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Introduction: Traditional classification that divided gliomas into glioblastomamultiformes

(GBM) and lower grade gliomas (LGG) based on pathological morphology has been

challenged over the past decade by improvements in molecular stratification, however,

the reproducibility and diagnostic accuracy of glioma classification still remains poor. This

study aimed to establish and validate a novel nomogram for the preoperative diagnosis

of GBM by using integrated data combined with feasible baseline characteristics and

preoperative tests.

Material and method: The models were established in a primary cohort that included

259 glioma patients who had undergone surgical resection and were pathologically

diagnosed from March 2014 to May 2016 in the First Affiliated Hospital of Xi’an Jiaotong

University. The preoperative data were used to construct three models by the best

subset regression, the forward stepwise regression, and the least absolute shrinkage and

selection operator, and to furthermore establish the nomogram among those models.

The assessment of nomogram was carried out by the discrimination and calibration in

internal cohorts and external cohorts.

Results and discussion: Out of all three models, model 2 contained eight

clinical-related variables, which exhibited the minimum Akaike Information Criterion

(173.71) and maximum concordance index (0.894). Compared with the other two

models, the integrated discrimination index for model 2 was significantly improved,

indicating that the nomogram obtained from model 2 was the most appropriate

model. Likewise, the nomogram showed great calibration and significant clinical benefit

according to calibration curves and the decision curve analysis.

Conclusion: In conclusion, our study showed a novel preoperative model that

incorporated clinically relevant variables and imaging features with laboratory data that

could be used for preoperative prediction in glioma patients, thus providing more reliable

evidence for surgical decision-making.
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INTRODUCTION

Gliomas are the most common type of neuroepithelial neoplasm
in the central nervous system (CNS) and account for ∼3% of
all systemic malignant tumors (1–3). Gliomas are traditionally
divided into four grades according to the World Health
Organization (WHO) classification and The Cancer Genome
Atlas (TCGA) categorization, depending on the pathological
signatures and specific molecular biomarkers (4, 5). The
WHO grade II and grade III are defined as lower grade
gliomas (LGG) while the WHO grade IV is identified as
glioblastoma multiforme (GBM) which exhibits more aggressive
and invasive features (6). Accumulating evidence showed that
overall survival for GBMpatients was remarkably prolonged after
receiving a comprehensive clinical strategy including maximal
surgical resection, radio treatment, and chemotherapy (7–9).
Therefore, the precision of the preoperative classification of
gliomas is crucial in deciding the pertinent operative strategy
and for providing adequate information to the patient (10).
However, there are few methods available for pre-surgical
prediction of pathological grade in glioma patients. Recent
studies recommended using an integrated classification system
that combines histologic classification and genetic information,
such as 1p/19q chromosomal co-deletion, IDH1mutation, EGFR
amplification, and BRAF mutation (4, 5). One obvious weakness
for the current histopathological grading or molecular diagnose
of gliomas is that these examinations can only be obtained and
confirmed after surgical resection. This delayed process resulted
in an ambivalent situation in which the clinicians cannot achieve
sufficient evidence to help them formulate an operation strategy.
Therefore, accurate pre-surgical prediction of the prognostic
classification becomes an urgent need to improve the outcomes
for glioma patients.

Recent studies suggested that the non-specific immune
inflammatory response contributes to different signatures
associated with glioma pathogenesis, overall survival, or response
to treatment (11–15). The count of immune cells from
preoperative blood routines were significantly related to the
WHO classification and prognosis in glioma patients (16, 17).
Immune responses in GBM is characterized by low peripheral
lymphocyte counts, impaired mitogen-induced responses of
peripheral mononuclear cells, and accumulation of CD8+

suppressor T cells and CD4+CD25+FoxP3+Treg cells, which
have been reported to play a crucial role in cancer immune
surveillance and defense by inducing cytotoxic cell death and
inhibiting glioma cell proliferation and migration of glioma
(18–20). Monocytes specifically were recruited from peripheral
blood and associated withmicroglia to form the tumor-associated
macrophage (TAMs), which proved to be essential for tumor
microenvironment regulation and promoted tumorigenesis and
metastasis via secretion of inflammatory factors, thus inducing
activation of peripheral blood inflammatory cells (PBICs) in
gliomas (21, 22). To further evaluate the clinical relevance
between immune response and prognosis of tumor patients,
the systemic inflammation response index (SIRI) based on
peripheral neutrophil (N), monocyte (M), and lymphocyte (L)
counts was used as a survival-related predictor in multiple

solid tumors, including gastric cancer, hepatocellular carcinoma,
and pancreatic cancer (11, 23, 24). Despite these findings, the
functional role of SIRI in gliomas still remains unclear.

MRI could provide primary investigations of the subtype
and malignancy of brain tumors, thus affording a potential
presumptive diagnosis for further therapeutic regimens. Previous
MRI-based radio genomics studies presented a nomogram for
preoperative prediction molecular subgrouping for patients with
medulloblastoma by using MRI features of tumors. Henker et al.
also demonstrated that preoperatively measured necrosis volume
and necrosis-tumor ratio was the most crucial radiological
features of GBM with a strong influence on OS. Therefore, MRI
features of gliomas could be rational for preoperational grading
of gliomas (25, 26).

A single predictive index provides insufficient information
on gliomas. Meanwhile, accumulating laboratory examinations
or radiography was relevant with GBM progression (27, 28).
However, the predictive value of a combination with SIRI and
MRI in the preoperative diagnosis of GBM still remains unclear.
Furthermore, the traditional statistical strategy, called “data
snooping,” only adopted the variables which were significant on
univariate analysis to establish the final prediction models, which
led to model overfitting and showed poor results (29). There
are some advanced statistical methodologies to minimize this
limitation, such as the best subsets regression (BSR), the forward
stepwise regression (FSR), and the least absolute shrinkage
and selection operator (LASSO) (30–33). Therefore, our studies
aimed to establish an effective and non-invasive nomogram
for preoperative diagnosis and grading methods of gliomas by
using feasible baseline measurements and preoperative tests
combined with SIRI and MRI, as well as adopting advanced
statistical analysis.

METHOD

Patients
The flow diagram for this study was described in
Supplementary Figure 1. Clinical information of all glioma
patients was consecutively enrolled and this study was approved
by the Ethics Committee of the First Affiliated Hospital of
Xi’an Jiaotong University. This was a retrospective study, for
which formal consent was not required. All included patients
were carefully screened for the following inclusion criteria: (a)
pathologically diagnosed grade II–IV glioma based on the WHO
classification of CNS tumors (2016) (4) which was performed
by two independent pathologists, (b) no history of craniotomy
or stereotactic biopsy, (c) available brain MRI and blood
routines in the pre-surgery period and MRI features that were
measured by two independent radiologists, (d) complete clinical
characteristics, and (e) no disease causing elevated or decreased
PBIC. Finally, a total of 365 patients with gliomas who underwent
surgical resection at the Department of Neurosurgery, the First
Affiliated Hospital of Xi’an Jiaotong University from January
2014 to November 2016 were enrolled in this retrospective study.

All patients were arranged in chronological order. The top
70% of patients were assigned as the primary cohort and
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the bottom 30% of patients were identified as an internal
validation cohort. Validation of the nomogramwas also evaluated
in an independent external validation cohort which included
159 patients from June 2018 to April 2019 who underwent
craniotomy in our hospital.

Clinical Characteristics
The clinical information, including sex, age, height, body
weight, preoperative Karnofsky performance status (pKPS),
tumor grade, the preoperative epilepsy occurrence (pEO),
and preoperative blood routine tests including neutrophil,
monocyte, and lymphocyte counts, were obtained from medical
records. Features of MRI, comprising of tumor volume,
location, multifocality, annular enhancement, necrosis volume,
and peritumoral edema volume (PTE), were also involved in
our analysis.

Body mass index (BMI) was defined as: BMI = height/body
weight2. The threshold value for pKPS was <70 and ≥70 on
the basis of WHO’s standards (4). The SIRI was defined as:
SIRI = N∗M/L (22) and the PTE, tumor volume, and necrosis
volume were calculated based on formulas described in the
Supplementary Materials and Methods (26).

Variables Selection
In order to avoid over-fitting or under-fitting of the model,
three advanced statistical methods, the BSR, the LASSO, and
the FSR, were adopted to select variables in the primary cohort.
The criterion of variable selection for the BSR and the FSR was
determined by the Bayesian information criterion (BIC) (34).

Model Establishment
GBM-related predictive models were established in the primary
cohort based on the selected variables by adopting binary logistic
regression. Eventually, we developed three models as described
below: (a) model 1 consisted of seven variables based on the
BSR, (b) model 2 included SIRI besides the above seven variables
according to the LASSO, and (c) model 3 also consisted of seven
variables except for pEO according to the FSR.

The final model was determined by the Akaike Information
Criterion (AIC) (35), the ROC curves, the Harrell concordance
index (C-index), and the integrated discrimination index
(IDI) (36, 37).

Similarly, these methods were also used to assess the
performance of prediction models. Herein, the discrimination of
the model was evaluated by the C-index among three cohorts,
and the IDI was used to estimate whether the model’s predictive
ability could become better by adding one variable in model 1
or model 3. Conclusively, the nomogram was derived from the
final model.

Apparent Performance of the Nomogram
The performance of the nomogram was also demonstrated
by the calibration curve among three cohorts, except for the
ability of discrimination. Meanwhile, the appropriateness of
the current predictors involved in nomogram was tested. As
a result, the Hosmer–Lemeshow test, the studentized residuals,
the variance inflation factor (VIF), the Cook’s distance, the hat

value, and the Box-Tidwell test were performed to evaluate
model fitting, outliers, collinearity, influential observations, high
leverage cases of data, and the linear relationship between
continuous independent variables and the logit transformation
value of the dependent variable, respectively.

Clinical Usage
The decision curve analysis (DCA) was performed to assess
the clinical usage of nomogram and a net benefit for diverse
prediction models at different threshold probabilities by adding
the benefits and minimizing the harms (38).

Statistical Analysis
All the statistical analyses were performed with the SPSS software
(version 22.0, SPSS Inc., Chicago, IL) and R software (version
3.2.6; http://www.r-project.org). The packages in R which we
used in this study were shown as follows: “glment,” “rms,” “proc,”
“PredictABEL,” “rmda,” “car,” “leaps,” and “regplot.” Statistical
significance levels were determined by two-sided tests and P <

0.05 was defined as statistically significant. The Mann–Whitney
U-test was used for comparing two groups of continuous
variables analysis, the Kruskal–Wallis H-test was used for three
groups’ continuous variables analysis, and the χ2 test for
categorical variables analysis. The BSR, the LASSO, and the FSR
were used to select variables. The binary logistic regression was
performed for model construction.

RESULTS

Clinical Characteristics
The baseline clinical and pathological characteristics of the
three cohorts were presented in Table 1. The baseline characters
showed gratifying similarity in the prevalence of GBM among
the three cohorts (P = 0.682). The proportion of GBM was
55.2, 54.7, and 50.9% among the three cohorts, respectively.
Also, the baseline clinical parameters, laboratory tests, and
MRI factors showed no significant differences and were
comparable among the three cohorts. Additionally, the clinical
information after subgroup stratification based on pathological
grade in all cohorts also showed none statistical significance
(Supplementary Table 1). Altogether, all selected parameters in
this study showed homogeneity and comparability among all
cohorts, indicating that the source and collection for the clinical
data were reliable and guaranteed with high-quality.

Variables Selection Using the BSR
The BSR method showed great benefits on variables selection
since all possible combinations of variables were calculated and
the final selected combination should be optimal based on the
minimum BIC. As shown in Figures 1A,B, the selection of
all 12 parameters was presented and the minimum BIC was
−150.The number of final variables was 7 because there was
an inflection point, shown in the broken line of Figure 1A,
and the dotted line referred to the final combination based
on the BSR in Figure 1B, which incorporated clinical factors
and MRI features in the primary cohort. All selected variables
showed significantly statistical differences in all cohorts (all P <
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TABLE 1 | Clinical characteristics of patients in the primary and validation cohorts.

Characteristic Primary cohort Internal

validation

cohort

External

validation

cohort

P

Sex 0.943

Male 139 (53.7%) 58 (54.7%) 88 (55.3%)

Female 120 (46.3%) 48 (45.3%) 71 (44.7%)

Age, median (IQR),

years

49.00

(36.50–58.50)

49.50

(38.00–57.50)

50.00

(38.00–58.00)

0.915

BMI, median (IQR),

kg/m2

22.20

(20.70–23.53)

22.17

(20.75–23.88)

22.49

(21.17–23.13)

0.148

pKPS 0.691

<70 78 (30.1%) 29 (27.4%) 42 (26.4%)

≥70 181 (69.9%) 77 (72.6%) 117 (73.6%)

Tumor grade 0.682

LGG 116 (44.8%) 48 (45.3%) 78 (49.1%)

GBM 143 (55.2%) 58 (54.7%) 81 (50.9%)

pEO 0.387

Yes 88 (33.9%) 36 (34.0%) 64 (40.3%)

No 171 (66.1%) 70 (66.0%) 95 (59.7%)

SIRI 1.40 (0.79–2.55) 1.35

(0.70–1.94)

1.37

(0.64–2.06)

0.194

Tumor volume,

median (IQR), cm3

32.38

(15.76–50.71)

31.44

(13.43–49.18)

33.02

(15.99–50.18)

0.368

Tumor location 0.891

Supratentorial 133 (51.4%) 57 (53.8%) 81 (50.9%)

Infratentorial 126 (48.6%) 49 (46.2%) 78 (49.9%)

Tumor multifocality 0.419

Yes 50 (19.3%) 26 (24.5%) 29 (18.2%)

No 209 (80.7%) 80 (75.5%) 130 (81.8%)

Annular

enhancement

0.393

Yes 175 (67.6%) 69 (65.1%) 97 (61.1%)

No 84 (32.4%) 37 (34.9%) 62 (38.9%)

Tumor necrosis

volume, median

(IQR), cm3

16.72

(9.56–23.25)

15.19

(9.11–22.89)

16.28

(8.98–22.96)

0.274

PTE, median

(IQR), cm3

41.52

(20.69–63.76)

40.38

(20.08–62.69)

41.17

(20.91–63.33)

0.597

IQR, interquartile range; pKPS, preoperative Karnofsky performance status; pEO,

preoperative epilepsy occurrence; LGG, lower grade glioma; GBM, glioblastoma

multiforme; SIRI, systemic inflammation response index; PTE, peritumoral edema; P is

obtained from the Kruskal–Wallis H-test and the χ2-test.

0.05; Table 2, Supplementary Tables 2, 3). Consequently, model
1 was established.

Variables Selection Using the LASSO
Considering that the number of independent variables included
in the regression equation should be around 10 to 15 times
the number of ending events, we further adopted the LASSO
to select variables. As shown in Figures 1C,D, a coefficient
profile figure was produced against the ln (λ) sequence. Two
dotted vertical lines were drawn at the selected value with
10-fold cross-validation, where the optimal λ was 0.048 (1

standard error of the minimum criteria) and resulted in 8 non-
zero coefficients, age, pKPS, pEO, SIRI, and Tumor necrosis
volume, annular enhancement, PTE and tumor volume, being
selected from all variables in the primary cohort. These variables
were verified to exhibit significant differences (all P < 0.05;
Table 2, Supplementary Tables 2, 3). Consequently, model 2
was established.

Variables Selection Using the FSR
Herein, we also used themost common variable selectionmethod
to choose combinations of potential predictors such as the FSR.
Under this predominant process operation which involved a
series of steps, we also obtained 7 variables and theminimumBIC
was−150 because there was an inflection point in the broken line
which was shown in Figures 1E,F. Similarly, all selected variables
had significant statistical difference (all P < 0.05; Table 2,
Supplementary Tables 2, 3) and model 3 was established.

Development of Final Prediction Model
In the primary cohort, each significant variable was first evaluated
by using univariate logistic regression (Supplementary Table 3).
Then multivariable logistic regression analysis demonstrated
that multiple variables, including age, SIRI, Tumor necrosis
volume, annular enhancement, PTE, and tumor volume, were
independent risk factors, while pKPS and pEO were independent
protective factors (Table 2). The choice of final prediction model
was determined by AIC, the ROC curve, the C-index, and the IDI,
which were also used to examine efficiency of the models (Table 2
and Figures 1G–I).

As a result, model 2 showed the smallest AIC (173.71) among
the three regression models. The discrimination of model 2 was
maximum in primary cohort with the C-index 0.894 (95% CI:
0.847–0.919, P < 0.05). Similarly, the discrimination of model
2 was also maximum in internal validation cohort with the C-
index was 0.899 (95% CI: 0.856–0.922, P < 0.01) and external
validation cohort with C-index was 0.915 (95% CI: 0.868–0.941,
P < 0.01). The sensitivity and specificity of model 2 were 82.8
and 79.6% in the primary cohort, 82.1 and 86.2% in the internal
validation cohort, and 84.3 and 82.1% in the external validation
cohort, respectively, which were more appropriate than the other
models. After adding one variable to the prediction model, the
IDI was significantly improved (model 2 vs. model 1:11.89%,
P < 0.01, model 2 vs. model 3: 9.14%, P < 0.05). Moreover,
the random forest was used to screen out candidate variables
and the ROC analysis presented that the Lasso was 0.893, which
preceded the random forest combination based on increase
in node purity method (Supplementary Figures 2A–C and
Supplementary Table 4). Therefore, the nomogram obtained
from the final model was optimal (Figure 2).

Performance of Nomogram
We then verified a suitable calibration in the primary cohort
and validation cohorts (Figures 3A–C). The solid straight line
(the 45-degree line) showed an ideal prediction nomogram, and
the other broken lines represented the observed nomogram for
three models, of which a closer fit to the dashed line means
a better prediction model. Consistent with the above results,
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FIGURE 1 | Variables selection methods. (A,B) The selection of variables using the BSR method. (C) The LASSO coefficient profile of 12 GBM-related variables in

primary cohort. (D) 10-fold cross-validation (CV) for tuning parameter (λ) selection. (E,F) The FSR method was used to select variables. (G–I) The ROC curves of GBM

in primary cohort and two validation cohorts, respectively. BIC, Bayesian information criterion; GBM, glioblastoma multiforme; BSR, best subsets regression; FSR,

forward stepwise regression; BMI, body mass index; SIRI, systemic inflammation response index; pEO, preoperative epilepsy occurrence; pKPS, preoperative

Karnofsky performance status; PTE, peritumoral edema.
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TABLE 2 | Risk factors for GBM in primary cohort.

Model 1 Model 2 Model 3

Intercept and variable β Adjusted OR P β Adjusted OR P β Adjusted OR P

(95% CI) (95% CI) (95% CI)

Intercept −5.40 – – −6.33 – – −7.36 – –

Age 0.07 1.07 (1.04–1.11) <0.01 0.07 1.07 (1.04–1.11) <0.01 0.07 1.07 (1.04–1.11) <0.01

pKPS −2.47 0.09 (0.02–0.31) <0.01 −2.18 0.11 (0.30–0.44) <0.01 −2.22 0.11 (0.03–0.38) <0.01

pEO −1.87 0.15 (0.05–0.50) <0.05 −2.01 0.13 (0.04–0.45) <0.01 – – –

SIRI – – – 0.48 1.62 (1.10–2.39) <0.05 0.43 1.53 (1.06–2.22) <0.01

Tumor volume 0.07 1.08 (1.05–1.11) <0.01 0.07 1.08 (1.04–1.11) <0.01 0.07 1.07 (1.04–1.10) <0.01

Annular enhancement 1.62 5.03 (1.79–14.14) <0.01 1.64 5.17 (1.80–14.83) <0.01 1.39 4.02 (1.53–10.54) <0.01

PTE 0.02 1.02 (1.01–1.03) <0.05 0.02 1.02 (1.01–1.04) <0.05 0.02 1.02 (1.01–1.03) <0.05

Tumor necrosis volume 0.09 1.09 (1.03–1.17) <0.01 0.09 1.09 (1.03–1.16) <0.05 0.09 1.09 (1.03–1.15) <0.01

C1-index 0.114 C2-index 0.244 C3-index 0.471

Primary cohort 0.815 0.894 0.839

Internal validation cohort 0.824 0.899 0.879

External validation cohort 0.793 0.915 0.851

AIC1 AIC2 AIC3

179.63 173.71 182.51

IDI (2 vs. 1) IDI (2 vs. 3)

<0.01 <0.05

11.89% 9.14%

pKPS, preoperative Karnofsky performance status; pEO, preoperative epilepsy occurrence; SIRI, systemic inflammation response index; P is obtained from the multivariable logistic

regression; β is regression coefficient; PTE, peritumoral edema; OR, odds ratio; AIC, the Akaike information criterion; C-index, the concordance index (the area under curve in logistic

regression analysis); IDI, the integrated discrimination improvement (model 2 vs. model 1, model 2 vs. model 3).

the green solid broken line of calibration curves established via
model 2 also showed a superior performance among the three
cohorts. Moreover, the Hosmer–Lemeshow test indicated the
nomogram model had a satisfactory fitting (P = 0.752). There
were no outliers for data with the P < 0.05. All predictors
had no multicollinearity because the VIF in all them was <1.5.
The Box-Tidwell test showed a linear relationship between all
continuous independent variables and the logit transformation
value of the dependent variable (P = 0.474 for age, P = 0.421
for SIRI, P = 0.667 for tumor volume, P = 0.331 for PTE, P
= 0.389 for tumor necrosis volume), and there were also no
strong influential observations and high leverage cases as all of
the Cook’s distances were no more than 0.02 and all hat values
were no more than 0.069 (Supplementary Figures 3A–C). Taken
together, these results suggested that the nomogram was feasible.

Clinical Usage
Figures 4A–C showed a comparable net benefit if the threshold
probability for a patient or a doctor was within a range from 0
to 0.85, according to DCA. The y-axis showed the net benefit,
which was a difference value between the proportion of false
positive patients and the proportion of true positive patients,
weighted by the relative harm of deserting therapies compared
with the negative effects of unnecessary therapies (39). The
oblique smooth solid line represented a kind of hypothesis
that all patients have GBM. The horizontal smooth solid line
represented a kind of hypothesis that all patients have no GBM.
The oblique broken lines represented all patients who were

considered as GBM according to the constructed prediction
model. In our current study, the decision curves in three cohorts
showed that if the threshold probability was between 0 and
0.80, then using the comprehensive nomogram to preoperatively
predict GBM added more benefit than treating either all or
no patients, while the perfect model was the model with the
highest net benefit under any threshold probability. The results
also indicated that nomogram could improve current treatment
standards for glioma.

DISCUSSION

In order to rationally promote the individual multidisciplinary
integrated treatment of gliomas, the development of a more
efficient and comprehensive prediction system for gliomas
becomes an urgent need. Instead of adopting only a single
indicator to predict glioma grade (17), we established and
validated an integrated nomogram to accurately predict the
probability of pathological grade in glioma patients before
undergoing craniotomy. Among the 365 patients, 259 were
included in a primary cohort for creating the model and the
remaining cases were arranged in an internal validation cohort
for validating the model in a chronological order. Additionally,
we also collected 159 patients to establish an external validation
cohort in other time periods to ensure the extensibility and
accuracy of the prediction model. Herein, we proposed that
the three cohorts were homogeneous and comparable according
to the statistical analysis. Considering some limitations from
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FIGURE 2 | GBM-related nomogram prediction score. GBM-related nomogram was constructed to preoperatively predict GBM for glioma patients, with the age,

pKPS, annular enhancement, tumor necrosis volume, pEO, tumor volume, SIRI and PTE. The nomogram showed the probability of having GBM in a randomized

patient with a pathological diagnosis of GBM. SIRI, systemic inflammation response index; pEO, preoperative epilepsy occurrence; pKPS, preoperative Karnofsky

performance status; PTE, peritumoral edema. *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 3 | The Calibration curves of three prediction models. (A) The Calibration curves of three prediction models in primary cohort. (B) The Calibration curves of

three prediction models in internal validation cohort. (C) The Calibration curves of three prediction models in primary cohort in external cohort.

using traditional statistical strategy, we adopted three advanced
statistical methods to select variables in the primary cohort. As a
result, these methods reduced bias generated by “data snooping”
and ensured the reliability of the model.

Based on the LASSOmethod, we screened out eight candidate
indicators to construct model 2. The performance of model 2 was
the most appropriate among the three models with the criterions.
The LASSO, which not only avoided the mismatch between the
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FIGURE 4 | Decision curve analysis of three prediction models. (A) The DCA curves of three prediction models in primary cohort. (B) The DCA curves of three

prediction models in internal validation cohort. (C) The DCA curves of three prediction models in primary cohort in external cohort.

number of independent variables and the ending events but also
exceeded the high collinearity of the selected variables, has been
proven to perform more favorably in a dataset with a lower
number of ending events compared to the BSR and the FSR (40).
Additionally, the ROC and calibration analysis were performed
to validate the discrimination and calibration of model 2
among the three cohorts. With this combination, patients with
suspicious GBM could be precisely identified before the surgical
resection, which provided more evidence to the surgeon to
formulate the surgical strategy. The rationality and feasibility of
the data was also verified for further confirmation of the models.
Moreover, the ability of discrimination between the Lasso and
random forest methods were compared and the result suggested
that the combination of selected variables based on increased
mean squared error in random forest was similar to the Lasso
while the other combination exhibited significant deficiency in
random forest compared to Lasso according to the ROC analysis
(Supplementary Figures 2A–C and Supplementary Table 4).
Eventually, an integrated nomogram for pre-surgical prediction
of GBM was established based on these novel findings and
was confirmed by DCA analysis. Altogether, our nomogram
could be helpful to separate GBM patients via a non-
invasive method before surgery and make appropriate clinical
therapeutic decisions.

To gain more insight into the clinical relevance of our
nomogram in gliomas, the correlation between the nomogram
score and overall survival rate were investigated based on
the different WHO grades of gliomas. The results showed
that the high nomogram score derived from our methods
was strongly correlated with all WHO grades and overall
survival of glioma patients. Additionally, the time-dependent
ROC analysis indicated that the nomogram was appropriate
(Supplementary Figures 4A,B). Moreover, we divided all glioma
samples into two groups based on their malignant characters,
GBM (Grade IV) and lower-grade gliomas (Grade II and III),
according to the TCGA standards. Moreover, the Kaplan–Meier
analysis showed that an elevated nomogram score revealed

more severe prognosis in either LGG or GBM, indicating that
our model was sensitive to gliomas despite the WHO grade
(Supplementary Figures 4C,D). The pKPS and pEO could be
independent protective factors while age, SIRI, PTE, annular
enhancement, tumor volume, and tumor necrosis volume could
be independent risk factors (Supplementary Figure 5). Lastly,
the correlation between nomogram score and survival in patients
who received different post-surgical treatment were explored.
The results showed that increased nomogram score could
be correlated with poor prognosis despite the patient having
received TMZ/radiation or not (Supplementary Figures 6A–D).
Altogether, these data suggested that our model could be used as
a predictor for tumor grade and revealed prognosis in gliomas as
well; moreover, it is independent from eventual modification of
survival caused by post-surgical treatment.

Multiple studies that aimed to develop prognostic markers
for malignant tumors by combining clinical characteristics with
preoperative examinations have been previously reported (41,
42). It has been proven that the nomogram based on multimodal
biomarkers could successfully predict axillary lymph node (ALN)
metastasis in patients with breast cancer before surgery, which
was rational in the training cohort (C-index: 0.856) and reliable in
the validation cohort (C-index: 0.841) (43). Although a previous
study also established a non-invasive risk score to predict ALN
metastasis, the C-index remained at only 0.74 and showed a
lack of comprehensive index (44). Therefore, integrated profiling
could provide a more accurate preoperative diagnosis and result
in reasonable clinical decisions.

Recent studies have indicated that MRI features of
glioma, including tumor necrosis, volume, enhancement,
and peritumoral edema, could present abundant information
about glioma heterogeneity (26, 45, 46). Henker et al. (26) also
demonstrated that preoperatively measured necrosis volume
and necrosis-tumor ratios are the most important radiological
features of GBM with a strong influence on OS. Liu et al. (45)
investigated the correlation between progression-free survival
(PFS) and MRI features among 300 patients with LGG (216 cases
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in a training cohort and 84 cases in a validation cohort). The
results showed that MRI features were significantly associated
with PFS (P < 0.05) and a comprehensive nomogram which
had favorable discrimination and calibration for prediction
of PFS was established; moreover, researchers considered that
increased risk score of nomogram implied malignancy of glioma.
Meanwhile, Muccio et al. (46) analyzed the differentiation
between cerebral metastases (CM) and GBM for MRI and they
suggested that the signal alteration in the adjacent cortex was
specific for GBM and peripheral rim sign was specific for CM.
Herein, we speculated that MRI reveals malignant characteristics
of gliomas, including proliferation, tumor invasion, and
microenvironment changes (47, 48). To this end, tumor volume,
necrosis volume, and peritumoral edema volume were extracted
from images from glioma patients and then enrolled in our
nomogram. Compared to an isolated predictor of SIRI, the
ROC and calibration curves of our nomogram were significantly
improved (Supplementary Figures 7A,B).

Tumor-related inflammation has long been considered as
an important hallmark of cancer (49). Accumulating evidence
suggested that tumorigenesis and invasion of the tumor were
closely related to the chronic non-specific inflammation process
and were thought to play a crucial role in the survival of
patients. This progress was mediated by inflammation cells and
cytokines that can present and be detected in peripheral blood
(50). Wang et al. (17) found that nutrition-related markers,
including albumin-to-globulin and prognostic nutrition index
(PNI), were negatively associated with glioma grades and were
remarkably reduced in GBM in contrast to LGG (all P < 0.01).
The diagnostic value of hematological markers in predicting
glioma grade combined with age and PNI showed fantastic
discrimination with AUC of 0.750. Furthermore, Geng et al.
(51) found that the median overall survival rate in patients with
SIRI≤1.2 was significantly higher than in patients with SIRI>1.2
and the nomogram including SIRI could more accurately predict
OS compared with the TNM staging system. Therefore, an
inflammation index such as SIRI proved to be a potential
index for predicting tumorigenesis and metastasis of glioma
and should be involved in the prediction model. In our study,
SIRI was measured by counting of PBIC and it was found that
SIRI was positively correlated with the pathological grade of
gliomas (P < 0.01, Supplementary Table 2). Taken together, we
constructed and evaluated a comprehensive probabilistic score
for the preoperative prediction of GBM in glioma, which could
be a crucial method for early diagnosis and support more rational
treatment of GBM.

Although our nomogram showed encouraging discrimination
and calibration among the three cohorts, there were still
some limitations. Since a retrospective method was used in
this study, inherent deviations such as selection deviation and
detection deviation were inevitably generated. Also, continuous
monitoring for the variation of some parameters cannot be

achieved. Further, molecular mechanism studies and large-scale
and multi-center clinical trials needed to be performed to modify
the model.

CONCLUSION

In conclusion, our study showed a novel preoperative model
incorporated clinically relevant variables and imaging features
with laboratory data that could be used for preoperative
prediction in glioma patients, thus providing more reliable
evidence for surgical decision-making.

DATA AVAILABILITY STATEMENT

The data generated during this study are included in this article.
Raw data are available upon reasonable request.

ETHICS STATEMENT

This study was approved by the Ethics Committee, the First
Affiliated Hospital of Xi’an Jiaotong University. This is a
retrospective study, for which formal consent is not required.

AUTHOR CONTRIBUTIONS

WW: collection and/or assembly of data, data analysis
and interpretation, manuscript writing, methodology, and
software. ZD: collection and/or assembly of data, data analysis
and interpretation, manuscript writing, and editing. WA:
data analysis, manuscript writing, and interpretation. YW:
manuscript writing and project administration. JX: manuscript
writing and project administration. LZ: manuscript writing.
BL: conception/design. MW: conception/design, supervision,
and editing. JW: conception/design, supervision, and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This study was funded by the National Natural Science Fund
of China (Grant No. 81802502), the Project Supported by the
Natural Science Basic Research Plan in Shaanxi Province of China
(Grant No. 2019JQ-958), the Fundamental Research Funds of
Xi’an Jiaotong University (Grant No. 1191329177), and the
Special Foundation for Class A Subject of the First Affiliated
Hospital of Xi’an Jiaotong University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.01750/full#supplementary-material

Frontiers in Oncology | www.frontiersin.org 9 October 2020 | Volume 10 | Article 1750

https://www.frontiersin.org/articles/10.3389/fonc.2020.01750/full#supplementary-material
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Prediction Nomogram of GBM

REFERENCES

1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS.

CBTRUS statistical report: primary brain and other central nervous system

tumors diagnosed in the United States in 2011-2015. Neuro Oncol. (2018)

20:iv1–86. doi: 10.1093/neuonc/noy131

2. Delgado-Lopez PD, Corrales-Garcia EM, Martino J, Lastra-Aras E, Duenas-

Polo MT. Diffuse low-grade glioma: a review on the new molecular

classification, natural history and current management strategies. Clin Transl

Oncol. (2017) 19:931–44. doi: 10.1007/s12094-017-1631-4

3. Bush NA, Chang SM, Berger MS. Current and future strategies for treatment

of glioma. Neurosurg Rev. (2017) 40:1–14. doi: 10.1007/s10143-016-0709-8

4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,

Cavenee WK, et al. The 2016 world health organization classification of

tumors of the central nervous system: a summary. Acta Neuropathol. (2016)

131:803–20. doi: 10.1007/s00401-016-1545-1

5. Wu F, Wang ZL, Wang KY, Li GZ, Chai RC, Liu YQ, et al. Classification of

diffuse lower-grade glioma based on immunological profiling.Mol Oncol. (2020)

14:2081–95. doi: 10.1002/1878-0261.12707

6. Gusyatiner O, Hegi ME. Glioma epigenetics: from subclassification

to novel treatment options. Semin Cancer Biol. (2018) 51:50–

8. doi: 10.1016/j.semcancer.2017.11.010

7. Su YT, Chen R, Wang H, Song H, Zhang Q, Chen LY, et al. Novel targeting

of transcription and metabolism in glioblastoma. Clin Cancer Res. (2018)

24:1124–37. doi: 10.1158/1078-0432.CCR-17-2032

8. Goldman DA, Hovinga K, Reiner AS, Esquenazi Y, Tabar V, Panageas KS.

The relationship between repeat resection and overall survival in patients

with glioblastoma: a time-dependent analysis. J Neurosurg. (2018) 129:1231–

9. doi: 10.3171/2017.6.JNS17393

9. Adair JE, Beard BC, Trobridge GD, Neff T, Rockhill JK,

Silbergeld DL, et al. Extended survival of glioblastoma patients

after chemoprotective HSC gene therapy. Sci Transl Med. (2012)

4:133ra157. doi: 10.1126/scitranslmed.3003425

10. Arita K, Miwa M, Bohara M, Moinuddin FM, Kamimura K, Yoshimoto

K. Precision of preoperative diagnosis in patients with brain tumor—a

prospective study based on “top three list” of differential diagnosis for 1061

patients. Surg Neurol Int. (2020) 11:55. doi: 10.25259/SNI_5_2020

11. Qi Q, Zhuang L, Shen Y, Geng Y, Yu S, Chen H, et al. A novel

systemic inflammation response index (SIRI) for predicting the survival of

patients with pancreatic cancer after chemotherapy. Cancer. (2016) 122:2158–

67. doi: 10.1002/cncr.30057

12. Fox P, Hudson M, Brown C, Lord S, Gebski V, De Souza P, et al. Markers of

systemic inflammation predict survival in patients with advanced renal cell

cancer. Br J Cancer. (2013) 109:147–53. doi: 10.1038/bjc.2013.300

13. Xie D, Marks R, Zhang M, Jiang G, Jatoi A, Garces YI, et al. Nomograms

predict overall survival for patients with small-cell lung cancer incorporating

pretreatment peripheral blood markers. J Thorac Oncol. (2015) 10:1213–

20. doi: 10.1097/JTO.0000000000000585

14. van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler

DS, et al. Characterization of gene expression profiles associated with

glioma progression using oligonucleotide-based microarray analysis and real-

time reverse transcription-polymerase chain reaction. Am J Pathol. (2003)

163:1033–43. doi: 10.1016/S0002-9440(10)63463-3

15. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al.

Molecular subclasses of high-grade glioma predict prognosis, delineate a

pattern of disease progression, and resemble stages in neurogenesis. Cancer

Cell. (2006) 9:157–73. doi: 10.1016/j.ccr.2006.02.019

16. Zheng SH, Huang JL, Chen M,Wang BL, Ou QS, Huang SY. Diagnostic value

of preoperative inflammatory markers in patients with glioma: a multicenter

cohort study. J Neurosurg. (2018) 129:583–92. doi: 10.3171/2017.3.

JNS161648

17. Wang PF, Meng Z, Song HW, Yao K, Duan ZJ, Yu CJ, et al. Preoperative

changes in hematological markers and predictors of glioma grade and

survival. Front Pharmacol. (2018) 9:886. doi: 10.3389/fphar.2018.00886

18. Glass R, Synowitz M. CNS macrophages and peripheral myeloid

cells in brain tumours. Acta Neuropathol. (2014) 128:347–

62. doi: 10.1007/s00401-014-1274-2

19. El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+

regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma

multiforme. Neuro Oncol. (2006) 8:234–43. doi: 10.1215/15228517-2006-006

20. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun

W, Qiao W, et al. Incidence and prognostic impact of FoxP3+

regulatory T cells in human gliomas. Clin Cancer Res. (2008)

14:5166–72. doi: 10.1158/1078-0432.CCR-08-0320

21. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and

macrophages in glioma maintenance and progression. Nat Neurosci. (2016)

19:20–7. doi: 10.1038/nn.4185

22. Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri

A, et al. Single-cell profiling of human gliomas reveals macrophage

ontogeny as a basis for regional differences in macrophage

activation in the tumor microenvironment. Genome Biol. (2017)

18:234. doi: 10.1186/s13059-017-1362-4

23. Li S, Lan X, Gao H, Li Z, Chen L, Wang W, et al. Systemic Inflammation

Response Index (SIRI), cancer stem cells and survival of localised gastric

adenocarcinoma after curative resection. J Cancer Res Clin Oncol. (2017)

143:2455–68. doi: 10.1007/s00432-017-2506-3

24. Xu L, Yu S, Zhuang L, Wang P, Shen Y, Lin J, et al. Systemic inflammation

response index (SIRI) predicts prognosis in hepatocellular carcinoma patients.

Oncotarget. (2017) 8:34954–60. doi: 10.18632/oncotarget.16865

25. Dasgupta A, Gupta T, Pungavkar S, Shirsat N, Epari S, Chinnaswamy G,

et al. Nomograms based on preoperative multiparametric magnetic resonance

imaging for prediction of molecular subgrouping in medulloblastoma: results

from a radiogenomics study of 111 patients. Neuro Oncol. (2019) 21:115–

24. doi: 10.1093/neuonc/noy093

26. Henker C, Kriesen T, Glass A, Schneider B, Piek J. Volumetric

quantification of glioblastoma: experiences with different measurement

techniques and impact on survival. J Neurooncol. (2017) 135:391–

402. doi: 10.1007/s11060-017-2587-5

27. Paech D, Windschuh J, Oberhollenzer J, Dreher C, Sahm F, Meissner JE,

et al. Assessing the predictability of IDH mutation and MGMT methylation

status in glioma patients using relaxation-compensated multipool CEST MRI

at 7.0 T. Neuro Oncol. (2018) 20:1661–71. doi: 10.1093/neuonc/noy073

28. Zhang ZY, Zhan YB, Zhang FJ, Yu B, Ji YC, Zhou JQ, et al. Prognostic

value of preoperative hematological markers combined with molecular

pathology in patients with diffuse gliomas. Aging. (2019) 11:6252–

72. doi: 10.18632/aging.102186

29. Harrell FE Jr Lee KL, Matchar DB, Reichert TA. Regression models for

prognostic prediction: advantages, problems, and suggested solutions. Cancer

Treat Rep. (1985) 69:1071–7.

30. Collins GS, Reitsma JB, Altman DG, Moons KG, Group T.

Transparent reporting of a multivariable prediction model for

individual prognosis or diagnosis (TRIPOD): the TRIPOD

statement. The TRIPOD group. Circuluation. (2015) 131:211–

9. doi: 10.1161/CIRCULATIONAHA.114.014508

31. Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al. A guide to

systematic review and meta-analysis of prediction model performance. BMJ.

(2017) 356:i6460. doi: 10.1136/bmj.i6460

32. Adams ST, Leveson SH. Clinical prediction rules. BMJ. (2012)

344:d8312. doi: 10.1136/bmj.d8312

33. Walter S, Tiemeier H. Variable selection: current practice in epidemiological

studies. Eur J Epidemiol. (2009) 24:733–6. doi: 10.1007/s10654-009-9411-2

34. Li W, Nyholt DR. Marker selection by akaike information criterion and

bayesian information criterion. Genet Epidemiol. (2001) 21 (Suppl. 1):S272–

7. doi: 10.1002/gepi.2001.21.s1.s272

35. Rozet E, Ziemons E, Marini RD, Hubert P. Usefulness of information

criteria for the selection of calibration curves. Anal Chem. (2013) 85:6327–

35. doi: 10.1021/ac400630k

36. Harrell FE Jr Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of

medical tests. JAMA. (1982) 247:2543–6. doi: 10.1001/jama.247.18.2543

37. Tzoulaki I, Liberopoulos G, Ioannidis JP. Use of reclassification for assessment

of improved prediction: an empirical evaluation. Int J Epidemiol. (2011)

40:1094–105. doi: 10.1093/ije/dyr013

38. Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou

E, Vickers AJ, et al. Reporting and interpreting decision curve

Frontiers in Oncology | www.frontiersin.org 10 October 2020 | Volume 10 | Article 1750

https://doi.org/10.1093/neuonc/noy131
https://doi.org/10.1007/s12094-017-1631-4
https://doi.org/10.1007/s10143-016-0709-8
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1002/1878-0261.12707
https://doi.org/10.1016/j.semcancer.2017.11.010
https://doi.org/10.1158/1078-0432.CCR-17-2032
https://doi.org/10.3171/2017.6.JNS17393
https://doi.org/10.1126/scitranslmed.3003425
https://doi.org/10.25259/SNI_5_2020
https://doi.org/10.1002/cncr.30057
https://doi.org/10.1038/bjc.2013.300
https://doi.org/10.1097/JTO.0000000000000585
https://doi.org/10.1016/S0002-9440(10)63463-3
https://doi.org/10.1016/j.ccr.2006.02.019
https://doi.org/10.3171/2017.3.JNS161648
https://doi.org/10.3389/fphar.2018.00886
https://doi.org/10.1007/s00401-014-1274-2
https://doi.org/10.1215/15228517-2006-006
https://doi.org/10.1158/1078-0432.CCR-08-0320
https://doi.org/10.1038/nn.4185
https://doi.org/10.1186/s13059-017-1362-4
https://doi.org/10.1007/s00432-017-2506-3
https://doi.org/10.18632/oncotarget.16865
https://doi.org/10.1093/neuonc/noy093
https://doi.org/10.1007/s11060-017-2587-5
https://doi.org/10.1093/neuonc/noy073
https://doi.org/10.18632/aging.102186
https://doi.org/10.1161/CIRCULATIONAHA.114.014508
https://doi.org/10.1136/bmj.i6460
https://doi.org/10.1136/bmj.d8312
https://doi.org/10.1007/s10654-009-9411-2
https://doi.org/10.1002/gepi.2001.21.s1.s272
https://doi.org/10.1021/ac400630k
https://doi.org/10.1001/jama.247.18.2543
https://doi.org/10.1093/ije/dyr013
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Prediction Nomogram of GBM

analysis: a guide for investigators. Eur Urol. (2018) 74:796–

804. doi: 10.1016/j.eururo.2018.08.038

39. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision

curve analysis, a novel method for evaluating diagnostic tests, prediction

models and molecular markers. BMC Med Inform Decis Mak. (2008)

8:53. doi: 10.1186/1472-6947-8-53

40. Steyerberg EW, Eijkemans MJ, Harrell FEJr Habbema JD. Prognostic

modelling with logistic regression analysis: a comparison of selection

and estimation methods in small data sets. Stat Med. (2000) 19:1059–

79. doi: 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.

0.CO;2-0

41. Birkhahn M, Mitra AP, Cote RJ. Molecular markers for bladder cancer:

the road to a multimarker approach. Expert Rev Anticancer Ther. (2007)

7:1717–27. doi: 10.1586/14737140.7.12.1717

42. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development

and validation of a radiomics nomogram for preoperative prediction of

lymph node metastasis in colorectal cancer. J Clin Oncol. (2016) 34:2157–

64. doi: 10.1200/JCO.2015.65.9128

43. Xie X, Tan W, Chen B, Huang X, Peng C, Yan S, et al. Preoperative

prediction nomogram based on primary tumor miRNAs signature and

clinical-related features for axillary lymph node metastasis in early-stage

invasive breast cancer. Int J Cancer. (2018) 142:1901–10. doi: 10.1002/ijc.

31208

44. Dihge L, Bendahl PO, Ryden L. Nomograms for preoperative prediction

of axillary nodal status in breast cancer. Br J Surg. (2017) 104:1494–

505. doi: 10.1002/bjs.10583

45. Liu X, Li Y, Qian Z, Sun Z, Xu K, Wang K, et al. A radiomic signature as

a non-invasive predictor of progression-free survival in patients with lower-

grade gliomas. Neuroimage Clin. (2018) 20:1070–7. doi: 10.1016/j.nicl.2018.

10.014

46. Muccio CF, Tedeschi E, Ugga L, Cuocolo R, Esposito G, Caranci F.

Solitary cerebral metastases vs. high-grade gliomas: usefulness of two

MRI signs in the differential diagnosis Anticancer Res. (2019) 39:4905–

9. doi: 10.21873/anticanres.13677

47. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

48. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig

JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial

neoplasms. J Neurosurg. (1987) 66:865–74. doi: 10.3171/jns.1987.66.6.0865

49. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.

(2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013

50. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related

inflammation and treatment effectiveness. Lancet Oncol. (2014)

15:e493–503. doi: 10.1016/S1470-2045(14)70263-3

51. Geng Y, Zhu D, Wu C, Wu J, Wang Q, Li R, et al. A novel systemic

inflammation response index (SIRI) for predicting postoperative survival of

patients with esophageal squamous cell carcinoma. Int Immunopharmacol.

(2018) 65:503–10. doi: 10.1016/j.intimp.2018.10.002

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wu, Deng, Alafate, Wang, Xiang, Zhu, Li, Wang and Wang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Oncology | www.frontiersin.org 11 October 2020 | Volume 10 | Article 1750

https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1186/1472-6947-8-53
https://doi.org/10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.0.CO;2-0
https://doi.org/10.1586/14737140.7.12.1717
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1002/ijc.31208
https://doi.org/10.1002/bjs.10583
https://doi.org/10.1016/j.nicl.2018.10.014
https://doi.org/10.21873/anticanres.13677
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.3171/jns.1987.66.6.0865
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/S1470-2045(14)70263-3
https://doi.org/10.1016/j.intimp.2018.10.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Preoperative Prediction Nomogram Based on Integrated Profiling for Glioblastoma Multiforme in Glioma Patients
	Introduction
	Method
	Patients
	Clinical Characteristics
	Variables Selection
	Model Establishment
	Apparent Performance of the Nomogram
	Clinical Usage
	Statistical Analysis

	Results
	Clinical Characteristics
	Variables Selection Using the BSR
	Variables Selection Using the LASSO
	Variables Selection Using the FSR
	Development of Final Prediction Model
	Performance of Nomogram
	Clinical Usage

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


