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Objective: Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) may 
involve extrahippocampal areas of structural damage and dysfunction. The accuracy 
of medium-term spatial memory can be tested by memory-guided saccades (MGS) 
to evaluate a functional impairment of the parahippocampal cortex (PHC), while voxel- 
based morphometry (VBM) analysis can be used to detect a structural damage of the 
latter region.

Methods: MGS with 3- and 30-s memorization delays were compared between 7 
patients affected by right MTLE-HS (r-MTLE-HS), 6 patients affected by left MTLE-HS, 
and 13 healthy controls. The same subjects underwent brain MRI for a VBM analysis. 
Correlation analysis was performed between the results of VBM and MGS and with 
patients’ clinical data.

results: Right MTLE-HS patients showed impaired accuracy of leftward MGS with a 
30-s memorization delay; their gray-matter volume was reduced in the right hippocampus 
and inferior temporal gyrus, and bilaterally in the cerebellum. Left MTLE-HS patients had 
normal MGS accuracy; their gray-matter volume was reduced in the left hippocampus, 
in the right-inferior temporal gyrus and corpus callosus, and bilaterally in the insular 
cortex and in the cerebellum. The difference between right and left parahippocampal 
volumes correlated with MGS accuracy, while right and left hippocampal volumes did 
not. Hippocampal and parahippocampal volume did not correlate with clinical variables 
such as febrile seizures, age at disease onset, disease duration, and seizure frequency.

conclusion: MGS abnormalities suggested the functional involvement of the right 
PHC in patients with r-MTLE-HS, supporting a right lateralization of spatial memory 
control and showing a relation between functional impairment and degree of atrophy.

Keywords: memory-guided saccade, voxel-based morphometry, spatial memory, parahippocampal cortex, 
mesial temporal lobe epilepsy
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inTrODUcTiOn

Extrahippocampal areas of structural damage may be detected 
in mesial temporal lobe epilepsy with hippocampal sclerosis 
(MTLE-HS), including the parahippocampal and mesial tempo-
ral lobe cortex (1–5).

These findings have been emphasized in the MTLE-HS work-
shop promoted by the International League Against Epilepsy (6), 
when the importance of defining the site and characteristics of 
extrahippocampal damage was underlined. In fact, structural 
damage of these areas has an incidence that varies in relation 
with the different diagnostic methods, and the characteristics 
of extrahippocampal pathology in MTLE-HS (6) as well as its 
pathogenesis are still a matter of debate.

Here, we aimed at evaluating the consistency of neurophysi-
ological data indicating a functional involvement of the parahip-
pocampal cortex (PHC) with voxel-based morphometry (VBM) 
data.

Many brain regions have been shown to be reduced in volume 
in temporal lobe epilepsy (TLE) patients with respect to healthy 
subjects [see Ref. (7) for a review]. Temporal lobe abnormalities 
were mainly ipsilateral to the epileptic focus, while extratempo-
ral and subcortical abnormalities were bilateral. This distribu-
tion of brain abnormalities in TLE patients is consistent with 
postmortem and fMRI imaging results. Hippocampal atrophy 
ipsilateral to the epileptic focus is the most common neuro-
pathological correlate of TLE (8), and patients with right-sided 
epileptic focus are more likely to have bilateral hippocampal 
volume reduction (9).

A recent study (10) showed that history of febrile convulsions 
(FC), dystonic posturing, and secondary generalized tonic–clonic 
seizures are cardinal criteria that could be reliably helpful to 
distinguish TLE patients with hippocampal sclerosis from those 
with other TLE (i.e., patients with mesial structural lesion other 
than hippocampal sclerosis and MRI-negative cases), suggesting 
that MTLE-HS could be considered as a distinctive syndrome. 
When HS is detectable, patients with MTLE showed an earlier 
epilepsy onset, exhibited more frequently early febrile seizures 
(FS), and presented more ictal gestural automatisms, dystonic 
posturing and secondary generalized tonic–clonic seizures.

Mesial temporal lobe epilepsy with hippocampal sclerosis 
patients show material-specific memory impairment depending 
on their hemispheric language dominance. For instance, verbal 
memory impairment was found in left MTLE-HS (l-MTLE-HS) 
patients with left language dominant hemisphere, while a weaker 
association was found between visual memory impairment 
and right temporal dysfunction (11, 12) in right MTLE-HS 
(r-MTLE-HS) patients.

The memory-guided saccades (MGS) can be used to study 
cortical control of short and medium-term spatial memory in 
humans (13, 14). In the MGS paradigm, subjects are requested to 
make a volitional saccade directed toward a location in which a 
target was previously present.

Functional imagery, transcranial magnetic stimulation, and 
lesion studies have been used to obtain a spatially and temporally 
accurate model of the MGS cortical control in normal subjects 
and in patients with lesions of the temporal lobe structures (15).

In particular, it has been showed that accuracy of MGS with 
memorization delays from 1 to 20 s depends on the dorsolateral 
prefrontal cortex (DLPFC) (16), while the PHC is responsible for 
the accuracy of MGS with memorization delays longer than 20 s 
and up to a few minutes (16–19). Ploner et al. (18) exploited the 
MGS paradigm to test the role of the PHC for the accuracy of 
spatial memory in humans. They recorded the MGS with delays 
op to 30 s in patients that underwent resection of the right mesial 
temporal lobe for intractable epilepsy. Patients whose lesion was 
limited to the PHC made amplitude error of memory guided eye 
movements with 30-s delay (30 MGS) directed contralateral to 
the lesion side, while patient as whose resection included the 
perirhinal cortex but not the PHC were able to perform the 
MGS with no such errors. Taking into account these findings, in 
a previous study (20) we recorded the MGS with memorization 
delays of 3 (3 MGS) and 30 s in patients with r-MTLE-HS and we 
found a delay-dependent inaccuracy of 30 MGS contralateral to 
the lesion suggesting a functional impairment of the right PHC.

Here, we hypothesized that the accuracy of 30 MGS directed 
contralaterally to the epilepsy focus could be impaired in 
MTLE-HS patients with VBM signs of structural involvement of 
extrahippocampal brain regions, particularly of the PHC of the 
ipsilateral mesial temporal lobe, and that this impairment could 
be associated with clinical data, particularly disease duration, and 
seizure frequency.

MaTerials anD MeThODs

subjects
Thirteen right-handed subjects with r-MTLE-HS (n  =  7) or 
l-MTLE-HS (n = 6) and 13 healthy subjects underwent record-
ing of 3 MGS and 30 MGS and brain MRI for VBM quantitative 
analysis.

Mesial temporal lobe epilepsy with hippocampal sclerosis 
patients were recruited among the outpatients consecutively 
referred to the Epilepsy Centre of the Neurological Institute C. 
Mondino of Pavia.

We excluded patients unable to participate due to difficulties 
in understanding the experimental procedures or in maintaining 
attention for a long time, those older than 60 years, those with a 
seizure frequency more than 2 per week, and those who modified 
antiepileptic treatment in the previous month or experienced an 
epileptic seizure in the previous 36  h. Exclusion criteria were 
chosen in order to avoid gray mater reduction associated with 
age (21) and biases in eye movement test performance possibly 
due to post-ictal dysfunction.

Patients’ demographical and clinical data are shown in Table 1.
Epilepsy diagnosis was supported by clinical, electroencepha-

lography (EEG), and MRI criteria. More in detail, conventional 
brain MRI showed atrophy and T2 signal increase that were 
limited to the hippocampal formation in each patient, and did not 
show parahippocampal atrophy in any of them. EEG traces, ictal 
symptoms, and signs suggested a mesial temporal lobe seizure 
onset in each patient (6).

All patients were on treatment with antiepileptic drugs with 
serum levels in therapeutic range.

http://www.frontiersin.org/Neurology/
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Table 1 | Demographic and clinical features of patients with right (r-MTLE-HS) and left (l-MTLE-HS) mesial temporal lobe epilepsy with hippocampal sclerosis.

age (decade) age at epilepsy onset (years or months) Disease duration (years) Fs aeD seizure frequency (per month)

r-MTLE-HS 6th 43 years 9 y PHT 325
LEV 4000
CLB 20

1.5

4th 7 months 20 n CBZ CR 800
PHT 200
CLB 30

4.5

6th 37 years 15 y LTG 600
CLB 20
LEV 500

1.5

4th 9 month 38 y CBZ CR 1100
LTG 500

8.5

4th 29 years 7 y CBZ CR 800
LTG 200

3

7th 6 month 35 n CBZ CR 1000
LEV 3500
PHT 0.5

3

3th 14 years 15 n LTG 550
LEV 3000

2.5

l-MTLE-HS 5th 23 years 23 n CLB 10
OXC 600

0.1

5th 14 years 28 y LTG 500
CBZ 900
LEV 550

2.5

4th 8 years 22 y CBZ 800
LEV 3000

0.1

6th 20 years 34 n CBZ 800 0.1

6th 22 years 36 y CBZ 800
LEV 3000

0.25

4th 15 years 22 n LTG 600
CBZ 400
LEV 3000

4.50

M, male; F, female; FS, febrile seizures; n, no; y, yes. AED, antiepileptic drug treatment, mg daily; CBZ, carbamazepine; LTG, lamotrigine; LEV, levetiracetam; OXC, oxcarbazepine; 
PHT, fenitoine; CLB, clobazam. Seizure frequency = monthly mean calculated on the basis of the seizure reported in the last year on the patient’s seizure diary.
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Thirteen right-handed healthy subjects (seven women and 
six men; mean age: 38.4 years, SD: 10.5, range: 27–60 years) age-
matched with the patient group (mean age: 43.8 years, SD 11.0, 
range: 29–60 years) were included in the control group.

The research protocol received approval from the local Ethics 
Committee and all the procedures were conducted in accordance 
with the Declaration of Helsinki. All the subjects gave written 
informed consent before participating in the study.

Memory-guided saccades
The eye movements were calibrated and recorded monocularly 
from the right eye with the scleral search coil technique (22) 
(SKALAR system S3020: spatial resolution better than 0.1°; 
sampling rate 250 Hz, bandwidth 0–70 Hz).

The eye movement recording sessions, data acquisition, and 
analysis were the same as reported in our previous study (20).

The subjects were seated in a dark room with their head in the 
upright position on a chinrest. For every subject, we recorded 
the reflexive saccades (RS), the 3 MGS, and the 30 MGS in three 
separate sessions. In each session, every subject performed 18 

trials in both directions (leftward and rightward saccades) for a 
total of 108 trials each.

In the RS paradigm, a horizontally presented lateral target 
with an unpredictable direction and amplitude (10°, 15°, or 20°) 
was lit for 2 s, while the subject was staring at a central point. The 
subjects were instructed to look at this light immediately after its 
appearance and until it disappeared. The next trial began at the 
central fixation point.

In the MGS paradigm, the subjects tried to memorize the 
location of a horizontally presented lateral target lit for 200 ms, 
while they were staring at the central point. The target had 
unpredictable direction and amplitude (10°, 15°, or 20°). After 
the memorization delay of 3 or 30  s, the central fixation point 
was switched off, which was the signal for the subject to perform 
a saccade toward the memorized location. The previously flashed 
target was shown again after 2 s and the subject had to make a 
corrective saccade if necessary. The next trial began at the central 
fixation point.

Memory-guided saccades trials with prosaccades, namely 
erroneous RS directed at the flashed target, were excluded from 
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analysis. We used a custom-made program developed with 
LabView software (National Instruments, Austin, TX, USA) to 
analyze the saccades offline by identifying the beginning and 
the end of each saccade based on threshold velocity criteria; the 
difference in the eye position at these two points corresponded 
to the pulse amplitude. The operator positioned one additional 
mark that identified the final position, namely the position the 
eye reached after all the corrective saccades and before the reap-
pearance of the target; the difference between the starting and 
final positions corresponded to the final amplitude.

We computed the following equations:

 1. the saccade accuracies (SA) as

 

pulseSA  pulse amplitude target amplitude
finalSA  final

=
=

/ ,
  amplitude target amplitude/  

 2. the amplitude errors (E) as

 

pulseE = ln 1  pulseSA ,
finalE ln  finalSA

| |
| |
−

= −1  
 3. the amplitude error difference (ED) as

 ED finalE pulseE= − . 

A logarithmic transformation was needed in order to approxi-
mate a normal distribution of the values, and we used the absolute 
value of the ǀ 1 − SA ǀ differences to express a scatter of the MGS 
endpoints despite the presence of both hypometric and hyper-
metric saccades.

For each subject, paradigm, and saccade direction, we com-
puted the mean value of latency, SA, E, and ED.

The patients were compared with the controls as a group by 
using repeated measure analyses of variance on all the parameters 
listed before. The RS and the 3- and 30-s MGS were analyzed 
separately. The analyses considered one intra-individual factor 
(saccade direction: right or left), one inter-individual factor 
(group: controls or patients), and their interactions.

The significance value was set at p = 0.05.
We used chi-square test to evaluate the occurrence of patients 

whose mean value exceeded the normal range, which was calcu-
lated on the control group as the mean ± 2.5 SDs.

Voxel-based Morphometry
All the subjects’ MRI were performed with the same machine 
(Philips Intera Gyroscan 1.5 T), using coronal T1 Gradient Echo 
sequences, with identical acquisition parameters [echo time (TE) 
4.6 ms, repetition time (TR) = 25 ms, thickness = 1.6 mm, slice 
gap = 0.8 mm, matrix = 256 × 256, voxel = 0.9 mm × 0.9 mm × 
0.8 mm, means = 1].

The VBM study was performed through a between-groups 
comparison by dividing the subjects in three groups on the 
basis of presence and side of the hippocampal atrophy: controls 
(Ctrls), r-MTLE-HS (seven subjects), and l-MTLE-HS (six sub-
jects). The areas of reduced gray-matter volume were identified 
first, then a study on the hippocampal region was performed: the 
mean volume of the hippocampal gray matter on each side and 
the difference in volume between the two sides were correlated 
with the clinical data (age at epilepsy onset, epilepsy duration, 

seizure frequency, antiepileptic drugs) and the results of MGS 
recording.

Neuroimage processing was done by statistical parametric 
map (SPM) (discrete cosine transform cutoff 8  mm) and 
MATLAB 7.4 programs. Acquired images were normalized 
on a whole-brain standard template MNI 152, with masking 
of the hippocampal region (7). Normalized images were seg-
mented through the standard gray and white matter (GM/WM) 
templates from SPM. Filter value was set at 6-mm smoothing 
kernel, as suggested for studying structures with dimensions 
comparable with the hippocampus (7).

Normalized, segmented, and smoothed images were weighted 
regarding confounding variables (sex, age, and total brain 
volume). After the described preprocessing and normalization 
operations, anatomical images underwent a voxel-wise statisti-
cal analysis aimed at identifying differences between the three 
groups.

Statistical parametric maps of the whole brain were created for 
several comparisons: Ctrls vs. r-MTLE-HS, Ctrls vs. l-MTLE-HS, 
and l-MTLE-HS vs. r-MTLE-HS. All contrasted images were 
created using a p < 0.005.

We correlated the hippocampal and parahippocampal gray-
matter volumes with the clinical and MGS parameters, and com-
pared hippocampal and parahippocampal volumes of MTLE-HS 
patients with and without abnormal MGS.

resUlTs

saccades
Accuracy parameters’ mean and SE values are shown in Table 2.

The effects of saccade direction and experimental group on all 
saccadic parameters are shown in Table 3.

The peak velocity values were significantly influenced by 
saccade direction being larger for rightward than for leftward 
saccades for all kinds of saccades, with no significant effect of 
group or group*direction interaction.

The latency values of RS, 3 MGS, and 30 MGS were not 
significantly influenced by direction, group, or group*direction 
interaction.

The pulseE values of both RS and 3 MGS were not signifi-
cantly influenced by saccade direction, group, or group*direction 
interaction, whereas the pulseE of 30 MGS was significantly 
influenced by saccade direction being larger for rightward than 
for leftward saccades, with no significant effect of group or 
group*direction interaction.

The finalE values showed a different behavior depending on 
the different kinds of saccades.

For RS it proved to be smaller to the right than to the left, 
showing a significant direction effect with no significant effect 
of group and direction*group interaction. The finalE values of 
3 MGS were not significantly influenced by saccade direction, 
group, or group*direction interaction. The finalE values of 30 
MGS showed the same behavior detectable for pulseE of the 
same kind of saccades, since they were significantly influenced 
by saccade direction being larger to the right than to the left, with 
no significant effect of group or group*direction interaction.
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Table 2 | Mean and SE values of rightward and leftward saccades pulse and final amplitude, natural logarithm of pulse and finalError, and error difference (ED) between 
final and pulse for each diagnostic group (healthy controls = Ctrls, patients with right temporal lobe epilepsy and hyoppocampal sclerosis = r-MTLE-HS, and patients 
with left temporal lobe epilepsy and hyoppocampal sclerosis = l-MTLE-HS) in reflexive saccades (RS), 3 s (3 MGS) and 30 s (30 MGS) memory-guided saccades.

side Paradigm group amplitude error eD

Pulse Final Pulse Final Final-Pulse

Mean se Mean se Mean se Mean se Mean se

RIGHTWARD RS Ctrls 0.907 0.019 0.986 0.011 −2.659 0.196 −4.178 0.201 −1.519 0.177
r-MTLE-HS 0.909 0.020 0.970 0.009 −2.346 0.165 −3.738 0.369 −1.392 0.237
l-MTLE-HS 0.843 0.021 0.959 0.016 −2.230 0.207 −3.858 0.277 −1.628 0.204

3 MGS Ctrls 0.868 0.033 0.944 0.021 −2.059 0.127 −2.579 0.095 −0.520 0.137
r-MTLE-HS 0.899 0.058 0.962 0.019 −1.875 0.170 −2.438 0.237 −0.564 0.201
l-MTLE-HS 0.845 0.024 0.996 0.046 −2.002 0.196 −2.722 0.231 −0.721 0.321

30 MGS Ctrls 0.778 0.049 0.940 0.029 −1.606 0.141 −2.363 0.180 −0.756 0.121
r-MTLE-HS 0.875 0.097 0.889 0.085 −1.610 0.236 −1.852 0.120 −0.242 0.196
l-MTLE-HS 0.827 0.103 0.928 0.095 −1.578 0.282 −2.121 0.252 −0.543 0.266

LEFTWARD RS Ctrls 0.878 0.016 0.970 0.000 −2.318 0.140 −3.738 0.200 −1.420 0.163
r-MTLE-HS 0.874 0.008 0.953 0.000 −2.180 0.000 −3.229 0.000 −1.049 0.201
l-MTLE-HS 0.836 0.032 0.949 0.000 −2.036 0.000 −3.363 0.000 −1.328 0.158

3 MGS Ctrls 0.833 0.033 0.921 0.024 −1.875 0.140 −2.652 0.193 −0.777 0.156
r-MTLE-HS 0.851 0.037 0.987 0.044 −1.835 0.201 −2.604 0.195 −0.769 0.174
l-MTLE-HS 0.879 0.047 0.988 0.040 −1.813 0.257 −2.491 0.155 −0.678 0.244

30 MGS Ctrls 0.826 0.056 0.919 0.026 −1.644 0.141 −2.465 0.174 −0.821 0.131
r-MTLE-HS 0.875 0.059 0.980 0.050 −2.092 0.338 −2.151 0.096 −0.059 0.310
l-MTLE-HS 0.943 0.093 0.987 0.057 −1.886 0.186 −2.556 0.155 −0.671 0.207

Table 3 | Effects of saccade direction, diagnostic group, and direction*group 
interaction on saccade peak velocity, latency, pulseError, finalError, and 
pulseError–finalError difference in reflexive saccades (RS), and 3- and 30-s 
memory-guided saccades (3 MGS and 30 MGS). Bold font is used to highlight 
the statistically significant comparisons.

saccade  
parameter

saccade  
kind

Direction  
effect

group  
effect

Direction*group 
interaction

F p F p F p

Peak velocity RS 5.114 0.033 0.440 0.648 2.310 0.122
3 MGS 8.301 0.008 0.428 0.657 0.029 0.972
30 MGS 14.325 0.001 0.937 0.406 1.169 0.329

Latency RS 0.481 0.495 0.382 0.687 0.114 0.893
3 MGS 1.162 0.292 0.133 0.876 0.873 0.431
30 MGS 1.009 0.744 1.117 0.360 0.797 0.721

PulseE RS 3.279 0.083 1.540 0.235 0.019 0.797
3 MGS 1.554 0.225 0.208 0.814 0.341 0.715
30 MGS 5.691 0.025 0.437 0.651 1.543 0.234

FinalE RS 8.456 0.008 1.250 0.305 0.012 0.988
3 MGS 8.456 0.008 0.130 0.878 0.702 0.505
30 MGS 7.133 0.013 1.555 0.232 1.010 0.379

ED RS 4.090 0.054 0.298 0.745 0.479 0.625
3 MGS 0.884 0.357 0.030 0.971 0.379 0.688
30 MGS 0.000 0.988 4.992 0.015 0.413 0.666
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The ED values of both RS and 3 MGS were not significantly 
influenced by saccade direction, group, or group*direction inter-
action, whereas the ED of 30 MGS was significantly influenced by 
group. This effect was mainly attributed to r-MTLE-HS patients 
who were unable to reduce the pulseE, and hence to minimize 
ED, as effectively as controls for leftward saccades (Sheffè post hoc 
test: p = 0.035), but a similar trend was detectable in r-MTLE-HS 
patients for rightward saccades also.

Thereby, the results of group analyses can be summarized as 
follows:

 – RS pulseE and ED values were independent from direction, 
group, and their interaction, while finalE values were smaller 
for rightward than for leftward saccades both in controls and 
in patients.

 – 3 MGS pulseE, finale, and ED values were independent from 
direction, group, and their interaction.

 – 30 MGS pulseE and finalE values were larger for rightward 
than for leftward saccades both in controls and in patients; 
moreover, patients with r-MTLE-HS showed a larger ED than 
controls.

We also considered the patients individually; that is, we 
checked if accuracy values of their saccades fell within the normal 
limits defined as the mean ±  2.5 SDs computed in the control 
group (Figure 1).

The pulseE was invariably normal both in the control and in 
the patient groups for all kind of saccades.

The finalE was abnormal in a few subjects: two subjects  
(1 r-MTLE-HS and 1 control) for r-RS, 1 r-MTLE-HS patient for 
r-3MSG, no subjects for 30 MGS: the chi-square test showed that 
the distribution of abnormalities did not differ between patients 
and controls.

The ED was abnormal only in one l-MTLE-HS patient for 
r-3MGS: again, the chi-square test showed that the distribution 
of abnormalities did not differ in the patients as compared with 
controls.

The main finding derives from 30 MGS that showed an 
abnormal ED in four r-MTLE-HS patients (all of them for 
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Table 4 | Regions of statistically significant difference between groups.

relative atrophy regions in right MTle-hs (r-MTle-hs) subjects (p < 0.005)

vs. ctrls vs. left MTle-hs 
(l-MTle-hs) subjects

Right hippocampus [26, −28, −14] Right hippocampus  
[28, −26, 14]

Right-inferior temporal gyrus [54, −44, −14] Left central sulcus  
[−42, 20, 12]

Cerebellum bilaterally [−18, −64, −44]  
[24, −62, −44]

Left precentral gyrus  
[−44, 32, 22]

relative atrophy regions in l-MTle-hs subjects (p < 0.005)

vs. ctrls vs. r-MTle-hs subjects

Left hippocampus [−32, −26, −14] Left-inferior temporal gyrus 
[−54, −28, −18]

Right-inferior temporal gyrus [5, −48, −10] Left insula [−40, 16, 10]

Right corpus callosum [8, −10, 28] Left putamen [−20, 8, −8]

Insula bilaterally [−34, −8, 10] [28, −8, 10]

Cerebellum bilaterally [−28, −60, −44] [26, −60, −44]

FigUre 1 | Mean and SE values of pulseError (pulseE), finalError (finalE), and error difference between pulse and final (ED) of 30-s delay memory-guided saccades 
(30 MGS) directed rightward (upper panel) and leftward (lower panel) for each subject in each diagnostic group. ctrls, healthy controls; r-MTLE-HS, patients with 
right-sided mesial temporal lobe epilepsy with hippocampal sclerosis; l-MTLE-HS, patients with left-sided mesial temporal lobe epilepsy with hippocampal sclerosis.
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leftward saccades and in one of them for rightward saccades 
also) and in none of the l-MTLE patients or of the controls: 
the higher occurrence of abnormalities in the r-MTLE-HS 
group proved to be statistically significant (Fisher’ exact test 
p = 0.003).

Voxel-based Morphometry
Table 4 displays the results of gray-matter changes.

Right MTLE-HS patients showed right hippocampal atrophy 
(Figure  2A) as compared with healthy controls, and when the 
statistical significance threshold was lowered to p <  0.03, con-
tralateral hippocampal atrophy was also detected (Figure  2B). 
r-MTLE-HS patients showed relative right hippocampal atrophy 
as compared with l-MTLE-HS patients (Figure 2C).

Regions with significantly reduced gray-matter volume 
involved several extrahippocampal brain regions in addition to 
the ipsilateral hippocampus.

Compared with healthy controls, r-MTLE-HS patients had 
regions with significantly reduced gray-matter volume also in the 
right-inferior temporal gyrus, and in the ipsi- and contralateral 
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FigUre 2 | VBM T1-weighted multiplanar images comparing (a) r-MTLE-HS patients vs. healthy controls, showing relative right hippocampal atrophy;  
(b) r-MTLE-HS patients vs. healthy controls with p < 0.005 in red and p < 0.03 in blue, showing bilateral relative hippocampal atrophy; (c) r-MTLE-HS vs. 
l-MTLE-HS patients, showing relative right hippocampal atrophy. SPM results are superimposed on a T1 3d image of one of the healthy subjects. l-MTLE-HS, left 
MTLE-HS patients; r-MTLE-HS, right MTLE-HS patients; SPM, statistical parametric map; VBM, voxel-based morphometry.

Table 5 | Mean and SE values of the right and left volumes and volume 
difference between right and left parahippocampus (PH) in controls (Ctrl), right  
(r MTLE-HS), and left (l MTLE-HS) MTLE-HS patients.

group Mean se

Right PH volume Ctrl 650.380 2.230
r-MTLE-HS 621.000 4.170
l-MTLE-HS 655.330 3.160

Left PH volume Ctrl 570.850 1,600
r-MTLE-HS 580.430 3.500
l-MTLE-HS 551.000 3.340

Right–left PH volume difference Ctrl 40.570 2.090
r-MTLE-HS 104.330 3.040
l-MTLE-HS 76.530 1.830

Table 6 | Mean and SE values of right and left volume and volume difference 
between right and left parahippocampus (PH) in MTLE-HS patients showing 
impaired 30 MGS ED and in MTLE-HS patients not showing impaired 30  
MGS ED.

impaired eD  
in 30 Mgs

N Mean se t p

Right PH volume No 9 646.560 7.370 1.596 0.186
Yes 4 615.000 18.340

Left PH volume No 9 563.670 9.010 0.628 0.554
Yes 4 574.000 13.770

Right–left PH volume 
difference

No 9 82.889 11.760 2.667 0.024
Yes 4 41.000 10.320
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cerebellum. Compared with l-MTLE-HS patients, they showed 
reduced gray-matter volume of the left central sulcus and the left 
precentral gyrus.

Left MTLE-HS patients showed relative left hippocampal atro-
phy as compared with healthy controls and not compared with 
r-MTLE-HS patients. When the statistical significance threshold 
was lowered to p < 0.03, no contralateral hippocampal atrophy 
was detected.

Compared with healthy controls, l-MTLE-HS patients had 
regions with significantly reduced gray-matter volume also in 
the left-inferior temporal gyrus and corpus callosus and in the 
ipsi- and contralateral insula and cerebellum. Compared with 
r-MTLE-HS patients, they showed reduced gray mater volume of 
the left-inferior temporal gyrus, insula, and putamen.

Correlation analysis in MTLE-HS subjects showed no sig-
nificant effects. In particular, no significant correlation was found 
between ipsilateral H and PH gray-matter volume and 30 MGS 
ED, number of anti-epileptic drugs, seizure frequency, age, age at 
epilepsy onset, and disease duration.

Mgs eD and VbM Data
The PHC volumes were invariably larger in the right than in the 
left hemisphere both in controls and in patients (Table 5).

The right and the left PHC volumes were not different in 
patients with and in those without abnormal 30 MGS ED values 
(Table 6). By contrast, the patients with abnormal 30 MGS ED 
values showed a right–left PHC volume difference smaller than 
those with normal 30 MGS ED, namely abnormal 30 MGS ED 
values are associated with smaller right PHC volumes as expected 
on the basis of their left PHC volume. All the four patients with 
abnormal 30 MGS ED belonged to the r-MTLE-HS group, and 
three of them showed the smallest volume difference, whereas the 
other one showed the largest difference and the shortest disease 
duration.

Finally, concerning the hippocampus, none of the volume 
parameters, including the right–left difference, proved to be dif-
ferent depending on the abnormality of 30 MGS ED.

DiscUssiOn

Memory-guided saccades abnormalities together with VBM 
results in our study (i) suggested the functional involvement of 
the right PHC in patients with right MTLE-HS, (ii) supported a 
right lateralization of spatial memory control, and (iii) showed a 
relation between functional impairment and degree of atrophy.

Our results showed in detail that the saccade velocity and 
latency values in MTLE-HS patients were not different from 
controls for all kind of saccades, thus suggesting that the cortical 
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and brainstem mechanisms to program and trigger saccades  
were not affected.

Moreover, MTLE-HS patients do not differ from controls for 
the accuracy of RS and of 3 MGS: no differences could be found 
for the accuracy of the first saccade (pulseE), and for the improve-
ment that could be obtained after corrective saccades (finalE), 
and the capability to improve the accuracy of the first saccade 
(ED). The finalE of RS showed a larger accuracy for rightward 
than for leftward saccades, but this difference was the same in 
patients and in controls.

Interestingly, r-MTLE-HS patients differ from controls for the 
accuracy of 30 MGS. Both the patients and the controls showed 
a pulseE and a finalE that were smaller for leftward than for 
rightward saccades; that is leftward 30 MGS were more accurate 
both after the first and after all the corrective saccades were made; 
however, the r-MTLE-HS patients were less effective in improv-
ing the accuracy of the first saccade than both the controls and 
the l-MTLE-HS patients. This finding is supported by ED value 
evaluation both in the group and in the individual analyses. 
Concerning the group analyses, it is noteworthy that, even if it 
proved to be statistically significant only for the leftward direc-
tion, the mean ED values of 30 MGS from r-MTLE-HS showed a 
similar trend for the rightward direction also.

The individual values showed that four out of seven r-MTLE-
HS patients (vs. none of l-MTLE-HS patients and controls) had 
an abnormally positive ED value, meaning that in these subjects 
the corrective saccades did not improve and even worsen the 
accuracy of the position reached by the first saccade. In all of 
these four patients, ED was abnormal for l–30 MGS; in one of 
them the abnormality was bilateral, and this specific r-MTLE-HS 
patient was the one showing the smallest PH volumes not only for 
the right side but also for the left side.

Memory-guided saccades results suggest the functional 
involvement of the right PHC in patients with r-MTLE-HS, in 
keeping with the results of a previous study by our group (20) 
and, in agreement with previous observations (19, 23), our data 
suggest a possible specialization of the right PHC for visual spatial 
memory (24–29).

Voxel-based morphometry analysis results confirmed the 
presence of hippocampal atrophy as detected by conventional 
MRI in our patients and were in accordance with the results of 
previous imaging studies. Furthermore, VBM analysis showed 
that, despite no PHC alteration detected by conventional MRI, 
the mean volume of the parahippocampus was smaller in patients 
with impaired accuracy of 30 MGS.

Many neuroimaging studies showed that MTLE-HS patients 
have also areas of extrahippocampal atrophy, including the PHC 
(30–36). The presence of extrahippocampal structural damage 

in MTLE-HS has been correlated with postsurgery outcome in 
these patients; for instance, it was demonstrated that seizures 
after surgery commonly arise within the spared structures of the 
resected temporal lobe (37, 38) and patients with extrahippocam-
pal atrophy had a lower probability of becoming seizure free after 
complete hippocampal resection (39).

Thereby, MGS and VBM could be useful in presurgical 
evaluations aimed at deciding the extension to extrahippocampal 
structures of the surgical resection.

Temporal lobe atrophy is considered the result of an apoptotic 
mechanism due to frequent seizure recurrence (40–43) and FS 
are considered as a precipitating insult for the neuronal loss in 
MTLE-HS patients (44). Since hippocampal atrophy in MTLE-HS 
patients is associated with white matter fiber disconnections, an 
alternative hypothesis is that deafferentation from hippocampal 
fibers could be the major determinant of extrahippocampal 
atrophy (45). Clinical variables such as FS, age at seizure onset, 
disease duration, and seizure frequency were not correlated with 
MGS and VBM parameters in our patients, but these results could 
be biased by a relatively small sample size in our study. Repeated 
evaluations in MTLE-HS patients could give some information 
regarding the evolution over time of the cortical functional and 
structural damage.
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