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ABSTRACT
The X-ray repair cross-complementing gene (XRCC) family participates in DNA damage repair and 
its dysregulation is associated with the development and progression of a variety of cancers. 
However, XRCCs have not been systematically studied in non-small cell lung cancer (NSCLC). Using 
The Cancer Genome Atlas (TCGA) and Oncomine databases, we compared the expression levels of 
XRCCs between NSCLC and normal tissues and performed survival analysis using the data from 
TCGA. The correlations of XRCCs with the clinical parameters were then analyzed using UCSC 
Xena. Genetic alterations in XRCCs in NSCLC and their effects on the prognosis of patients were 
presented using cBioPortal. SurvivalMeth was used to explore the differentially methylated sites 
associated with NSCLC and their effect on prognosis. Next, the immunological correlations of 
XRCCs expression level were analyzed using TIMER 2.0. Finally, GeneMANIA was used to visualize 
and analyze the functionally relevant genes, while Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were used for functional and pathway enrichment analyses of 
prognostic genes. Our results revealed that XRCCs were overexpressed in lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC). Univariate and multivariate Cox analyses 
showed that XRCC4/5/6 were independent risk factors for LUAD. Additionally, genetic alterations, 
methylation, and immune cell infiltration demonstrated an association between XRCC4/5/6 and 
poor prognosis in LUAD. Finally, the KEGG-enriched and non-homologous end-joining (NHEJ) 
pathways were shown to be associated with XRCC4/5/6. In conclusion, our study demonstrated 
that XRCC4/5/6 could be used as diagnostic and prognostic biomarkers for LUAD.
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Introduction

Lung cancer remains the leading cause of cancer- 
related deaths globally, with an estimated diagno-
sis of 2 million patients and 1.76 million deaths 
each year[1]. Despite the worldwide efforts to con-
trol smoking, which is the most prominent factor 
causing lung cancer [2,3], the number of patients 
with lung cancer will only increase further as the 
use of computed tomography (CT) screening 
becomes more widespread [4]. Approximately 
85% of lung cancer patients are diagnosed with 
non-small cell lung cancer (NSCLC), with lung 
adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) being the most common sub-
types of NSCLC [5]. Among these two, LUAD is 

more common and being a peripheral lung cancer, 
it mostly originates from the bronchial mucosal 
epithelium, whereas LUSC mainly originates 
from the bronchial mucosal columnar epithelium 
and is predominantly a central lung cancer. 
Although screening high-risk groups using low- 
dose CT can reduce lung cancer mortality by 
20%[6], there is no standard method to predict 
the survival of patients with NSCLC [7]. 
Therefore, to develop individualized treatment 
plans, it is essential to identify prognostic biomar-
kers and study their oncological characteristics in 
lung cancer, thereby improving the prognosis of 
patients with NSCLC.
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An underlying hallmark of cancers is their 
genomic instability, which may be the combined 
effect of DNA damage, tumor-specific DNA repair 
defects, and failure to stop or block the cell cycle 
before the damaged DNA is passed on to the 
daughter cells[8]. The X-ray repair cross- 
complementing (XRCC) gene family mainly con-
sists of six members (XRCC1/2/3/4/5/6), which are 
primarily involved in maintaining the chromo-
some stability by DNA single-strand break repair 
[9,10], and homologous recombination and non- 
homologous end-joining to repair the DNA dou-
ble-stranded breaks [11–14].However, whether the 
protein kinase, DNA-activated, catalytic subunit 
(PRKDC), Fanconi anemia (FA) complementation 
group G (FANCG), breast cancer gene 2 (BRCA2), 
etc. belong to the XRCC family remains partially 
controversial. Studies have demonstrated that dys-
regulation of the XRCC family may disrupt the 
DNA repair processes, leading to tumor develop-
ment in the body. [13,15,16]. Despite genomic 
instabilities promoting the development of cancer, 
they also offer therapeutic opportunities [17]. 
Consequently, our research focused on the expres-
sion levels and prognostic values of XRCCs in 
NSCLC.

RNA- and DNA-based studies are a significant 
part of biomedical research, which has been 
rapidly developing due to the advancements in 
microarray technologies [18]. Moreover, an 
increasing number of tumor values are being 
uncovered due to the improved efficiency of data 
analysis using the online platforms based on The 
Cancer Genome Atlas (TCGA) databases, such as 
UCSC Xena [19], cBioPortal [20], etc. In this 
study, bioinformatics analysis was used to compre-
hensively explore the expression and prognosis of 
XRCC family members in NSCLC and to search 
for biomarkers that can be used as diagnostic and 
prognostic markers for NSCLC.

Materials and Methods

Acquisition of RNA information

The mRNA data for NSCLC and its subtypes were 
obtained from TCGA (https://cancergenome.nih. 
gov/) and Oncomine (https://www.oncomine.org/ 
resource/

login.html) databases in December 2020.

Differential expression of XRCC family members

Multiple methods were utilized to determine the 
expression levels of XRCC family members in 
patients with NSCLC. TCGA database was used 
to evaluate the differential expression of XRCC 
members between the NSCLC (n = 1037) and 
normal tissues (n = 108). We then compared the 
expression levels of XRCCs in LUAD (n = 535) 
and LUSC tissues (n = 502) with those in normal 
tissues (LUAD, n = 59; LUSC, n = 49). 
Furthermore, we performed the differential 
expression analysis of XRCC family members in 
patients with LUAD and LUSC using several data-
sets from Oncomine.

Correlation of the expression levels of XRCC 
family members with clinical parameters in 
NSCLC

A correlation analysis of the expression levels of 
XRCC family members with the different clinical 
stages of cancer (LUAD: stage I, n = 410; stage II, 
n = 176; stage III, n = 118; stage IV, n = 38; LUSC: 
stage I, n = 381; stage II, n = 253; stage III, 
n = 131; stage IV, n = 12) and gender of patients 
(LUAD: Female, n = 409; Male, n = 343; LUSC: 
Female, n = 207; Male, n = 559) was performed 
using the UCSC Xena database (https://xenabrow 
ser.net/). Then, the correlation between the 
expression levels of XRCCs and the gender of 
patients was analyzed using the Wilcoxon test to 
identify the significant differences between the two 
groups, while the correlation between the expres-
sion levels of XRCCs and the clinical stages of 
cancer was analyzed using the Kruskal–Wallis 
test to identify the significant differences among 
three or more groups.

Genetic alterations in XRCCs and their prognosis

First, we chose six datasets (n = 2558) (LUAD: 
TCGA Firehose Legacy; TCGA PanCancer Altas; 
TCGA Nature 2014; LUSC: TCGA Firehose 
Legacy; TCGA PanCancer Atlas; TCGA Nature 
2014) from cBioPortal (http://www.cbioportal. 
org/), an open-source website for interactive 
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exploration of multidimensional cancer genomics 
datasets that aids in the analysis, visualization, and 
download of a large number of cancer datasets 
[20,21], to analyze the genetic alterations of 
XRCCs in LUAD and LUSC. Later, we used 
Kaplan–Meier (KM) analysis to explore the genetic 
mutations in XRCCs and their association with the 
overall survival (OS) and disease-free survival 
(DFS) rates of patients. The survival rates were 
compared by log-rank test to identify the differ-
ences between LUAD and LUSC patients with and 
without the genetic alterations.

Prognostic values of XRCC family members in 
LUAD and LUSC

The prognostic values of the expression levels of 
XRCC family members in LUAD and LUSC 
were estimated using the data downloaded 
from TCGA in December 2020 (LUAD: OS, 
n = 504). The OS rates of LUAD and LUSC 
patients were analyzed by dividing the patients 
into low- and high-expression groups based on 
their median mRNA levels. We then evaluated 
the differences in the OS rates of the high- and 
low-expression groups using the KM survival 
curve. P-value < 0.05 was considered as statisti-
cally significant. We further explored the prog-
nosis of XRCCs by performing univariate and 
multivariate Cox analyses to identify the genes 
that can be considered as independent prognos-
tic factors.

Analysis of XRCC4/5/6 DNA methylation sites and 
their prognosis

We performed the differential methylation analysis 
of XRCC4/5/6 promoter regions in patients with 
LUAD using the SurvivalMeth database (http:// 
bio-bigdata.hrbmu.edu.cn/

survivalmeth/) (P < 0.05), a web server to inves-
tigate the effects of DNA methylation-related func-
tional elements on prognosis. Additionally, we 
used the T-test to examine the data. The methyla-
tion sites associated with LUAD were classified 
into high- and low-risk groups for survival analysis 
using the KM method.

Tumor purity and immune cell infiltration of 
XRCC4/5/6

We used TIMER 2.0 (http://timer.cistrome.org/), 
a comprehensive resource for systematic analysis 
of immune infiltrates across diverse cancer types 
[22], to investigate the correlation of expression 
levels of XRCC4/5/6 genes with tumor purity and 
immune cell infiltration in LUAD.

Genetic interaction analysis

We used the GeneMANIA (http://www.genema 
nia.org), a prediction website that serves as 
a biological network integrator for gene prioritiza-
tion and function prediction [23], to construct 
gene networks associated with XRCC4/5/6 and 
visualize the functional correlation between these 
genes.

Functional and pathway enrichment analyses

Functional enrichment analysis was performed 
using Gene Ontology (GO), while pathway enrich-
ment analysis was performed using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). 
Both GO and KEGG were performed using the 
R package of ‘enrichplot’(v.3.12), which imple-
ments several visualization methods to interpret 
the functional enrichment results obtained from 
over-representation analysis (ORA) or gene set 
enrichment analysis (GSEA). Next, we used the 
KEGG database (https://www.genome.jp/kegg/), 
a database resource for understanding high-level 
functions and utilities of the biological system 
from molecular-level information, especially large- 
scale molecular datasets generated by genome 
sequencing and other high-throughput experimen-
tal technologies, to plot pathway maps associated 
with the target genes [24,25].

Statistical Analysis

Bioinformatics statistical analysis was performed 
using ‘R x64 4.0.5’ software and open online web-
sites. Differences in expression of XRCCs in 
NSCLC compared with normal tissues were ana-
lyzed by Student’s t-test. Genetic alteration prog-
nostic plots and Kaplan-Meier survival curves 
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were compared by logrank test. In all analyses, 
differences were considered statistically significant 
if the P value was less than 0.05.

Results

In this study, we analyzed the expression and 
prognosis of the XRCCs family from multiple bio-
logical perspectives using bioinformatics 
approaches, and we identified that XRCC4/5/6 
may become new biomarkers for LUAD diagnosis 
and prognosis. This discovery promises to benefit 
lung cancer patients.

XRCC family members are significantly 
overexpressed in NSCLC

Using TCGA database, we compared the expres-
sion levels of XRCC family members between the 
NSCLC tumor samples (n = 1037) and normal 
tissue samples (n = 108). The results indicated 
that XRCC1/2/3/4/5/6 were expressed at higher 
levels in NSCLC tissues than in the normal tissues 
(P < 0.001) (Figure 1(A)). We then analyzed the 
mRNA levels of XRCCs in LUAD and LUSC using 
TCGA database and found that the expression 
levels of XRCC1/2/3/4/5/6 were significantly upre-
gulated in both LUAD and LUSC tissues com-
pared to those in normal tissues (P < 0.05) 
(Figure 1(B, C)). In addition, we validated these 
findings by analyzing the datasets of Hou [26], 
Semalat [27], Su [28], Bhattacharjee [29], Garber 
[30], Talbot [31], and Yamagata [32] from the 
Oncomine database (Table 1). Taken together, 
these results indicate that the expression levels of 
XRCC family members are significantly upregu-
lated in both subtypes of NSCLC (LUAD and 
LUSC).).

Correlation of the expression levels of XRCCs 
with the clinical parameters of LUAD and LUSC

We used the UCSC Xena database to continue 
exploring the expression levels of XRCCs with 
regard to the tumor stages and genders of patients 
with LUAD and LUSC. Statistically significant dif-
ferences were observed in the patients with LUAD 
in the XRCC5 and XRCC6 groups (P < 0.05), with 
a positive correlation between the tumor stage and 

gene expression (Figure 2(A)). In patients with 
LUSC, XRCC2 expression was correlated with 
tumor stage (P < 0.05), with the highest gene 
expression being observed in stage II (Figure 2 
(B)). In addition, the mRNA levels of XRCC2 
and XRCC5 in LUAD patients and XRCC2 in 
LUSC patients were higher in men than in 
women (P < 0.05; Figure 2(C, D)). Overall, these 
findings imply that the expression levels of XRCCs 
are partially correlated with the clinical parameters 
in NSCLC patients.

Genetic alterations in XRCCs and their prognostic 
significance

Six TCGA-based datasets were selected from the 
cBioPortal online tool to analyze the genetic 
alterations in the XRCC family members in 
patients with LUAD and LUSC. Among the ana-
lyzed datasets, the frequency of genetic alterations 
in LUAD and LUSC, including amplifications, 
mutations, fusions, deep deletions, and multiple 
alterations, ranged from 8.99% (16/178) to 
13.91% (32/230). Amplification was the most com-
mon alteration observed in the six datasets, while 
mutation and deep deletion ranked second and 
third, respectively (Figure 3(A)). The percentages 
of genetic alterations in XRCCs ranged from 1.2% 
to 4% in patients with LUAD (XRCC1, 2.7%; 
XRCC2, 4%; XRCC3, 1.2%; XRCC4, 1.4%; 
XRCC5, 2%; XRCC6, 1.5%) (Figure 3(B)), and 
from 1.2% to 3% in patients with LUSC (XRCC1, 
2.6%; XRCC2, 2%; XRCC3, 3%; XRCC4, 1.2%; 
XRCC5, 1.7%; XRCC6, 1.6%) (Figure 3(C)).

Next, we explored the relationship between 
these genetic alterations in XRCCs and the survival 
rates of patients with LUAD and LUSC. KM ana-
lysis showed that the presence of altered XRCC 
family members was associated with reduced OS 
and DFS in LUAD patients compared to that in 
patients with unaltered XRCC family members 
(P < 0.05) (Figure 4(A)). In contrast, the analysis 
of genetic alterations in XRCCs in patients with 
LUSC did not reveal any significant correlation 
with the OS and DFS (Figure 4(B)). Nevertheless, 
the curve trend showed that LUSC patients with 
altered XRCCs were predicted to exhibit better OS 
than those with unaltered (Figure 4(B)). In sum-
mary, these results suggest that genetic alterations 
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Figure 1. Differential expression analysis of XRCC family members in NSCLC. (A) XRCCs were significantly overexpressed in NSCLC 
(***P value <0.001).(B) XRCCs were significantly up-regulated in LUAD.(C) XRCCswere significantly up-regulated in LUSC.
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in XRCC family members significantly affect the 
prognosis of patients with LUAD and LUSC.

Prognostic values of XRCC family members in 
LUAD and LUSC

We analyzed the prognostic values of XRCCs in 
patients with LUAD and LUSC using TCGA data-
base. The results suggested that high expression 
levels of XRCC2/3/4/5/6 were significantly 

associated with poor OS in patients with LUAD 
patients (Figure 5(A)). Additionally, upregulation 
of the mRNA levels of XRCC1/2/6 was signifi-
cantly associated with longer OS in patients with 
LUSC (Figure 5(B)). These results are consistent 
with those shown in Figures 4A and 4B.

Subsequently, we used univariate and multivari-
ate Cox analyses by combining the target genes, 
age, sex, and staging parameters to identify genes 
that can be used as prognostic indicators 

Table 1. Significant changes in XRCC family transcription levels between LUAD and LUSC and normal tissues.
Gene Types of lung cancer vs. Normal tissues Fold change P value t-Test Reference

XRCC1 Lung Adenocarcinoma vs. Normal 1.094 0.014 2.258 Hou[26]
Squamous Cell Lung Carcinoma vs. Normal 1.223 2.11E-4 3.903 Hou [26]

XRCC2 Lung Adenocarcinoma vs. Normal 3.692 1.84E-10 6.925 Semalat [27]
Squamous Cell Lung Carcinoma vs. Normal 1.697 1.44E-8 7.107 Hou [26]

XRCC3 Lung Adenocarcinoma vs. Normal 2.008 0.001 3.158 Su [28]
Squamous Cell Lung Carcinoma vs. Normal 2.787 5.44E-4 3.553 Bhattacharjee [29]

XRCC4 Lung Adenocarcinoma vs. Normal 1.605 4.58E-4 3.511 Su [28]
Squamous Cell Lung Carcinoma vs. Normal 1.166 0.017 2.216 Hou [26]

XRCC5 Lung Adenocarcinoma vs. Normal 1.879 1.07E-4 6.063 Garber [30]
Squamous Cell Lung Carcinoma vs. Normal 1.789 9.02E-7 5.448 Talbot [31]

XRCC6 Lung Adenocarcinoma vs. Normal 1.957 0.013 2.795 Yamagata [32]
Squamous Cell Lung Carcinoma vs. Normal 1.995 0.011 3.616 Yamagata [32]

Figure 2. Correlation of XRCC family with clinical factors. (A) Correlation between XRCCs expression and tumor stage in LUAD 
patients. (B) Correlation between XRCCs expression and tumor stage in LUSC patients. (C)Correlation between XRCCs expression and 
gender in LUAD patients.(D) Correlation between XRCCs expression and gender in LUSC patients.
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Figure 3. Genetic alterations in XRCC family in patients with LUAD and LUSC. (A)The genetic alterations of XRCCs in six datasets 
based on TCGA.(Lung Adenocarcinoma– TCGA Firehose Legcay ;TCGA PanCancer Altas ;TCGA Nature 2014; Lung Squamous 
Carcinoma – TCGA Firehose Legcay ;TCGA PanCancer Altas ;TCGA Nature 2014) (B).XRCCs alternations in LUAD. (C).XRCCs alternations 
in LUSC.
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independent of these clinical factors. Univariate 
Cox analysis showed that the tumor stage, 
XRCC4, XRCC5, and XRCC6 were potential risk 
factors for the OS in patients with LUAD, while no 
such statistically significant genes were found in 
patients with LUSC (P < 0.05) (Table 2; Table 3). 
In addition, multivariate Cox analysis demon-
strated that the tumor stage, XRCC4, XRCC5, 
and XRCC6 could predict the tumor prognosis 
independent of other factors for the OS in patients 
with LUAD (P < 0.05; Figure 6). Taken together, 
our results illustrated the excellent prognostic 
characteristics of XRCC family members in 
NSCLC patients and also showed that XRCC4/5/6 
were potential independent risk factors for OS in 
patients with LUAD.

Correlation of methylation of XRCC4/5/6 with 
survival analysis in LUAD

Based on our finding that XRCC4/5/6 can be 
used as potential independent risk factors for 
patients with LUAD, we further analyzed the 
methylation sites of XRCC4/5/6 using 
SurvivalMeth. Comparison of the methylation 
levels in LUAD tumor tissues with those in 
normal tissues identified three relevant methyla-
tion sites each in XRCC4 and XRCC5 (P < 0.05), 
whereas no such methylation sites were found in 
XRCC6 (P < 0.05) (Table 4). Then, we divided 
the samples with differentially methylated sites 
into high- and low-risk groups and performed 
survival analysis using the KM method. The 
results showed that the XRCC4/5 high-risk 

Figure 4. Correlation between the genetic alterations of XRCCs and prognosis of patients with LUAD and LUSC.(A) Correlation of 
genetic alterations in XRCCs with OS and DFS in LUAD patients.(B) Correlation of genetic alterations in XRCCs with OS and DFS in 
LUSC patients.
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groups were associated with a poor prognosis 
(Figure 7), which is consistent with the conclu-
sions of our previous survival analysis.

Correlation analysis of expression levels of 
XRCC4/5/6 and immune cell infiltration

Using TIMER 2.0, we analyzed the correlation 
between the expression levels of XRCC4/5/6 and 
the level of immune cell infiltration in patients 
with LUAD. Our results indicated that the expres-
sion levels of XRCC5/6 were positively correlated, 
while those of XRCC4 were negatively correlated 
with tumor purity (Figure 8). High expression 
levels of XRCC4/5/6 showed a significant negative 
correlation with the infiltration of the cluster of 
differentiation 4 (CD4)+ T cells and positive cor-
relation with the infiltration of the cluster of dif-
ferentiation 8 (CD8)+ T cells (Figure 8). The 
immune cell composition of NSCLC tissues was 

Figure 5. Prognostic value of XRCC family mRNA expression in LUAD and LUSC. (A)The expression of XRCCs in LUAD associated with 
OS. (B)The expression of XRCCs in LUSC associated with OS.

Table 2. Univariate analysis of the correlation of XRCCS expres-
sion and clinical characteristics with OS among LUAD patients.

Parameter

Univariate analysis

HR 95%CI P-value

XRCC1 1.012 0.9833~1.041 0.4165
XRCC2 1.059 0.9585~1.171 0.2583
XRCC3 1.019 0.9037~1.149 0.7589
XRCC4 1.047 1.003~1.092 0.03644
XRCC5 1.016 1.008~1.023 2.47E-05
XRCC6 1.005 1.001~1.010 0.008255
Age 1.008 0.9927~1.023 0.3120
Gender 1.102 0.8208~1.480 0.5178
Stage 1.632 1.420~1.876 5.32E-12

6218 Y. FAN ET AL.



dominated by T cells (47%), with CD4+ T cells 
being the most abundant T cell population 
(26%), followed closely by CD8+ T cells (22%) 
[33]. Furthermore, a study demonstrated that low- 
infiltrating CD4+ T cells, high-infiltrating CD8+ 

T cells, and high-infiltrating CD8+/low- 
infiltrating CD4+ T cells were associated with 
a poor prognosis in patients with NSCLC [34,35]. 
Taken together, our research showed that the infil-
tration of CD4 + T and CD8 + T cells associated 
with expression levels of XRCC4/5/6 revealed poor 
prognosis.

Gene-function interaction analysis of XRCC4/5/6

To identify the genes associated with XRCC4/5/6 
functions, we performed a visual analysis using 
the GeneMANIA online tool and identified 20 
genes that closely interacted with XRCC4/5/6 
(Figure 9). Among them, DNA ligase IV (LIG4), 
PRKDC, barrier-to-autointegration factor 1 
(BANF1), non-homologous end-joining gene 1 
(NHEJ1), and aprataxin and polynucleotide kinase 
3�-phosphatase (PNKP)-like factor (APLF) were 
the five most significantly interacting genes with 
XRCC4/5/6 (Table 5). XRCC4/5/6 all had multiple 
interactions with LIG4 and PRKDC, and the most 
significant interactions were physical interactions 
and pathway. However, BANF1 only interacted 
with XRCC4/5, and the most relevant interaction 
was pathway (Figure 9). Therefore, identifying 
genes that are functionally similar to XRCC4/5/6 
will aid in the discovery of other DNA repair 
target genes, thereby expanding the therapeutic 
options for tumor treatment..

Predicting the function and pathway of XRCC4/5/ 
6 in LUAD

The functions of XRCC4/5/6 and the correlations 
among their functions were explored by GO 
enrichment analysis in terms of biological pro-
cesses (BP), cellular components (CC), and mole-
cular functions (MF) [36]. The results showed that 
the functions significantly regulated by XRCC4/5/6 
concerning BP were viral latency, response to 
x-rays, double-strand break repairs via non- 
homologous end-joining, non-recombinational 
repair, response to ionizing radiations, double- 
strand break repair, DNA recombination, and 
response to radiation (Figure 10(A)). Moreover, 
these eight functions had the most significant 
functional correlation (Figure 10(A)). For CC, the 
function of the DNA repair complex was most 
markedly controlled by XRCC4/5/6 alterations 
and was most significantly correlated with other 
regulated functions (Figure 10(B)). Among all the 
MFs, the function most significantly regulated by 
XRCC4/5/6 was the protein C-terminal-binding, 
which was most significantly correlated with 
other regulatory functions (Figure 10(C)).

KEGG enrichment analysis was used to identify 
pathways related to the functions of XRCC4/5/6 
alterations and the pathways of gene alterations 
were drawn using the KEGG website. However, 
by KEGG enrichment analysis, only the NHEJ 
pathway was found to be associated with XRCC4/ 
5/6 alterations in LUAD (P < 0.05) (Figure 11(A)). 
Furthermore, we mapped the NHEJ pathway using 
the KEGG website, which can directly reflect the 
changes in genes in the pathway. The results 
showed that Rad27 was highly expressed in the 
Saccharomyces cerevisiae pathway, while DNA 
polymerase μ (Polμ) was expressed at low levels 
in the mammalian pathway (Figure 11(B)).

Discussion

Environmental factors play critical roles in tumor-
igenesis by affecting the stability of target genes [37]. 
Therefore, the ability of the genes to repair the 
damaged DNA is closely related to tumorigenesis 
and determines the difference in the susceptibility 
to cancer in different individuals [38]. Although the 

Table 3. Univariate analysis of the correlation of XRCCS expres-
sion and clinical characteristics with OS among LUSC patients.

Parameter

Univariate analysis

HR 95%CI P-value

XRCC1 0.9876 0.9611~1.015 0.3711
XRCC2 0.9884 0.9081~1.076 0.7864
XRCC3 0.9435 0.8745~1.018 0.1334
XRCC4 1.020 0.9330~1.116 0.6596
XRCC5 1.000 0.9940~1.006 0.9780
XRCC6 0.9984 0.9956~1.001 0.2502
Age 1.017 1.000~1.034 0.0444
Gender 1.196 0.8675 ~1.650 0.2743
Stage 1.256 1.064~1.482 0.007026
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Figure 6. Multifactorial Cox analysis for independent prognostic analysis.
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XRCC family members are essential components of 
DNA repair mechanisms, they are reported to play 
potential roles in the tumorigenesis and prognosis of 
multiple cancers; however, their oncological and 
prognostic values in NSCLC need to be investigated 
in future studies.

XRCC1, a single-strand break repair factor [39], 
has been reported to play essential roles in various 
cancers. Miao et al. demonstrated that the XRCC1 
Arg399Gln polymorphism is a genetic susceptibility 
factor for the development of gastric cardia cancer 
[40]. The XRCC1 399Gln allele is a potentially 
important determinant of susceptibility to smoking- 
induced pancreatic cancer [41]. Moreover, the pre-
sence of single nucleotide polymorphism (SNP)- 
77 T > C in the 5�-untranslated region (UTR) of 
XRCC1 is associated with an increased risk of devel-
oping lung cancer [42]. In our study, XRCC1 was 
highly expressed in both LUAD and LUSC tissues. 
Moreover, high expression of XRCC1 in LUSC was 
associated with longer OS, but it was not statisti-
cally significant in LUAD. The frequency of XRCC1 
alterations was 2.6% in LUAD and 2.7% in LUSC, 

and both of these gene amplifications account for 
a significant part.

A variety of cancers have been associated with 
XRCC2, such as breast [43], lung [44], pancreatic 
[45], and head and neck cancers [46]. Zienolddiny 
et al. reported that there are associations between 
a set of genetic polymorphisms in DNA repair 
genes and the risk of lung cancer [44]. 
Furthermore, in vivo studies using a viral vector 
containing XRCC2 promoter indicated that 
XRCC2 is a promising target for the diagnosis 
and treatment of various types of cancers [47]. In 
this study, XRCC2 was found to be overexpressed 
in the LUAD and LUSC tissues compared with the 
normal tissues. Moreover, high XRCC2 expression 
was significantly associated with poor OS in 
LUAD, while it was associated with better OS in 
LUSC. In terms of clinical characteristics, the 
expression of this gene was correlated with the 
clinical stage of LUSC and the gender of patients 
with LUAD and LUSC. Moreover, XRCC2 was 
predominantly amplified in LUAD exhibiting the 
highest frequency (4%), while it was predomi-
nantly deleted in LUSC (2%).

XRCC3 is required to repair double-strand 
breaks via homologous recombination repair path-
ways for accurate chromosomal segregation and 
repair of DNA cross links [11,48]. XRCC3 IVS6 
C1571T and the associated haplotype AAC are 
associated with a relatively high risk of lung cancer 
[14]. In the current study, XRCC3 expression was 
higher in the LUAD and LUSC tissues than in the 
normal tissues. In terms of survival, high XRCC3 

Table 4. Analysis of XRCC4/5/6 methylation site differences in 
LUAD and normal tissues.

Gene Site
Average of 

tumor
Average of 

normal
Delta 
value P-value

XRCC4 cg20536432 0.7958 0.8501 -0.05430 4.63e-09
cg09507411 0.7662 0.7400 0.02613 0.00478
cg15150652 0.8391 0.8275 0.01152 0.04637

XRCC5 cg00723275 0.8132 0.7941 0.01907 0.004026
cg09977847 0.6640 0.7173 -0.05331 5.633e- 

07
cg13506354 0.8671 0.8531 0.01401 0.01698

Figure7. Survival analysis of XRCC4/5/6 methylation sites associated with LUAD.
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expression in LUAD was significantly associated 
with the poor OS of patients, while no such rela-
tion was observed in LUSC. In addition, XRCC3 
was the most frequently altered gene of the XRCC 
family in LUAD (3%) and amplification was the 
dominant genetic alteration in both LUAD and 
LUSC.

XRCC4/5/6 are essential components of the 
NHEJ pathway, in which XRCC4 acts in conjunc-
tion with the Ku70-Ku80 heterodimer encoded by 
XRCC5 and XRCC6, respectively, and ligase IV for 
precise end-joining of blunt DNA double-strand 
breaks [12,13,49]. Moreover, NHEJ is the primary 
pathway for the repair of double-strand breaks in 

Figure8. Tumor purity and immune cell infiltration associated with XRCC4/5/6 expression in patients with LUAD.
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mammalian cells [13]. These conclusions are con-
sistent with our pathway enrichment analysis 
results shown in Figures 11A and 11B. Our study 
also indicated that Rad27 was highly expressed in 
the Saccharomyces cerevisiae pathway, while Polμ 
was downregulated in the mammalian pathway. 
The association between the polymorphisms of 
genes in the NHEJ pathway and the susceptibility 
and prognosis of lung cancer was first proposed by 

Tseng et al [50]. Furthermore, XRCC4/5/6 have 
been widely studied by scholars in the field of 
oncology [51–55].

In our study, XRCC4/5/6 were overexpressed 
in LUAD and LUSC tissues as compared to 
those in the normal tissues, which is consistent 
with the results of Ye et al [56] and Ma et al 
[57] who reported that XRCC5 was overex-
pressed in LUAD and LUSC. Survival analysis 
showed that high expression levels of XRCC4/5/ 
6 were associated with poor OS in LUAD 
patients. Multivariate Cox analysis showed that 
XRCC4/5/6 were potential independent risk fac-
tors for LUAD. Moreover, XRCC4/5/6 DNA 
methylation and immune cell infiltration analy-
sis in LUAD also indicated a poor prognosis. 
Currently, biomarkers are used for the clinical 
diagnosis and prognosis in a variety of cancers, 
such as lung [58], breast [59,60], and gastric 
cancers [61,62] Therefore, XRCC4/5/6 can be 

Figure 9. Network of gene interactions associated with XRCC4/5/6 function.

Table 5. The five most significant genes interacting with 
XRCC4/5/6.

Gene Description Rank

LIG4 DNA ligase 4 [Source:HGNC Symbol;Acc:HGNC:6601] 1
PRKDC protein kinase, DNA-activated,catalytic polypeptide 

[Source:HGNC Symbol;Acc:HGNC:9413]
2

BANF1 barrier to autointegration factor 1 [Source:HGNC 
Symbol;Acc:HGNC: 17397]

3

NHEJ1 non-homologous end joining factor 1 [Source:HGNC 
Symbol;Acc:HGNC: 25737]

4

APLF aprataxin and PNKP like factor [Source:HGNC Symbol; 
Acc:HGNC:28724]

5
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used as novel diagnostic and prognostic bio-
markers for LUAD.

Notably, this study has some limitations. First, 
the conclusions lack experimental validation; how-
ever, we applied a multiple-omics approach and 

used multiple databases to further support our 
conclusions. Second, the data in this study are 
mainly obtained from publicly available databases; 
therefore, the results heavily depend on the quality 
of the data in the databases.

Figure 10. Enrichment of functions and relationships among these functions for XRCC4/5/6 by analyzing GO.(A) Enrichment of 
functions and relationships among these functions in BP.(B) Enrichment of functions and relationships among these functions in CC. 
(C) Enrichment of functions and relationships among these functions in MF.
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Conclusion

In summary, we comprehensively analyzed the 
role of XRCC family members in NSCLC from 
multiple oncological perspectives using various 
online authoritative databases. Our study 
demonstrated that XRCC4/5/6 could be used 
as diagnostic and prognostic biomarkers for 
LUAD.
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