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Motivation: The understanding of pathogen-host interactions (PHIs) is

essential and challenging research because this potentially provides the

mechanism of molecular interactions between different organisms. The

experimental exploration of PHI is time-consuming and labor-intensive, and

computational approaches are playing a crucial role in discovering new

unknown PHIs between different organisms. Although it has been proposed

that most machine learning (ML)–based methods predict PHI, these methods

are all based on the structure-based information extracted from the sequence

for prediction. The selection of feature values is critical to improving the

performance of predicting PHI using ML.

Results: This work proposed a new method to extract features from

phylogenetic profiles as evolutionary information for predicting PHI. The

performance of our approach is better than that of structure-based and ML-

based PHI prediction methods. The five different extract models proposed by

our approach combined with structure-based information significantly

improved the performance of PHI, suggesting that combining phylogenetic

profile features and structure-based methods could be applied to the

exploration of PHI and discover new unknown biological relativity.

Availability and implementation: The KPP method is implemented in the Java

language and is available at https://github.com/yangfangs/KPP.

KEYWORDS

pathogen-host interaction, machine learning, phylogenetic profile, virus, bacteria
Abbreviations: PHI, pathogen-host interactions; ML, machine learning; KPP, kmer phylogenetic profile;

Gor, Golovinomyces orontii; Hpa, Hyaloperonospora arabidopsidis; Psy, Pseudomonas syringae; Ara,

Arabidopsis thaliana RF; Random Forest; AA, amino acid; auPRC, area under the precision-recall curve.
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Introduction

Pathogen-host interactions (PHIs) are crucial for

understanding the interactions between different organisms.

Most diseases in humans are caused by the virus (Brass et al.,

2008; McDermott et al., 2012), and knowing the mechanisms of

human PHI is important for developing effective therapeutics. In

the study of plants, pathogen infections reduce crop yields

(Bernardes-de-Assis et al., 2009; Savary et al., 2012).

Understanding the PHI in plants is essential for the defense

against plant diseases. The early analyses were built on yeast by

the yeast two-hybrid approach (Uetz et al., 2000; Ito et al., 2001).

This method provided an experimental way to explore protein-

protein interactions in yeast cells. However, exploring PHI based

on experimental methods is time-consuming and expensive, and

computational methods play an important role in

complementing the experimental methods. Over the past

decade, various methods have been proposed for deciphering

PHI. These include structure-based methods (Shen et al., 2007;

Guo et al., 2008; Zhou et al., 2012), homology-based methods

(Krishnadev and Srinivasan, 2011; Wuchty, 2011), domain-

motif approaches (Dyer et al., 2007; Evans et al., 2009), and

machine learning–based (ML-based) methods (Qi et al., 2010;

Dyer et al., 2011).

With an increasing number of experimental PHI data being

published, many databases have been developed to collect and

store these PHI data (Ako-Adjei et al., 2015; Calderone et al.,

2015; Guirimand et al., 2015; Urban et al., 2017). Because a large

number of experimental PHIs are available, it is possible to use

experimental data to drive supervised ML-based methods to

predict PHI. For example, Yang et al. used four structure-based

feature methods and one network-based feature vector trained

by the random forest (RF) method to increase the prediction

accuracy of plant PHIs (Yang et al., 2019). Abbsali et al. encoded

human and hepatitis C virus proteins as feature vectors by six

different descriptors trained by four different ML-based methods

that achieved high accuracy and specificity (Emamjomeh et al.,

2014). Xianyi et al. extracted five structure-based features with

the ML method to predict human and bacterial interactions

(Lian et al., 2019). Therefore, extracting protein information

features from different methods can significantly improve the

prediction results of PHI. Although features can be extracted

from various information or evidence for predicting PHI by ML-

based methods, most ML-based methods generate features from

protein sequence information.

For the first time, the phylogenetic profile was used to

predict gene function based on homologies of a reference

genome across organisms (Pellegrini et al., 1999). The

phylogenetic profile plays a critical role in exploring gene

functions (Eisen and Wu, 2002; Jiang, 2008; Li et al., 2014). In

addition, the phylogenetic profile has been widely explored in

the protein-protein interactions (Pellegrini et al., 1999; Date and

Marcotte, 2003; Wu et al., 2003). We first combined the
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phylogenetic profile and the ML method to explore the PHI.

The features extracted from the phylogeny can better reflect the

homology relationship in the evolution of the various organisms.

We provide a new method named KPP (kmer phylogenetic

profile) that extracts features from the phylogenetic profile for

the ML-based method–predicted plant PHI. Our methods

construct phylogenetic profiles by contig information and

extend phylogenetic profiles by five various models [based on

properties of amino acids (AAs)]. We concatenate the

phylogenetic feature, and structure-based features significantly

improved the prediction results suggesting that the descriptor

features extracted from the phylogenetic profile are very

important information for predicting plant PHI. In addition,

the test results showed that the KPP method can also be applied

to the PHI prediction of human bacteria and human viruses. The

KPP method is implemented in the Java language (which

supports Linux, Windows, and Mac OS platforms) and is

freely accessible from the Github repository (https://github.

com/yangfangs/KPP).
Results

Extracting phylogenetic profile features
for predicting plant PHI

Here, we design a method named KPP that extracts features

from phylogenetic profile to predict the interaction of plant

pathogens and hosts (Figure 1). First, we build the contig index

by kmer. We split each AA sequence into a kmer set and

searched the consensus region of this kmer as contig index

(Gregory, 2001). Using contigs as an index can effectively

compress data compared to kmer while reducing the number

of retrievals when extracting features and improving

computational efficiency (Supplementary Figure 1). Second, we

constructed the phylogenetic profile by the contig index; in this

step, the rows and columns of the phylogenetic profile are

represented by contigs and species, respectively (Figure 1A).

Moreover, there were five different models used to build the

phylogenetic profile. The AA profile is constructed by amino

acids. The HY profile is constructed based on the hydrophilic

and hydrophobic properties of AAs. The PO profile is driven by

the polar properties of AAs, and the CH profile is built by the

charged properties of AAs. The HY&PO&CH(CHP) profile

concatenates three different properties of AAs to build a

phylogenetic profile. The classification of various models based

on the 20 common AAs has their specific chemical

characteristics and their different roles in protein structure and

function (Scheiner et al . , 2002) are summarized in

Supplementary Table 1. As shown in Figure 1B, we extracted

features from binary phylogenetic profiles that combine or

concatenate various method features to predict plant PHI. We

trained this feature by the ML-based method; here, we use RF as
frontiersin.org
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a classifier to predict the interaction of PHI. Additionally, the

area under the precision-recall curve (auPRC) is used as an

indicator to evaluate the quality of the model.
The phylogenetic profile feature is
significant for ML

The phylogenetic profile provided significant data features

for the ML training. In this study, we chose three different

pathogens Golovinomyces orontii (Gor), Hyaloperonospora

arabidopsidis (Hpa), and Pseudomonas syringae (Psy), and also

Arabidopsis thaliana (Ara) as the host plant (Mukhtar et al.,

2011; Wessling et al., 2014). These three pathogen species and

one plant species comprised the Gor-Ara, Hpa-Ara, and Psy-Ara

test datasets, respectively. Gor and Hpa are eukaryotic pathogens

that contain 122 and 104 positive pairs, respectively. Psy is a

prokaryotic pathogen that contains 233 positive pairs. The

negative pairs are 10 times as large as the positive pairs

generated from random pairs in each species (Yang et al.,

2019). We used the KPP algorithm to generate the kmer set to

construct the contig index and phylogenetic profile. We

extracted the feature from the phylogenetic profile and

normalized this feature by the z-score method. The mean of

these positive and negative feature data is presented in Figure 2

(taxonomy by phylum). As shown in Figure 2, all the test data

show that the mean value of the feature of the negative data is

stable at 0, and the positive data will fluctuate up and down the

negative data and have significant differences (Mann–Whitney
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two-tailed test p-value< 10−8). This difference is most obvious in

the interaction between eukaryotic pathogens and Ara.

(Figures 2A, C). The results suggest that the extract profile

from the phylogenetic profile can be used to distinguish the

positive and negative pairs of each pathogen to Ara. A strong

predicted true pair sample by phylogenetic profile feature was

observed (Supplementary Figure 2). The predicted probability

shows that negative test samples appear in the probability

interval of 0 to 0.5. In the probability interval greater than 0.7,

only the predicted results of the positive test samples are

available. This indicates that the feature values extracted from

the phylogenetic profile can better separate the positive and

negative test results and have higher precision.
The performance of the KPP algorithm

The performance of the five models
Here, we test five different models by 10-fold cross-

validation and the PR curves illustrated in Figure 3. From PR

curves, we can see that the auPRC of all predicted models greater

than 0.5 indicates that the feature extracted from the

phylogenetic profile can distinguish positive and negative data

well. The performance of the three plant PHI test datasets

showed that Psy-Ara (aucPRC = 0.685 for AA model)

performed better than the Hpa-Ara (aucPRC = 0.574 for AA

model) and Gor-Ara (aucPRC = 0.618 for AA model) species in

the test. What is interesting about the test sample in Figure 3D is

that, as the test sample set increases (All-Ara), the performance
B

A

FIGURE 1

The workflow of this work. (A) Construction of the kmer phylogenetic profile. Each protein sequence was cut to the kmer set and compressed
to the contig index to construct the phylogenetic profile. There are AA, HY, PO, CH, and CHP models for building kmer phylogenetic profiles.
(B) Extracting features and predicting by the ML method. There are two ways to merge features. One is the “combine method” for merging five
models to extract features from phylogenetic profiles. Another is the “concatenate method” for the structure-based method. In this work, we
use the RF method to predict plant PHI.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.931072
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Fang et al. 10.3389/fcimb.2022.931072
results of the five models have improved. The auPRC values all

exceeded 0.7 except for the PO model (Figure 3D). These results

suggest that the phylogenetic profile features are a powerful

indicator that can distinguish whether there is an interaction

between pathogens and hosts in plant PHI.
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Parameter optimization for performance
We used contigs and species to construct phylogenetic

profiles and extract features for ML to predict plant PHI. The

length of the kmer and the selection of the species number are

critical to the performance of the prediction results. We use
B

C D

A

FIGURE 3

The performance of phylogenetic profile features predicted pathogen-host interactions. PR curves show the performance of five different
models on the 10-fold cross-validation test. Panels (A–D) represent the results from the Ara-Psy, Ara- Hpa, Ara-Gor, and All-Ara training
samples, respectively.
B

C D

A

FIGURE 2

The distribution of positive and negative train feature data based on phylogenetic profile. (A) The feature data distribution of Gor-Ara. (B) The
feature data distribution of Psy-Ara. (C) The feature data distribution of Hpa-Ara. (D) All-Ara feature data. All of these features were extracted
from the AA model with 503 species and the kmers setting with 6. The red and blue dots represent negative and positive data, respectively.
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different numbers of species to construct a phylogenetic profile

(test with AA model, k = 6 and randomly chose the species with

72, 503, and 1,000) (Supplementary Table 2). The results show

that the performance of the predicted results increased as the

number of species increased. Too many species chosen will

reduce the speed of contigs searches, so based on the balance

of calculation time and accuracy, we chose 503 species as the

optimal species selection for constructing phylogenetic profiles

(Supplementary Figure 3 and Supplementary Table 3). Due to

the different properties of AAs, we encode AA characters into

four different models, which will lead to the optimal length of

kmer for each model being various. We tested kmer length

against different models to select the optimal kmer value with

503 species (Supplementary Table 4). The result clearly shows

that for the AA, HY, PO, CH, and CHP models, the optimal

kmer values are 6, 22, 27, 19, 15, respectively. The following tests

on the algorithm are based on these optimal parameters.
The phylogenetic profile feature
significantly improved the performance
of ML prediction

We concatenate novel phylogenetic profile features (CHP

model) with sequence features to improve the performance of

prediction in the plant PHI. To compare the influence of

phylogenetic profile features on the performance, we compared

the structure-based + CHP with the structure-based descriptions

(CT, AC, DC, and PSP descriptions in the Methods section) based
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on the RF algorithm. As shown in Figure 4, the aucPRC values of

the structure-based + CHPmethod in the 10-fold cross-validation

test were 0.766, 0.705, 0.755, and 0.775 for the Gor-Ara, Psy-Ara,

Hpa-Ara, and All-Ara test data, respectively, whereas the

corresponding values of the structure-based method were 0.745,

0.662, 0.690, and 0.765, respectively. In addition, the performance

of the other models (AA, CH, PO, and HY) + the structure-based

model is shown in Supplementary Table 5. The results show that

by concatenating the feature extracted from the phylogenetic

profile with the structure-based feature to predict plant PHI,

five different models can improve the performance of the

prediction results. It also shows that the phylogenetic profile is a

significant feature for the prediction of plant PHI based on the ML

method. In general, the structure-based + CHP feature was

reported significantly more often than the structure-based

descriptor only. The results of cross-validation clearly show that

phylogenetic profile features can substantially improve the

predicted performance of plant PHI. The traditional method

uses the concatenate method to connect different features to

improve the dimensionality of the training feature value and

improve the accuracy (Emamjomeh et al., 2014; Yang et al.,

2019; Yang et al., 2020). Strikingly, because the features

extracted from the phylogenetic profile by five models have the

same dimensions (503), we proposed a “combine” method to

merge feature values for ML. The merged value dimension has not

increased, and the length of the feature is still 503, which greatly

reduces the calculation pressure and improves the prediction

speed. At the same time, the performance of our “combine”

method (combine AA, HY, PO, CH, and CHP features) is
B

C D

A

FIGURE 4

The performance of merging different features predicted pathogen-host interactions. PR curves showing the performance based only on the
structure-based and structure-based + CHP models on the 10-fold cross-validation test. Panels (A–D) represent the results from the Ara-Psy,
Ara- Hpa, Ara-Gor, and All-Ara training samples, respectively.
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better than that of the traditional concatenate method

(Supplementary Figure 4).

Here, we use the RF method as the main ML algorithm to

predict plant PHI because it performed better than the other ML

methods. We also compared corresponding results with different

ML algorithms, including support vector classifier (SVC),

gradient boosting classifier (GBC), K-neighbors classifier

(KNC), AdaBoost classifier (ADB), and Naive Bayes (NB)

(Supplementary Figure 5) . These algor i thms were

implemented by the Python-based library Scikit-learn

(Pedregosa et al., 2011). We found that RF (auPRC = 0.715)

obtained the best performance in the All-Ara test dataset,

followed by ADB (auPRC = 0.609) and GBC (auPRC = 0.560).

However, the SVC (auPRC = 0.450), KNC (auPRC = 0.368), and

NB (auPRC = 0.167) methods obtained the worst performance

and were not applicable to plant PHI prediction (Supplementary

Figure 5D). There was a similar performance ranking in the

other three test datasets (Supplementary Figures 5A–C). This

result suggested that the RF method was the best appropriate ML

algorithm for predicting plant PHI, and we used this method to

train phylogenetic profile features for predicting plant PHI.
The performance of the KPP feature in
human PHI

We validate the performance of the KPP method in human

PHI by human bacteria (13,413 positive pairs) and human virus

(14,789 positive pairs). The human-bacteria PHI and human-

virus–positive were collected from HPIDB 3.0 database

(Ammari et al., 2016). The human-virus PHI contains six

virus species (influenza A virus, human papillomavirus type 16,

measles virus, Zika virus, HIV-1 M:B_HXB2R, and human

herpesvirus). In this test dataset, influenza A virus was the

most positive pair among these six species including 6,070

positive pairs. The species with the least number of positive

pairs was the measles virus, which contained a total of 906

positive pairs (Supplementary Table 6). The human-bacteria

PHI contains five bacterial species (Yersinia pestis, Bacillus

anthracis, Francisella tularensis, Saccharomyces cerevisiae, and

Streptococcus pyogenes). Because there is no database of PHI for

the oral cavity, we collected experimental human–oral bacteria

PHI (Rosa et al., 2020). We extracted 485 bacteria that inhabited

in the human oral cavity from the eHOMD database (Chen et al.,

2010). We checked these oral bacteria to human interactions

from the DIOGRID database (Stark et al., 2006), IntAct database

(Kerrien et al., 2012), and HPIDB3.0 database (Ammari et al.,

2016). However, we only identified 13 positive pairs in

Streptococcus pyogenes bacteria as human oral bacteria

(Supplementary Table 6). We test the performance of KPP

features in human bacteria and various by 10-fold cross-

validation and the auPRC shown in Figure 5. As shown in

Figure 5, the auPRC of human bacteria is 0.880, and the auPRC
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of human viruses is 0.896. Strikingly, the performance of the

KPP method in animal PHI tests is better than that in plant PHI

tests. This result suggested that the KPP feature improves not

only the performance of plant PHI but also that of human-

bacteria and human-virus PHI.
Prediction of PHI between humans with
viruses and bacteria by the KPP method

We used the KPP method extract feature to predict human-

virus and human-bacteria PHIs with the RF method. As shown

in Table 1, the three viruses (human herpesvirus 4 strain B95-8,

Zika virus, and influenza A virus) and bacteria (Bacillus

anthracis, Yersinia pestis, and Glossosomatidae) reported

significantly predicted results. However, HIV-1 M:B_HXB2R,

measles virus strain Schwarz, and Saccharomyces cerevisiae

S288C did not obtain significant prediction results with the 0.6

predicted cutoff. Human herpesvirus 4 strain B95-8, Zika virus,

and influenza A virus predicted significant pairs of PHIs of 19, 2,

and 19, respectively, with a cutoff of 0.6 (Supplementary

Table 7). The predicted pairs of PHIs for Bacillus anthracis,

Yersinia pestis, and Glossosomatidae were 24, 295, and 144,

respectively (Supplementary Table 8). Because human-bacteria

PHI obtained a lower AUC performance in the training dataset,

we chose a higher threshold value at the time of prediction.
Discussion

In this work, we developed a KPP method to extract

phylogenetic profile features for predicting plant PHI. The

KPP method provides five models to construct a phylogenetic

profile based on the properties of AAs. Because the feature
FIGURE 5

The performance of the KPP method predicted human bacteria
and human viruses. Ten-fold cross-validation constructs auPRC
for human bacteria and human viruses.
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dimensions extracted from five various phylogenetic profiles are

the same, we first proposed a method of longitudinally merging

features to keep the feature dimensions unchanged, instead of

concatenating the feature values to increase the dimension of the

feature values. The results show that combining the extracted

features from five different models was better than the

concatenated features in predicting performance. The feature

extract from the phylogenetic profile reflecting the biological

significance of PHI in evolution was adopted. The results show

that the feature values extracted by KPP can significantly

improve the predictive performance of plant PHI. The KPP

method extraction feature can be extended to predict the PHI of

other organisms.
The performance of three plant PHI test datasets showed that

the prokaryote organism of Psy (Figure 3A aucPRC = 0.685 for

AA model) species performed better than the prokaryotes of Hpa

(Figure 3B aucPRC = 0.574 for AA model) and Gor (Figure 3C

aucPRC =0.618 for AA model) species in the test. It can be seen

that the algorithm performed better for prokaryotes and less well

for eukaryotes. About the human PHI test, the performance of

human-bacteria PHI (aucPRC = 0.880) and human viruses

(auPRC = 0.896) was better than the performance in the plant

PHI test dataset (auPRC = 0.717 with AA model). auPRC of

human bacteria is 0.880, and the auPRC of human viruses is 0.896.

This also shows that the KPP algorithm that we developed can be

applied to the prediction of PHI among different species and

performs better for human PHI prediction.

We used the Gor-Ara, Psy-Ara, and Hpa-Ara training

datasets for predicting the plant PHI. In the training dataset,

the PPIN-1 proteins displayed high connectivity in AI-1MAIN

and the PPIN-1 proteins as effector targets, in particular, are

highly connected nodes within the overall plant network

(Mukhtar et al., 2011). The protein TCP14 in plants interacted

with 23 distinct Gor effector candidates, 25 Hpa effectors, and 4

Psy effectors that were the most targeted host protein (Wessling

et al., 2014). Furthermore, TCP13, TCP15, and TCP19 were also

targeted multiple times by effectors from at least two pathogens

and exhibited altered infection phenotypes in the plant test

dataset (Wessling et al., 2014). We identified SYNE1
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(hsa:23345) and TTN (hsa:7273) genes as the hub genes in the

host organism by predicting human-virus PHI (Supplementary

Table 7). The SYNE1 genes encode a spectrin repeat-containing

protein expressed in skeletal and smooth muscle, and peripheral

blood lymphocytes; related pathways are meiosis and cell cycle,

mitotic. The TTN gene encodes a large abundant protein of

striated muscle. The diseases associated with TTN include

myopathy and Salih myopathy. The SYNE1 mediates the

docking of the capsid protein of human herpesviruses to

nuclear pore complex proteins (Hong et al., 2021).

In the future, we hope that this approach will not only

contribute as a useful predictor to accelerate the exploration of

plant PHIs but also extend to the prediction of the PHI of

more organisms.
Methods

KPP algorithm

Building the contig index and constructing the
phylogenetic profile

Before creating a contig index, we needed to obtain a kmer

set from n species proteomics. Here, the parameter k∈(1,2,3,…,

n) and the kmer set are generated from the five different methods

AA, HY, PO, CH, and CHP. A contig is composed of one or

more consecutive kmers that are connected end to end. Building

a contig index in advance can effectively compress the number of

kmer and reduce the number of kmer backtracking queries,

thereby improving the computational efficiency of feature

extraction. We used the contig index to trace back whether the

contig index existed in n species and generated a 0-1 (absence-

presence) matrix as the binary phylogenetic profile.

Extract feature from phylogenetic profile
KPP cuts each pathogen and host sequence S to a kmer set

and searches contigs C. For each C , we extract feature array A

from the binary PHI phylogenetic profile. The extracted feature

function is defined as f (C,A) =o
C

i=1
Ai.
TABLE 1 Prediction of the PHIs between humans with viruses and bacteria by the KPP method.

Species Taxonomy ID Train AUC Predicted pairs Cutoff

Human herpesvirus 4 strain B95-8 10377 0.874 19 0.600

Zika virus 64320 0.770 2 0.600

Influenza A virus 381518 0.842 19 0.600

HIV-1 M:B_HXB2R 11706 0.932 NA 0.600

Measles virus strain Schwarz 132487 0.970 NA 0.600

Bacillus anthracis 1392 0.730 24 0.700

Yersinia pestis 632 0.700 295 0.850

Glossosomatidae 177416 0.653 144 0.700

Saccharomyces cerevisiae S288C 559292 0.994 NA 0.600
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Combined method
Five model features extracted from the PHI phylogenetic

profile have the same length. We propose a “combine” method

to integrate the features for ML. The combined function is

defined as f (M,A) =o
M

i=1
Ai, where M is the feature extracted by

the five different models. A is the feature array extracted from the

PHI phylogenetic profile by various models.

Concatenate method
The feature extract from the phylogenetic profile

concatenated with other methods to integrate features was

defined as 〈H,N〉. Here, H is the feature array extracted from

the phylogenetic profile. N is the feature extracted from other

methods, for example, the structure-based method in this study.
The structure-based method

DC method
DC represents the descriptor of two AAs in the protein

sequence (Zhou et al., 2012). Dipeptide composition gives a 400-

dimensional descriptor defined as f (r, s) = Nr,s

N−1   r, s = 1, 2,…, 20,

where Nr,s is the number of dipeptides represented by AA type r

and type s .

CT method
The CT method is based on the percentage of three AAs in

the sequence (Shen et al., 2007). Tripeptide composition gives a

343-dimensional descriptor defined as f (r, s, t) = Nr,s,t

N−2   r, s, t =

1, 2,…, 7,where Nr,s,t is the number of tripeptides represented

by AA type r , s , and t.

AC method
The AC descriptor extracts features by accounting for the

effects of the interaction of residues with a certain distance (Guo

et al., 2008). The 210-dimensional calculation function was

defined as f (lag, j) = 1
N−lag o

N−lag

i=1
(Xi,j −

1
Lo

N

i=1
Xi,j)� (X(i+lag),j −

1
N

o
N

i=1
Ri,j)   j = 1, 2,…, 7,where N is the length of sequence X , j

denotes one descriptor, and i is the position in the sequence X .

Here, lag ranges from 1 to 30 in this work.

PSP method
The PSP feature is based on protein secondary structure

composition (Hoskins et al., 2006) and protein disorder

information (Hsu et al., 2012; Meng et al., 2017) that was first

proposed by Yang et al. (Yang et al., 2019). They calculated the

fraction of three different secondary structure elements (a helix,

b strand, and coil) and the percentage of disordered residues in

three regions of the N terminus, C terminus, and the full
Frontiers in Cellular and Infection Microbiology 08
sequence (Yang et al., 2019). Here, we calculate secondary

structure and disorder information by PSSpred (Yan et al.,

2013) and IUPred (Dosztanyi et al., 2005), respectively.
Test data

The three different pathogens Gor (122 positive pairs), Hpa

(104 positive pairs), and Psy (233 positive pairs) and also the

negative pairs were downloaded from http://systbio.cau.edu.cn/

intersppi/index.php (Yang et al., 2019). The criteria for choosing

these three pathogens and Ara are that these interactions have

been experimentally verified as real physical interactions. The

experimentally verified human-bacteria (13,413 positive pairs)

and human-virus interactions (14,789) were collected from

HPIDB 3.0 database (Ammari et al., 2016). The positive

interactions were filtered by “physical association” items in the

PSI-MITAB(2.5) file while excluding the interactions

betweenproteins with less than 30 AAs or nonstandard AAs.

The sequences of the human bacterial and viral proteins were

retrieved from the UniPort database (Consortium U 2014).

Specifically, the ratio of negative pairs to positive pairs was

10:1. The proteomic data of species (503 species) for

constructing the phylogenetic profile were downloaded from

the KEGG database (Kanehisa and Goto, 2000).
Performance evaluation

To conduct a stringent performance assessment, 10-fold

cross-validation tests were carried out. We chose the

precision-recall curve (PR curve) and the auPRC to assess the

performance of our models. The formulas to calculate precision

and recall are as follows:

Precision = PPV =
TP

TP + FP

Recall = Sensitivity = TPR =  
TP

TP + FN
:
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