in iNOS, NO, glutamate, and ROS,
which brings about formation of inflammatory lesions, gliosis, and demyelination, which are the
hallmarks of MS.
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3.2. Apigenin Mediated Modulation in Dendritic Cell Phenotypical and Functional Maturation

Hematopoeitic stem cells in the bone marrow differentiate into plasmacytoid DCs from lymphoid
progenitors in the presence of transcription factors such as like Irf7 and Spi-B [168] (Figure 4).
DC progenitors in the bone marrow also give rise to circulating precursors in the presence of other
factors like Batf3 and Irf4 that home to tissues, where they reside as immature cells with high phagocytic
capacity [169]. Following tissue damage, immature DCs capture antigens through PRRs such as TLRs,
and initiate the innate response through the secretion of IL-1 and type I interferons. Following antigen
capture, immature DCs also subsequently migrate to the lymphoid organs, where they select rare
antigen-specific T cells, thereby initiating adaptive immune responses. T cells are also educated by
DCs to recognize and tolerate self-antigens. Sensing of microbial stimuli through PRRs causes DCs to
enter the process of maturation, which involves the upregulation of major histocompatibility complex
(MHC) molecules and co-stimulatory molecules. Peptide-loaded MHC molecules are recognized by
Ag-specific T cells via the T-cell receptor (TCR), constituting signal 1 of T cell activation. Signal 2
consists of binding of costimulatory molecules on DCs to CD28/CD40L on T cells. Activated T cells
in turn help DCs in terminal maturation through the ligation of CD40 and CD80/86. The final step
in T cell activation is signal 3; the release of inflammatory cytokines and chemokines promoting the
differentiation of naïve antigen-specific T cells into effector cells, as well as the activation of various
other types of immune cells by the dendritic cells. Therapeutic agents targeting the various steps
involved in DC-mediated T cell activation may be critical in the amelioration of various chronic
inflammatory diseases.

Figure 4. Dendritic cells as sentinels of the immune system. DCs orchestrate the immune response
initiating both the innate and adaptive branches of the immune system. Any dysregulation in
their activity is the key to development of chronic inflammatory and autoimmune conditions.
IFN—interferon; GM-CSF—granulocyte macrophage colony-stimulating factor; HSC—hematopoietic
stem cell(s); MHC—major histocompatibility complex; TLR—toll-like receptor.

Various flavonoids, described earlier in this review, inhibit the inflammatory functions of DCs.
The role of apigenin on DC maturation and function has been investigated in murine bone marrow
derived DCs, where inhibition of p65 translocation has been linked to downmodulation in cell surface
expression of DC co-stimulatory molecules and antigen capture [170]. Apigenin reduced the severity of
arthritis in a collagen-induced arthritis mouse model by reducing proinflammatory cytokine secretion
from serum and supernatants from lymph node DCs. DCs from the apigenin-treated mice also
exhibited low expression of MHC and co-stimulatory molecules [171]. More recently, apigenin was seen
to reduce the expression of co-stimulatory CD80, CD86, and MHC II on murine splenic CD11c+ DCs.
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Additionally, LPS-matured splenic DCs pulsed with ovalbumin (OVA)323−339 and treated with
apigenin impaired OVA-specific T cell proliferation [172]. However, the molecular players involved
in the apigenin mediated control of DC function are still mostly unknown. It is also unclear whether
apigenin is able to modulate DC phenotype and functional characteristics to regulate antigen-specific
T cells in neuroinflammatory conditions. Hence, we investigated the effects of apigenin in EAE mice
and reported disease attenuation and reduced demyelination. Amelioration in the disease phenotype
was dictated by reduced CNS infiltration of myeloid immune cells. Functionality of both Th1 and
Th17 cells was impaired and FoxP3+ Treg cell numbers were seen to be boosted in apigenin-treated
EAE mice. To evaluate whether these protective effects of apigenin are mediated by changes in
DC phenotype and function, we investigated the effects of apigenin on human peripheral blood
DCs. Unpublished data from these studies suggest that apigenin reduced cell surface expression of
key antigen presentation and co-stimulatory markers and reduced the secretion of proinflammatory
cytokines in LPS-matured DCs treated with apigenin in a RelB-dependent manner. It is known that
NF-κB activation is required for T-cell activation by DCs, primarily through the canonical NF-κB
pathway [173]. NF-κB consists of a family of five Rel proteins; namely, c-Rel, RelA/p65, RelB,
NF-κB1 (p50 and its precursor, p105), and NF-κB2 (p52 and its precursor, p100), of which p65 and
p50 predominantly compose the canonical pathway. Recent findings have increasingly suggested
a role of NF-κB protein RelB in DC maturation, their antigen presenting functions, and DC-mediated
immunity [173,174]. In mature DCs, RelB is upregulated and translocated into the nuclei in response
to various maturation signals [175]. Additionally, the apigenin-induced changes in blood DCs lead
to T-cell polarization away from Th1 and Th17 cells towards Treg cells, as was seen in the EAE mice
treated with apigenin. Thus, a DC-central anti-inflammatory agent could be key in resolving CNS
inflammation and the resultant pathologies in various neurodegenerative diseases.

4. Development of Apigenin as a Viable Candidate for Anti-Neuroinflammatory Treatment

As predicted by the World Economic Forum, within the next 16 years, management of chronic
disease including neuroinflammation is predicted to cost the world a staggering $47 trillion in treatment
and lost wages. The treatments currently available are rarely curative and have serious side effects.
The use of plant-based substances for the treatment of various mental ailments has been prevalent for
centuries [176]. Of these, flavonoids are an important group of more than 4000 polyphenolic compounds
possessing a common phenylbenzopyrone structure (C6-C3-C6), which allows a wide range of biological
activities [177,178]. Among other related flavonoids, apigenin, a naturally occurring plant flavone,
is found in abundance in common fruits and vegetables such as parsley, tea, chamomile, wheat sprouts,
and some seasonings. It represents about 0.8% of the total flavonoids consumed on a daily basis by
the U.S. population, estimated by the department of food science and human nutrition [179]. For the
successful development of any natural product lead compound as a therapeutic entity, several important
characteristics such as increased bioavailability, long half-life, and slow absorption and excretion need
to be fulfilled. Additionally, the bioactive molecule should be able to convene at the target organ at
an effective concentration unaltered, for it to exert a suitable biological effect. The bioavailability of
a number of flavonoids has been extensively studied and the results have shown rapid excretion and
extensive metabolism following ingestion. Most of the flavonoids are detected in the blood stream within
a few minutes to a few hours, with half-lives not exceeding 48 h, after which they are excreted from the
body. However, apigenin shows comparatively slower absorption kinetics and delayed plasma clearance
in pathogen-free Wistar rats after single oral administration [180]. Apigenin is seen in the blood stream
only 24 h after ingestion, with a relatively longer half-life of 91.8 h. Apigenin is also recovered at basal
levels up to 10 days post ingestion, indicating slow excretion kinetics due to slow decomposition in
the liver. These remarkable pharmacokinetics warrant further studies in human subjects to ascertain
bioactive concentrations of apigenin required to obtain the anti-inflammatory pharmacological effects
that have been reported in vitro.
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Apigenin is a low molecular weight flavone (molecular weight = 270.24kDa), practically insoluble
in water, partially soluble in hot alcohols, and completely soluble in potassium hydroxide (KOH)
and dimethylsulfoxide (DMSO). Apigenin is a major constituent of chamomile and when prepared
as chamomile tea, it has been used for centuries as a natural remedy for relieving indigestion and
gastritis. Chamomile preparations have also been traditionally used in skin care products for the
treatment of cutaneous inflammation and other skin disorders [138]. All flavonoids are synthesized
in plants via a common pathway known as the shikimic acid pathway, which converts carbohydrate
precursors to aromatic amino acids. Apigenin is synthesized through this pathway from its precursor
Naringenin by the action of flavone synthase. Further, apigenin derivatives are also produced by
O- or C-glycosylation, methylation, and hydroxylation of apigenin (Table 2). As mentioned earlier,
it is relatively unclear whether naturally occurring structural modifications to the basic flavonoid
enhances or suppresses its biological activities, especially its anti-inflammatory action. However,
synthetic derivatives of apigenin have been reportedly generated to enhance various characteristics
of the parent compound. The addition of different amines to the apigenin ring at the C-7 position
generated two series of apigenin derivatives with enhanced anti-proliferative functions tested against
different human cancer cell lines [181]. Apigenin amino acid prodrugs formed through synthesizing
several amino acid conjugates including di- and tri-peptide analogs may improve solubility, enhancing
its biological activity and usage. Several groups have synthesized and tested amino acid derivatives to
improve the oral bioavailability of the plant flavone, tricin. The tricin-alanine-glutamic acid conjugate
(T-Ala-Glu) exhibited excellent bioavailability after oral administration [182]. Similar derivatives can
be generated with enhanced anti-inflammatory properties, as well as improving apigenin penetration
across the BBB for its therapeutic potential in neuroinflammatory diseases.

Although the bioavailability and BBB penetration of apigenin is better than many other structurally
related flavonoids, it may still not reach therapeutic levels to achieve the desired anti-inflammatory
effects both in periphery and the CNS. Several research groups have devised different delivery systems
to increase apigenin bioavailability. Nanosized drug delivery systems (NDDS) using liposome and
polymer-based capsules for biocompatible delivery of large quantities of apigenin were designed and
tested on human macrovascular endothelial cell line EAhy926 [183]. The NDDS showed optimal
drug loading and good stability over extended time periods, and were non-toxic to the EAhy926 cells.
With extended release characteristics, these NDDS can serve as nanocarriers for apigenin delivery to
targeted organs to curb localized inflammation. The daily intake of apigenin is estimated to vary from
3.4 to 26 mg/day across the different countries and its consumption is largely based on lifestyle choices.
To achieve therapeutic effects, apigenin will need to be ingested in its purified form with optimal release
kinetics. Enteric polymer coated spheres were loaded with apigenin powder dispersed in an aqueous
solution to allow targeted delivery to the intestine and colon, which are the main sites for absorption [184].
These pellets were able to ensure apigenin release within 1 h and achieved therapeutic anti-oxidant
effects, making it an optimal delivery system for enhanced apigenin uptake. The BBB functions to not
only allow the passage of essential nutrients and factors for the functioning of the brain, but also to
limit the entry of therapeutic agents targeted against CNS abnormalities. This limits the number of
drug entities that are able to cross the BBB to achieve the desired therapeutic effect. Though apigenin is
a relatively small molecule that has been shown to cross the BBB, the intranasal delivery of apigenin,
which bypasses the BBB and can gain entry in to the cerebrospinal fluid compartment via the olfactory
pathway [185], could be explored to achieve therapeutic dosages of apigenin delivered directly to the
CNS. An inhalable formulation of albumin nanoparticles loaded with apigenin has been constructed
for the delivery of apigenin to lung tissue [186]. Effective anti-oxidant properties against lung injury
were reported with this delivery system, making it a viable inhalable drug formulation. However,
further testing in an in vivo model of neuroinflammation will provide useful information regarding CNS
bioavailability and therapeutic reach.
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Table 2. Naturally occurring apigenin derivatives.

Name Structure Source Modification Biological Activity Reference

Apiin Parsley, Celery Glycosylation,
Hydroxylation Anti-oxidant [54,55]

Apigetrin Roots of dandelion coffee Glycosylation Anti-inflammatory, anti-cancer [55,56]

Vitexin Mung bean, Bamboo leaves Glycosylation Anti-oxidant, neuroprotective, Anti-inflammatory [55,57]

Isovitexin Mung bean, Ficus deltoidea Glycosylation,
Hydroxylation Anti-inflammatory, anti-Alzheimer’s [55,57]

Rhoifolin Orange,lupinus, Citrus grandis Hydroxylation Anti-microbial, anti-cancer, anti-inflammatory [55,58]

Schaftoside Arisaema heterophyllum Glycosylation Anti-melanogenic [55,59]

Acacetin Turnera diffusa, Chrysanthemum morifolium Methylation Anti-inflammatory, antinociceptive [55,60]

Genkwanin Genkwa flos, rosemary, seeds of Alnus glutinosa. Methylation Anti-tumor, anti-inflammatory
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5. Conclusions

A large body of epidemiological, in vitro, and in vivo studies have documented the
anti-inflammatory properties of a wide variety of flavonoids in various chronic inflammatory conditions
such as autoimmune diseases, cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases.
The beneficial biological activities of flavonoids are undoubtedly related to their structural composition
and attributes, making them ideal lead candidates for the development of pharmaceuticals. A plethora
of inflammatory molecules such as TNF-α, IL-1, IL-6, IL-17, and IFN-γ, which are secreted through the
activation of several signaling pathways, predominantly the NF-κB pathway, has been shown to be
suppressed upon treatment with different subclasses of flavonoids. Owing to the common phenol core,
apigenin, a flavone, one of the most consumed flavonoids as part of the daily diet, also imparts health
benefits such as anti-oxidant, anti-cancer, anti-inflammatory, and anti-viral properties. It is comparatively
less toxic and non-mutagenic than other flavonoids of the same subclass, making it a better choice for
development as a therapeutic entity. However, several in vivo studies in suitable animal models of
chronic inflammation are warranted to understand its mode of action, its binding partners if any, effective
dosages, and safe levels of administration. These studies will then pave the way for a large number of
randomized clinical trials that will generate crucial data regarding its effectiveness as a stand-alone or
combinatorial therapy in treatment of the different chronic inflammatory conditions such as MS. Because
chronic diseases and their treatment leave debilitating and devastating effects on the patients, there is
an urgent need to develop safer, more natural therapeutic agents for their management and cure. One of
the most significant drawbacks of a natural product based drug compound is its low bioavailability.
Though apigenin has been reported to possess remarkable pharmacokinetics, further development in
terms of enhancing certain specific structural and chemical properties will be required to obtain more
potent anti-inflammatory responses. Further, for its development as a viable treatment option against
CNS neurodegenerative diseases, pre-clinical and clinical studies designed to investigate various drug
formulations and deliver routes will also have to be carried out. Accumulating evidence so far suggests
a very important role for apigenin in the treatment of various inflammatory disorders and bills it as
a candidate worthy of in-depth investigation.
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