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ABSTRACT
The phosphoinositide 3-kinase (PI3K) signaling pathway is the most commonly 

mutated pathway in head and neck squamous cell carcinoma (HNSCC). There are 
several drugs targeting members of the PI3K signaling pathway in development for 
HNSCC. In this article, we review the genetic alterations reported in the pathway 
pertinent to HNSCC, various agents in development targeting various mediators of 
the pathway, results from clinical trials, and remaining challenges in the development 
of PI3K pathway inhibitors.

INTRODUCTION

The phosphoinositide 3-kinase (PI3K) signaling 
pathway is of particular importance in head and neck 
squamous cell carcinoma (HNSCC), as it is the most 
frequently mutated pathway [1, 2]. Under normal 
conditions, this signaling pathway serves to promote cell 
survival, growth, development, and differentiation [3, 4]. 
Recently, dysregulation of this pathway has been noted at 
the genomic and proteomic levels, with implications in 
both the pathogenesis of HNSCC and potential therapeutic 
targets. In addition, activation of the PI3K pathway is 
known to be involved in acquired resistance to anticancer 
therapy [5]. In this review, we discuss the dysregulation 
of the PI3K signaling pathway, target therapies, and 
implications for precision medicine in the context of 
HNSCC. 

PI3K SIGNALING PATHWAY IN NORMAL 
PHYSIOLOGY

Key players of the PI3K pathway include receptor 
tyrosine kinases (RTKs) such as epidermal growth factor 
receptor (EGFR), G-protein coupled receptors (GPCRs), 
PI3Ks, phosphatidylinositol 4,5-bisphosphate (PIP2), 
phosphatidylinositol (3,4,5)-trisphosphate (PIP3), Akt, 
mTOR, and PTEN. RTKs and GPCRs bind growth factors 
and cytokines at the cell surface, and then transduce 
signals via a number of intracellular pathways, such as 

the PI3K pathway. PI3Ks are classified into three groups: 
classes I, II, and III. Class I is subdivided into class IA 
and class IB and they consist of a catalytic (p110) and 
regulatory (p85 for class IA and p101 and p87 for class 
IB) components. Class IA is activated by various types of 
cell surface receptors and has 3 isoforms, p110α, p110β, 
and p110δ. Class IB is activated primarily by G-protein 
coupled receptors and has one isoform, p110γ. Of these 
isoforms, class IA PI3Ks have been studied the most 
extensively. Binding of p85 to p110 stabilizes p110, 
inhibits their kinase activity, and recruits phosphotyrosine 
in activated receptors or adaptors. The engagement of p85 
and phosphotyrosine activates the kinase activity of p110 
by releasing the p85-mediated inhibition of p110 [6]. The 
activated catalytic subunit of PI3K (p110) phosphorylates 
PIP2, generating PIP3. PIP3 binds Akt (protein kinase B), a 
serine/threonine protein kinase, leading to the exposure of 
two amino acid residues requiring phosphorylation. PIP3 
also binds phosphoinositide-dependent protein kinase-1 
(PDK1), which phosphorylates those two residues, 
leading to the full activation of Akt. Activated Akt then 
phosphorylates other proteins and thus affects a number 
of cellular processes. mTOR, another serine threonine 
protein kinase, is activated by Akt and plays an important 
role in cell growth by monitoring cellular needs, such as 
nutrients, oxygen, and energy. mTOR forms two distinct 
complexes with other proteins and both complexes are 
involved in tumorigenesis [7, 8]. Akt activates mTORC1 
indirectly by inactivating proline-rich Akt substrate 40 
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kDa (PRAS40) and tuberous sclerosis complex (TSC2), 
which inhibit mTORC1. mTORC1 then regulates protein 
translation, specifically by targeting ribosomal protein S6 
(pS6) kinase and eukaryote initiation factor 4E-binding 
protein 1 (4E-BP1). mTOR complex 2 (mTORC2) is 
involved in activation of Akt by phosphorylation of 
Ser473 in Akt. The mechanism of mTORC2 activation is 
not clear. Lastly, PTEN (phosphatase and tensin homology 
deleted from chromosome 10) is an important negative 
regulator of this pathway, as it serves to dephosphorylate 
PIP3 to PIP2 [9, 10].

PI3K SIGNALING PATHWAY IN HNSCC

Recent studies have worked to identify mutations, 
amplifications, and overexpression of the different 
mediators/genes involved in the PI3K pathway (Table 1). 
Of these, PIK3CA, the gene that encodes for the catalytic 
component p110α, is the most commonly mutated 
component of this pathway.

PIK3CA MUTATIONS

In HNSCC, PIK3CA mutations tend to be heavily 
focused on the helicase (exon 9) and kinase (exon 20) 
domains [25-27], which also holds true for PIK3CA 
mutations in most sporadic cancers (Figure 1). In the past 
few years, genomic datasets of HNSCCs have expanded 
with efforts led by The Cancer Genome Atlas (TCGA) [28, 
29]. In Figure 1, the PIK3CA point mutation frequencies of 
HNSCC, breast cancer, and colorectal cancers catalogued 
by the TCGA are compared. The frequencies of PIK3CA 
mutations were 17.5%, 36.4%, and 16.7% in HNSCC, 
breast, and colorectal cancer, respectively. Of note, the 
hot-spot mutations on exon 9 (corresponding to residues 
E542 and E545 in p110α) and exon 20 (residue H1047) 
are the most common alterations regardless of cancer 
type. E542 and E545 are frequently mutated to lysine and 

H1047 is frequently altered to arginine.
PIK3CA over-amplification [16, 20, 30] and copy 

number gain [20, 31] have also been reported in HNSCC. 
Moreover, PIK3CA overexpression and copy number gains 
in the PI3K pathway have been associated with HPV-
positive HNSCC [32, 33]. Though copy number gains 
have been linked to increased transcription and expression 
of p110α [34], there are not necessarily correlations 
between PIK3CA gene amplification and p110α expression 
[16]. This suggests that there may be other pathways that 
interact with or influence p110α expression and play a role 
in tumorigenesis. 

MUTATIONS IN OTHER COMPONENTS 
OF THE PI3K PATHWAY

p85, the regulatory subunit of Class IA PI3K, 
has three isoforms — p85α, p85β, and p55γ — that are 
encoded by the genes PIK3R1, PIK3R2, and PIK3R3, 
respectively. Mutants of p85 are oncogenic, as they have 
been shown to promote basal PI3K activity without 
stimulation by growth factors [35-37]. In HNSCC, 
PIK3R1 missense [12], in-frame insertion [12], nonsense 
[2], and non-synonymous [11] mutations have been noted, 
mostly in HPV-negative patients. Depending on whether 
p85 exists as a monomer or a dimer with p110, it plays 
different roles. As a monomer, it binds the cell surface 
receptor adaptor protein IRS-1 and limits downstream 
PI3K pathway signaling. As a dimer with p110, however, 
it serves to potentiate PI3K signaling. If a gene such 
as PIK3R1, which encodes for a component of p85, is 
dysfunctional, adequate p85 may not be produced, leading 
to hyperactivation of the PI3K pathway and resultant 
tumorigenesis [35]. In addition, PIK3R2 overexpression 
was noted in esophageal squamous cell carcinoma, 
and is thought to be related to under-expression of 
microRNA-126, which likely plays a tumor-suppressing 
role and targets PIK3R2 [38].

Table 1: Dysregulations in the PI3K pathway in HNSCC. 

PI3K Pathway Component Type of alteration Tumor site

p85 Mutation [2, 11, 12]

PTEN
Mutation [2, 13-15]
Loss of heterozygosity [16, 17]
Reduced expression [16]

Not specified [2, 13, 14] 
Oropharynx, hypopharynx, larynx [15]
Tongue, larynx, oral cavity [17]
Not specified [16]

AKT
Mutation [2]
Activation [16, 18]
Copy number alteration [19]
Over-expression [20]

 

mTORC1 Mutation [2]
Activation [21]  

EGFR
Mutation [22, 23]
Activation [24]
Overexpression [24]

Laryngeal [23]
Not specified [22]

In cases where tumor sites were not specified, the table entry was left blank. Few studies [2, 11, 12] specified HPV status.
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Figure 1: PIK3CA point mutation rates in TCGA cohorts. Analysis of TCGA cohorts of HNSCC, breast cancer, and colorectal 
cancer was performed to determine rates of point mutations in PIK3CA. The top 30 most frequent mutations when analyzing all TCGA 
tumor samples were selected. The residues affected by these mutations are depicted along with the corresponding rates of mutation. The 
mutation rates represent the percentage of total PIK3CA mutations affecting each residue for the various types of tumor. Abbreviations:  
ABD, adaptor-binding domain; RBD, RAS-binding domain; C2, protein-kinase-C homology-2 domain.
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PTEN is a tumor suppressor that has been found 
to have a number of alterations in HNSCC, including 
nonsense [2, 13, 14], missense [2, 13, 15], loss of 
heterozygosity [16, 17], hemizygous deletion [39], intron 
[14], and splice site single nucleotide polymorphisms 
[2], as well as reduced expression [16]. Given the many 
different genomic and proteomic alterations seen with 
PTEN, its dysregulation in HNSCC might be attributed 
to multiple molecular mechanisms. With regard to genetic 
mutations, exon 5 of the PTEN gene is of particular 
interest, as it encodes for PTEN’s lipid phosphatase 
catalytic domain, which plays a major role in tumor 
suppression [40]. Low PTEN protein expression (not 
necessarily linked to PTEN gene mutations) may be 
attributed to degradation of PTEN [41, 42] or gene 

silencing [43, 44].
Akt promotes cell survival and proliferation through 

the phosphorylation of various substrates and is encoded 
by 3 Akt genes (Akt1, Akt2, and Akt3) [45]. In HNSCC, 
Akt genes have been found to display missense mutations 
[2], copy number variations [19], increased activation 
[16, 18, 46], and overexpression [20]. Amplification 
and overexpression of Akt is thought to enable a cell 
to proliferate in conditions not normally conducive to 
proliferation [47]. mTOR is a downstream target of Akt 
that integrates signals from multiple pathways, including 
nutrients (e.g., amino acids and glucose), growth factors 
(e.g., insulin and insulin-like growth factor 1), hormones 
(e.g., leptin), and stresses (e.g., starvation, hypoxia, and 
DNA damage) to regulate a wide variety of eukaryotic 

Table 2: Ongoing Clinical Trials of Agents Targeting the PI3K Pathway in Patients with HNSCC. 

Target Agent Other 
Interventions Condition Phase Status Clinical Trial 

Identifier

PI3K

Buparlisib (BKM120)

 Advanced HNSCC 2 Unknown NCT01527877

Cisplatin, IMRT High risk LA HNSCC 1b Active NCT02113878

Paclitaxel Pt pre-treated R/M HNSCC 2 Active NCT01852292

Cetuximab R/M HNSCC 1/2 Active NCT01816984

R/M HNC 2 Active NCT01737450

PX-866
Docetaxel NSCLC, HNSCC 1/2 Completed NCT01204099

Cetuximab Metastatic CRC, R/M HNSCC 1/2 Completed NCT01252628

Copanlisib (BAY 80-6946) Cetuximab
R/M HNSCC with PI3KCA 
mutation/amplification and/or 
PTEN loss

1/2 Active NCT02822482

SF1126  R/M SCCHN with mutation in 
PIK3CA and/or PI3K Pathway 2 Active NCT02644122

Alpelisib (BYL-719)

Cisplatin, IMRT LA HNSCC 1 Active NCT02537223

Paclitaxel Breast cancer and HNC 1 Active NCT02051751

Cetuximab, 
IMRT Stage III/IVb HNSCC 1 Active NCT02282371

Pt therapy failed, R/M HNSCC 2 Active NCT02145312

Cetuximab R/M HNSCC 1b/2 Completed NCT01602315

AMG319  HPV negative HNSCC 2 Active NCT02540928

AKT MK2206 R/M HNC 2 Completed NCT01349933
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mTOR

Sirolimus (rapamycin)  HNSCC 1/2 Completed NCT01195922

Everolimus (RAD001)

Docetaxel LA and R/M HNSCC 1/2 Terminated NCT01313390

Carboplatin, 
cetuximab Advanced HNC 1/2 Completed NCT01283334

Carboplatin, 
paclitaxel LA HNC not removable by surgery 1/2 Completed NCT01333085

Erlotinib Recurrent HNSCC 2 Completed NCT00942734
Erlotinib, 
radiation R/M HNSCC treated with radiation 1 Withdrawn NCT01332279

Cetuximab R/M colon cancer or HNC 1 Completed NCT01637194
Cetuximab, 
cisplatin, 
carboplatin

R/M HNSCC 1/2 Terminated NCT01009346

HNSCC 2 Active NCT01133678
HNSCC 2 Active NCT01051791
HNC 2 Active NCT01111058

Docetaxel, 
cisplatin LA HNC 1 Completed NCT00935961

Cisplatin, 
radiation LA, inoperable HNC 1 Terminated NCT01057277

Cisplatin, IMRT LA HNC 1 Terminated NCT01058408
Cisplatin, IMRT LA HNC 1 Completed NCT00858663
Ceritinib HNC, NSCLC 1/1b Active NCT02321501
 LA HNSCC 2 Active NCT01133678

Temsirolimus (CCI-779)

HNSCC 2 Completed NCT01172769

Cetuximab R/M HNC not respond to therapy 2 Completed NCT01256385

Paclitaxel, 
carboplatin R/M HNSCC 1/2 Active NCT01016769

Cisplatin, 
cetuximab R/M HNSCC 1/2 Terminated NCT01015664

Advanced HNSCC Completed NCT00195299

Erlotinib Pt-refractory or-ineligible, 
advanced SCC 2 Terminated NCT01009203

Cetuximab, 
cisplatin, 
radiation

Advanced HNC pilot Withdrawn NCT01326468

Ridaforolimus (AP23573, 
MK-8669, deforolimus)  Advanced HNC, NSCLC, colon 

cancer 1 Terminated NCT01212627

Metformin (glucophage)

Paclitaxel R/M HNSCC 2 Terminated NCT01333852

Cisplatin, 
radiation LA HNSCC 1 Active NCT02325401

HNSCC 0 Active NCT02402348
 HNSCC 0 Active NCT02083692

PI3K/
AKT Perifosine (KRX-0401) R/M HNC 2 Terminated NCT00062387

PI3K/
PLK Rigosertib (ON-01910) Cisplatin, 

radiation HNSCC 1 Completed NCT02107235

Unknown: Status not verified over 2 years. Abbreviations:  IMRT: Intensity-modulated radiotherapy. HNC: Head and Neck 
Cancer. SCC: Squamous cell carcinoma. HNSCC: Head and neck squamous cell carcinoma. NSCLC: Non small cell lung 
cancer. HPV: Human Papillomavirus. R/M: recurrent and/or metastatic
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cellular functions, such as translation, transcription, 
protein turnover, cell growth, differentiation, cell survival, 
metabolism, energy balance, and stress response. In 
HNSCC, mTOR was found to be activated [21, 48] and 
have missense mutations [2]. It has been demonstrated that 
these point mutations can lead to constitutive activation of 
mTOR, which enables cells to grow and proliferate in the 
absence of nutrients [49].

EGFR is an upstream activator of the PI3K signaling 
pathway that is frequently altered in cancer. It is a member 
of the RTK (receptor tyrosine kinases) that activates class 
IA PI3Ks, the most commonly mutated members of the 
PI3K pathway in cancer. It has been reported to display 
missense [23], in-frame deletion [22], and activating 
mutations [24], as well as overexpression [24] in HNSCC. 
An abnormally truncated EGFR mutant (deletion in 
exons 2-7) has been found to be constitutively active and 
potentiate the PI3K pathway signaling [50], and may play 
a role in tumorigenesis. 

Clinical trials targeting the PI3K pathway in 
HNSCC

Treatment modalities for HNSCC are guided by 

site and stage of disease and include surgical resection, 
radiation, and chemotherapy. However, when tumors have 
developed resistance, relapse occurs and these treatments 
are no longer effective and new therapeutic options are 
needed. The PI3K/Akt/mTOR pathway is activated in 
many types of cancers and has been demonstrated to 
contribute to treatment resistance [5]. In addition, this 
pathway has been implicated in tumorigenic processes 
such as cell proliferation, invasion, angiogenesis, and 
metastasis [45, 51-53]. These factors make the PI3K/Akt/
mTOR pathway an attractive target for cancer therapy. 
Significant efforts have been devoted to developing agents 
to target the pathway [54-56]. Many of these agents have 
shown promising results in preclinical in vitro and in vivo 
studies of various cancer types [57, 58], including HNSCC 
[59, 60]. Inhibition of this pathway can disrupt resistance 
acquired by cancer cells and sensitize cancers to antitumor 
agents of other modalities, reduce cell proliferation, and 
induce apoptosis [5, 61-63]. Furthermore, single inhibitors 
may not be enough to achieve sustained inhibition of 
the pathway. It has been shown that inhibition of PI3K 
pathway may trigger compensatory feedback [64]. 
Therefore, in the majority of the clinical trials, PI3K/
Akt/mTOR inhibitors are used in combination with other 
agents or radiation with the goal of achieving a synergistic 

Figure 2: The PI3K signaling pathway’s key players and inhibitors under investigation in HNSCC trials. 
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effect [65]. Here, we discuss the recent development of 
PI3K pathway inhibitors that have been or are being tested 
in clinical trials for HNSCC (Figure 2). The relevant 
clinical trials registered at Clinical Trials.gov are listed in 
Table 2.

PAN-PI3K INHIBITORS

Pan-PI3K inhibitors refer to inhibitors of more than 
one of the p110 isoforms of PI3K. 

Buparlisib (BKM120)

Buparlisib is an oral PI3K inhibitor and inhibits the 
activity of all four p110 isoforms of class I PI3K. Using 
cultured cell lines with wild-type or E542K, E545K, 
and H1047R hotspot mutations in PIK3CA, Kong et al. 
showed that buparlisib has comparable impact on the 
hotspot and wild-type PIK3CA [66]. It was also shown 
that a combination of buparlisib with the anti-EGFR 
monoclonal antibody cetuximab exerts a synergistic 
effect on tumor inhibition in wild-type or PIK3CA mutant 
HNSCC cell lines [67] as well as in a xenograft model 
of HNSCC [68]. However, the half maximal inhibitory 
concentration (IC50) of buparlisib is much higher than that 
of many of the PI3K inhibitors under investigation. The 
toxicity of doses required for PI3K inhibition in vivo is 
a concern in its clinical application. Five phase 1 and/or 
2 clinical trials are ongoing to evaluate the efficacy and 
safety of buparlisib in combination with cisplatin and 
IMRT, paclitaxel, or cetuximab (Table 2). Results from 
these trials have not been posted.

PX-866

Wortmannin is a potent irreversible PI3K inhibitor 
that equally inhibits most PI3K isoforms and has been 
shown to have antitumor activity. However, it is not 
optimal for clinical applications due to its high liver and 
hematological toxicity as well as poor biological stability. 
PX-866 was derived from wortmannin to overcome 
these problems [69]. It can inhibit PI3K activity at 0.1 
nM and was reported to enhance antitumor activity of 
other chemotherapeutic drugs and radiation in an ovarian 
cancer murine xenograft model [69]. However, phase 1 
and 2 clinical trials of PX-866 in incurable recurrent or 
metastatic HNSCC patients have shown less promise. 
For example, a phase 2 randomized control trial using 
combination therapy with cetuximab showed no 
differences in disease control rate, median progression-
free survival, or median overall survival when compared 
to the control group receiving cetuximab alone [70]. 
A phase 2 randomized control trial using combination 
therapy with docetaxel also showed no differences when 
compared to the control group receiving cetuximab [71]. 

Thus, the addition of PX-866 did not improve the efficacy 
in patients without molecular preselection. No active trial 
of PX-866 for HNSCC is currently registered.

Copanlisib (BAY 80-6946)

Copanlisib is a highly selective and potent 
intravenous pan-PI3K inhibitor with sub-nanomolar IC50 
against isoforms p110α and p110δ [72]. The mean IC50s of 
copanlisib were 19 nM and 774 nM for PIK3CA mutant 
and wild type cell lines respectively, indicating superior 
antitumor activity. In non-small cell lung cancer xenograft 
models, combination of copanlisib and paclitaxel achieved 
a 100% sustained response. Copanlisib in combination 
with cetuximab is being evaluated in phase 1 and phase 2 
trials in patients with recurrent and/or metastatic HNSCC 
harboring a PI3KCA mutation/amplification and/or a 
PTEN loss.

SF1126

LY294002 can inhibit both PI3K and mTOR but is 
generally considered a PI3K inhibitor. It has antitumor 
and antiangiogenesis activity in vivo, but is not a viable 
drug due to poor solubility and short half-life. SF1126 
was designed as a prodrug of LY294002 with a small 
peptide tag on LY294002 to increase solubility and to 
target αvβ3 and α5β1 integrins [73]. SF1126 was able to 
significantly reduce tumor volumes in U87MG glioma and 
PC-3 prostate cancer xenograft models in nude mice. In 
addition, antiangiogenesis activity due to inhibition of the 
HIF-1/VEGF pathway activity in 6 of 11 xenograft models 
was observed. SF1126 is now being evaluated in a phase 2 
trial in patients with recurrent or progressive HNSCC and 
mutations in PIK3CA and/or PI3K pathway genes.

ISOFORM-SPECIFIC PI3K INHIBITORS

Isoform-specific PI3K inhibitors are active against 
one of the p110 isoforms of class I PI3K. They are usually 
also active against other p110 isoforms to a lesser extent.

Alpelisib (BYL-719, NVP-BYL719)

Alpelisib was designed to selectively inhibit p110α, 
or PIK3CA [74]. In a PIK3CA-dependent murine xenograft 
model, alpelisib showed significant dose-dependent 
inhibition of tumor growth and a favorable safety profile 
[75]. These results suggest that alpelisib is a promising 
agent for treating tumors with PIK3CA mutations. 
Alpelisib is being evaluated in 5 clinical trials (Table 2). 
Preliminary results showed encouraging antitumor activity 
[76]. Results from a completed trial have not been posted.
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Isoform p110δ of PI3K (PI3Kδ, AMG319)

p110δ is mostly confined to spleen, thymus, 
and peripheral blood leukocytes. Its dysregulation 
has been implicated in rheumatoid arthritis, systemic 
lupus erythematosus, and hematological malignancies. 
Inactivation of p110δ in regulatory T cells unleashes 
CD8+ cytotoxic T cells and induces tumor regression. 
Thus, p110δ inhibitors such as AMG319 can break tumor-
induced immune tolerance [77]. Currently, AMG319 is 
in a double-blind, placebo-controlled phase 2a trial in 
patients with HPV-negative HNSCC.

AKT INHIBITORS

MK-2206

Akt activation and overexpression are often 
associated with resistance to chemotherapy or 
radiotherapy. Inhibition of Akt has great potential 
in cancer treatment. Many Akt inhibitors have been 
developed for cancer treatment [55]. Among them, MK-
2206 is a highly potent and selective Akt inhibitor that 
has been shown to enhance the anti-tumor activity of 
several anticancer agents in vitro and in vivo [78]. MK-
2206 was evaluated in a phase 2 trial in patients with 
recurrent or metastatic HNSCC. Nine out of 21 patients 
were alive and progression-free at the end of the trial 
(but final results have not been posted). Moreover, MK-
2206 plus carboplatin/paclitaxel, docetaxel, or erlotinib 
was evaluated in a phase 1 trial in patients with advanced 
solid tumors [79]. Interestingly, two patients with HNSCC 
demonstrated a complete and partial response.

MTOR INHIBITORS

Rapamycin was isolated from Streptomyces 
hygroscopicus. It was initially developed as an anti-fungal 
agent and used as an immunosuppressant to prevent 
rejection in organ transplant. Later, it was found to inhibit 
mTOR and showed promising antitumor activity in many 
solid tumors. Rapamycin binds to the intracellular FK506-
binding protein (FKBP12) to form a complex, which then 
binds to mTORC1 and interrupts its ability to signal to 
its downstream effectors [56, 80, 81]. Temsirolimus, 
everolimus, and deferolimus are analogs of rapamycin 
and they inhibit mTORC1 activity through the same 
mechanism.

Sirolimus (rapamycin)

Sirolimus has been tested for treatment of many 
types of tumors, including HNSCC, but has poor oral 

bioavailability and solubility (precluding intravenous 
administration). Analogs of sirolimus have been developed 
to overcome this problem. In addition, nanoparticle 
albumin-bound rapamycin has been developed and is 
currently being tested in a phase 2 trial that includes HNC.

Everolimus (RAD001)

Everolimus is a 2-hydroxyethyl derivative of 
sirolimus with a similar mechanism of action, but an 
improved oral bioavailability. Everolimus has been 
approved by the U.S. Food and Drug Administration 
(FDA) for treatment of several cancers including 
recent approval for the treatment of progressive, well 
differentiated, nonfunctional, neuroendocrine tumors of 
gastrointestinal or lung origin in unresectable, locally 
advanced, or metastatic disease. In a trial with recurrent or 
metastatic HNSCC patients, everolimus was not effective 
[82]. Everolimus, in combination with cetuximab/
carboplatin, or cisplatin/IMRT, or cisplatin/docetaxel, 
has been evaluated in several early phase studies [83-
85]. In a phase 2 study, everolimus in combination with 
erlotinib was evaluated in patients with platinum-resistant 
HNSCC with no significant benefit [86]. Currently, two 
other phase 2 trials are ongoing to evaluate the efficacy 
of everolimus in patients with refractory, recurrent, and 
locally advanced HNSCC and to study the correlation of 
everolimus treatment with tumor- and patient-associated 
markers of the EGFR-mTOR pathway.

Temsirolimus (CCI-779)

Temsirolimus is hydrolyzed to form sirolimus 
quickly after intravenous administration but itself also has 
mTOR inhibitor activity. It has been approved by the FDA 
to treat renal cell carcinoma and evaluated in many trials of 
combination therapy for HNSCC. In a pharmacodynamic 
evaluation of temsirolimus in patients with newly 
diagnosed advanced HNSCC, Akt/mTOR pathway 
biomarkers were evaluated in tumor and peripheral blood 
mononuclear cells (PBMCs). Temsirolimus significantly 
decreased pS6 and p4E-BP1 in tumors, and pS6 and pAkt 
in PBMCs, indicating significant inhibition of the mTOR 
pathway in both tumors and PBMCs [87]. In addition, 
after only 2-3 doses, 8 of 14 patients’ tumors decreased in 
size on endoscopic evaluation [87]. In a different trial of 
patients with platinum- and cetuximab-refractory recurrent 
and/or metastatic HNSCC, treatment with temsirolimus 
resulted in disease stabilization in 58% and tumor 
shrinkage in 39% of 33 assessable patients [88]. However, 
combination therapy with temsirolimus may be limited 
by treatment toxicity. In trials studying combination 
therapy of temsirolimus, bevacizumab, and cetuximab 
or temsirolimus and erlotinib, numerous toxicities were 
reported [89, 90]. The combination of temsirolimus with 
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weekly does of paclitaxel and carboplatin was evaluated in 
a phase 1 and 2 trial in patients with recurrent or metastatic 
HNSCC to establish recommended dosing for a phase 2 
study and to determine the objective response rate.

Ridaforolimus (AP23573, MK-8669, deforolimus)

Ridaforolimus is available in oral and intravenous 
formulations. In combination with the Notch inhibitor 
MK-0752, ridaforolimus was evaluated in a phase 1 
trial in patients with advanced tumors [91]. Fifteen of 
30 enrolled patients had HNSCC. Among 10 HNSCC 
patients evaluated for tumor response, one had complete 
response and another had a confirmed partial response. 
However, there were a high number of adverse events at 
the maximum tolerated dose.

Metformin (glucophage)

Metformin is used in the treatment of type 2 
diabetes. The use of metformin in diabetic patients has 
been associated with significantly lower risks of cancer 
incidence and mortality. In a retrospective study of 205 
patients with laryngeal SCC [92], patients treated with 
metformin had more early stage tumors than untreated 
patients (48% vs 27%), but had fewer regional metastasis 
events (19% vs 50%) and a better survival rate (76% vs 
41%). Yen et al. compared 66,600 diabetic patients either 
taking or not taking metformin and found the incidence 
of head and neck cancer (HNC) to be 34% lower in 
patients taking metformin [93]. Metformin indirectly 
inhibits mTOR by decreasing expression of Sp-regulated 
insulin-like growth factor-1 receptor and also inhibits 
Ras signaling by decreasing EGFR [94]. Skinner et al. 
investigated the role of TP53-disruptive mutations in 
radioresistance [95]. They found metformin potentiated 
the effects of radiation in the presence of a disruptive 
TP53 mutation in vitro and in vivo. Among patients treated 
with postoperative radiation therapy for HNSCC, patients 
taking metformin had a dramatically lower locoregional 
recurrence rate than did the control group. The five-year 
overall survival rate was 87% in patients taking metformin 
compared to 41% in the remaining patients [95]. The 
safety and efficacy of metformin, alone or in combination 
with radiation or other agents, are being evaluated in 
several early stage clinical trials in HNSCC patients (Table 
2). 

DUAL INHIBITORS

Perifosine (D-21266, KRX-0401, NSC 639966)

Perifosine inhibits both protein kinase B and Akt 

phosphorylation, but does not directly inhibit PI3K [96]. 
Though it inhibited tumor growth in various in vitro and 
in vivo studies [97], it showed little effect in a phase 2 
trial of patients with recurrent or metastatic HNC that was 
terminated early [98]. Perifosine alone or in combination 
with other agents is currently being tested in several trials 
for cancers, but not in HNSCC.

Rigosertib (ON 01910.Na, estybon)

Polo-like kinases (Plks) are important regulators 
of the cell cycle and are new targets for cancer therapy 
[99, 100]. Rigosertib was developed to inhibit Plk [101] 
and was found to inhibit PI3K as well [102]. Rigosertib’s 
antitumor activity was studied in 16 HPV-negative 
HNSCC cell lines and 8 direct patient tumor xenografts 
of HNSCC [103]. Rigosertib had potent antiproliferative 
effects on 11 of 16 HNSCC cell lines and inhibited 
growth reduction in 3 of 8 HNSCC xenografts. Biomarker 
analysis indicated that a combination of PI3K/TP53 events 
was necessary, but not sufficient, for rigosertib sensitivity. 
Safety and efficacy of rigosertib were evaluated in a 
recently completed phase 2 trial in patients with relapsed 
or metastatic, platinum-resistant, HPV-positive or HPV-
negative SCC. Results from the trial have not been posted 
or published.

REMAINING CHALLENGES

Studies of PI3K pathway inhibitors on HNSCC cell 
lines and xenograft models have been very encouraging, 
but these agents have shown less promise in clinical trials 
to date. Several reasons may explain this discrepancy. As 
mentioned earlier, single agent therapy may have limited 
efficacy due to activation of compensatory feedback 
[64]. PI3K inhibition may also activate mitochondrial 
reprogramming that subsequently promotes tumor 
invasion and progression [104]. Yet, beyond unintended 
molecular signaling that can be induced by PI3K pathway 
inhibition, there are also challenges in maximizing clinical 
trial design. For one, non-optimized dosing schedules 
may lead to inadequate pharmacologic inhibition of 
the pathway [105].In addition, trial results may also be 
affected by inadequate patient preselection [57, 58]. 
Existing HNSCC trials of PI3K pathway inhibitors have 
stratified patients based on prior treatment failures [70, 
71]. However, few published studies have examined 
trial results for a correlation between responsiveness 
and PI3K pathway mutational status. Furthermore, none 
- to our knowledge - have preselected HNSCC patients 
based on PI3K pathway mutation status, which likely has 
a significant effect on response to targeted therapies and 
trial results [58]. Below, we discuss the potential role of 
genomics in future HNSCC trials. 
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APPLYING PRECISION MEDICINE IN 
HNSCC TRIALS

In the era of genomics, next generation sequencing 
offers the ability to characterize the mutational profiles 
of patients on a genome-wide scale and the potential to 
enhance future trial design. Genomic sequencing can 
be readily performed on HNSCC tumor specimens. 
However, tumor specimens may not be available for all 
patients enrolled in HNSCC trials, would be costly to 
obtain, and could place patients at risk for procedural 
complications. Thus, it would be advantageous to utilize 
a non-invasive source of tumor samples for genetic 
profiling. “Liquid biopsies” using circulating tumor 
cells (CTCs) and tumor cell DNA extracted from the 
peripheral blood for biomarker analysis could provide a 
potential solution. Cancers are known to release CTCs 
and cell-free circulating tumor DNA (ctDNA), or cell-
free nuclear acids (cfNA), into blood. Recently, their 
potential as diagnostic and monitoring tools for cancer 
has been extensively investigated [106, 107]. Combined 
with next generation sequencing technology, liquid biopsy 
can be used to personalize HNSCC patient treatments, 
evaluate tumor mutations throughout treatment, predict 
treatment response, and potentially elucidate novel 
biomarkers. Research on liquid biopsies in HNSCC has 
lagged behind that in more common cancer types, but is 
increasingly gaining more attention. In an ongoing trial 
(NCT02822482) of copanlisib with cetuximab in HNSCC 
patients with PI3K mutation/amplification and/or PTEN 
loss, mutational profiles of ctDNA at multiple time points 
will be analyzed to monitor disease progression.

CONCLUSIONS

Recent studies on HNSCC continue to support the 
PI3K pathway as a promising target for future HNSCC 
therapies. Currently, there are multiple targeted therapies 
against this pathway under investigation. However, 
trial results to date have yet to show the same degree of 
efficacy as have been demonstrated in in vitro or in vivo 
studies. Several challenges may be limiting trial success. 
The results from ongoing trials, such as those with patient 
recruitment based on mutational profiles of the PI3K 
pathway or comparisons between single and multiple 
agent therapies, will be eagerly anticipated and may 
provide additional guidance on designing future trials .
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