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Abstract

Background—The severity of the metabolic syndrome (MetS) is related to future incidence of 

type 2 diabetes (T2DM) and cardiovascular disease (CVD). However, the relationship between 

MetS severity and levels of fasting insulin and adiponectin—markers of insulin resistance—is 

unclear.

Methods—We used linear and logistic regression to analyze data from 711 participants of the 

Princeton Lipid Research Cohort with information regarding levels of insulin, adiponectin, and 

MetS severity during 1998–2003 (mean age 39.5y); 595 participants had MetS severity data from 

childhood (1973–1976, mean age 12.9y), and 417 had updated disease status from 2010–2014 

(mean age 50.9y).

Results—Childhood MetS-Z-scores were positively associated with adult insulin levels 

(p<0.001) and negatively associated with adiponectin levels (p=0.01). In individual analyses, 

higher insulin levels and MetS-Z-score as adults were related to higher odds of incident diabetes 
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and CVD over the next 11.2y (all p<0.001), while lower adiponectin levels were only related to 

odds of future T2DM (p<0.0001). In a model including insulin, adiponectin and MetS-Z-score, 

adiponectin was not linked to future disease; both insulin (p=0.027) and MetS-Z-score (p=0.002) 

were related to risk of future T2DM, while only MetS-Z-score was related to future CVD 

(p<0.001).

Conclusions—The severity of MetS exhibits long-term links to levels of insulin and 

adiponectin, suggesting potential genetic and environmental influences on insulin resistance over 

time. As a long-term predictor of T2DM and CVD, the severity of MetS exhibited consistent 

independent correlations. This supports clinical utility in evaluating MetS severity as a predictor of 

risk for future disease.

Introduction

Insulin resistance is a complex pathophysiological process with clear influences of genetics, 

obesity and unhealthy lifestyle practices and with long-term sequelae including risk for type 

2 diabetes mellitus (T2DM) and cardiovascular disease (CVD).1, 2 On a molecular level, 

insulin resistance appears to result from underlying visceral adiposity, cellular dysfunction, 

oxidative stress, and low-grade inflammation, producing compensatory elevations in insulin 

levels and ultimately a rise in blood glucose.3, 4 One apparent cause of insulin resistance is a 

low level of the adipokine adiponectin.5 Adiponectin is produced by adipocytes in inverse 

proportion to the amount of fat stored. Hypoadiponectinemia appears to be in the causative 

pathway of insulin resistance in that genetic deletion of adiponectin5 or its receptors6 results 

in insulin resistance while administration of exogenous adiponectin restores signaling.5 

Lower levels of adiponectin have been linked to future risk for T2DM7 and CVD,8, 9 though 

in the case of CVD, not all studies have found this association.10

Insulin resistance is also associated with the presence of multiple CVD risk factors, which 

together are referred to as the metabolic syndrome (MetS). MetS has traditionally been 

defined by abnormalities in these individual components (central obesity, high blood 

pressure [BP], elevated triglycerides, low HDL-cholesterol and elevated fasting glucose).11 

However, these MetS criteria, such as those from the National Cholesterol Education 

Program Adult Treatment Panel III (ATP-III), can only identify the presence or absence of 

MetS and thus cannot follow for changes over time. Additionally, traditional MetS criteria 

exhibit racial/ethnic discrepancies in that African Americans are diagnosed at low rates with 

MetS despite having high rates of T2DM and CVD, suggesting that these criteria are 

missing risk detection among some African American individuals.12, 13 We formulated a 

MetS Z-score that is sex- and race/ethnicity specific and estimates the severity of MetS 

within an individual.14, 15 This score is associated with risk for future T2DM16 and CVD.17

ATP-III MetS is linked to insulin resistance as assessed by fasting insulin and the 

homeostasis model of insulin resistance (HOMA),18 and is also associated with lower 

elevated levels of adiponectin.19 Moreover, adiponectin and MetS exhibit reciprocal 

predictive properties over short time periods.20, 21 However, the relationship between levels 

of adiponectin and insulin with the severity of MetS is not clear, nor is the long-term 

durability of this relationship or whether independent relationships exist between these 

DeBoer et al. Page 2

Int J Obes (Lond). Author manuscript; available in PMC 2017 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



factors and risk of future disease. The goal of this analysis was to evaluate how MetS 

severity correlates with adiponectin and fasting insulin and to determine whether MetS 

severity offers additional risk assessment to adiponectin and insulin in predicting future 

CVD and T2DM. We evaluated this using data from the Princeton Lipid Cohort, a cohort of 

white and black participants with data spanning approximately 40 years, giving a picture of 

long-term interrelationships between markers of insulin resistance and disease risk.

Methods

Participants were originally recruited as part of the Cincinnati Clinic of the National Heart 

Lung and Blood Institute Lipid Research Clinic (LRC) Prevalence Program (1972–1978), a 

multistage survey of lipids and other CVD risk factors.22, 23 In 1973–1976, the LRC 

enrolled students in grades 1–12 in the Princeton School District and a random sample of 

their parents. The Institutional Review Boards of NHLBI, the University of Cincinnati, West 

Virginia University and the University of Virginia approved the study and/or its analysis. 

The Princeton Follow-up Study (PFS, 2000–2004) was a 25–30-year follow-up of these 

student and parent-participants to prospectively assess changes in CVD risk factors from 

childhood into the 4th–5th decades of life 24. PFS eligibility required participation in LRC 

visits where lipoproteins were measured and participation of a first-degree relative at those 

same visits. The Princeton Health Update (PHU, 2010–2014) was performed 8–14 years 

after the PFS to assess updated disease status of PFS participants. Data were obtained by 

telephoning or mailing participants and first-degree relatives using a standardized 

questionnaire and by examining death certificates from the National Death Index for cause 

of death.

Clinical Measures

In both the LRC and PFS studies, data were collected via standard protocols,22–24 including 

measures of height and weight in LRC25 and height, weight, and waist circumference (WC) 

in PFS.24 WC was measured in PFS at the level of the umbilicus following normal 

expiration. In the LRC and PFS, BP was measured on a participant’s right arm with a 

standard sphygmomanometer after sitting for 5 minutes. In LRC and PFS fasting blood was 

drawn and tested for lipid profiles in LRC–Centers for Disease Control and Prevention 

(CDC) standardized laboratories. In the LRC, glucose was measured on the ABA-100 by a 

hexokinase method. In the PFS, glucose was measured on the Dade Dimension Xpand 

(Dade Behring, Deerfield, IL), by the hexokinase-glucose-6-phosphate-dehydrogenase 

method. Insulin and adiponectin were measured at PFS by electrochemiluninescence 

immunoassay (ECLIA) using an Elecsys 2010 analyzer (Roche Diagnostics, Indianapolis, 

IN) and ELISA (Millepore, St. Charles, MO) techniques, respectively, according to 

manufacturer directions. Diabetes was classified based on self-report at all three studies. In 

both PFS and PHU, CVD was classified as self-reported myocardial infarction, coronary 

artery bypass, other heart surgery, coronary revascularization procedure (angioplasty, stent 

placement) or stroke.

Traditional MetS was defined using the ATP-III criteria for adults;11 participants had to meet 

≥3 of the following 5 criteria: concentration of triglycerides ≥1.69 mmol/L (150 mg/dL), 
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HDL-C <1.04 mmol/L (40 mg/dL) for men and <1.3 mmol/L (50 mg/dL) for women, WC 

≥102cm for males and 88cm for females, glucose concentration ≥5.55 mmol/L (100 mg/dL), 

and systolic BP ≥130 mmHg or diastolic BP ≥85 mmHg. MetS in childhood was defined 

using a modification of these criteria24, 26 in which participants had to meet ≥3 of the 

following: concentration of triglycerides ≥110 mg/dL, HDL-C ≤40 mg/dL, BMI ≥90th 

percentile, glucose ≥100 mg/dL and systolic or diastolic BP ≥90th percentile (age, height, 

and sex-specific).27

MetS severity Z-score was calculated for adolescents at their LRC visit and then again as 

adults during their PFS visit using formulas published elsewhere.14, 28 Briefly, these scores 

were formed using confirmatory factor analysis of the 5 traditional components of MetS (as 

above) to determine the weighted contribution of each of these components to a latent MetS 

“factor” on a sex- and race/ethnicity-specific basis. Confirmatory factor analysis was 

performed on data from the National Health and Nutrition Examination Survey (NHANES) 

for adolescents age 12–19 years14 and adults age 20–64 years,28 with both adolescents and 

adults divided into six sub-groups based on sex and the following self-identified race/

ethnicities: non-Hispanic white, non-Hispanic black and Hispanic. For each of these six 

population sub-groups, loading coefficients for the 5 MetS components were determined 

toward a single MetS factor. The loading coefficients were then used to generate equations 

to calculate a standardized MetS severity score for each sub-group (http://mets.health-

outcomes-policy.ufl.edu/calculator/). These MetS severity scores are Z-scores (ranging from 

negative infinity to positive infinity) of relative MetS severity on a sex- and race/ethnicity-

specific basis and are highly correlated to other surrogate markers of MetS risk, including 

hsCRP, uric acid and the homeostasis model of insulin resistance.14, 28 In calculating these 

scores in the present study, individual measures of participants from LRC and PHS were 

entered into these equations to calculate MetS severity as children and adults, respectively. 

For the LRC visit, BP was missing for 185 participants; for these individuals, systolic BP 

was estimated to be the 50th percentile of normal based on published equations for sex, age, 

and height percentile.27

Statistical analysis

All statistical analyses were performed using SAS 9.4. Due to their skewed distributions, the 

natural log transformation for both insulin and adiponectin was used in all analyses for 

consistency. Linear regression was used to estimate and compare age-adjusted mean levels 

of both ln(insulin) and ln(adiponectin) between white and black males and females. 

Pearson’s r correlation was calculated to estimate linear associations between MetS severity 

Z-scores and both insulin and adiponectin at PFS. A series of linear models were fit to the 

natural log-transformed values of fasting insulin and adiponectin at the PFS visit, comparing 

the predictive value of MetS as traditionally defined and MetS severity Z-score, both at the 

LRC and PFS visits, using R2 values as the metric of comparison. This also included 

evaluating predictors of the change in MetS score between LRC and PFS visits, as had been 

performed previously for the traditional MetS criteria.24 Finally, logistic models were fit 

estimating odds of incident diabetes/CVD at at PHU (excluding those individuals who 

reported disease at PFS). These models included insulin, adiponectin, and the MetS severity 
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Z-score, with separate models for each of these PFS predictors and their combinations. 

Collinearity was assessed in these models by examination of variance inflation factors.

Results

Participant characteristics

We evaluated data from 711 participants of PFS with adequate data regarding MetS severity, 

insulin and adiponectin for cross-sectional analyses (Table 1). This included 595 participants 

with adequate data regarding childhood MetS severity (for analysis of childhood MetS-adult 

insulin/adiponectin) and 417 participants with health outcomes data from PHU (for analysis 

of insulin/adiponectin/MetS z-score on future adult disease). The remainder of participants 

in the analytic cohort was lost to follow-up. At PFS and PHU respectively, 5.4% and 14.4% 

of individuals had T2DM and 1.4% and 7.1% had CVD. By PHU, 1.7% of cohort members 

accounted for had died.

Inter-relationships between levels of adiponectin and insulin and MetS severity Z-score

Cross-sectional associations—Figure 1 displays cross-sectional associations between 

MetS severity scores and levels of adiponectin and insulin. MetS severity scores displayed a 

strong inverse correlation with levels of adiponectin (Pearson’s r=−0.47, p<0.001) and a 

strong correlation with insulin (Pearson’s r=0.62, p<0.001). Adiponectin and insulin levels 

displayed a strong inverse association (Pearson’s r=−0.44, p<0.001).

MetS severity score correlations from childhood—As reported previously, there 

was a high degree of correlation in MetS severity score between childhood at LRC and mid-

adulthood at PFS.16 Childhood MetS scores correlated with adult levels of adiponectin 

(Pearson’s r=−0.11, p=0.01) and insulin (Pearson’s r=0.26, p<0.01)(Figure 2). Using linear 

regression (Table 2), MetS severity score in childhood was positively associated with adult 

levels of insulin (p<0.01) and negatively associated with adult levels of adiponectin 

(p<0.01); the same was true of MetS in childhood using traditional criteria (p<0.01 and 

p<0.05, respectively)(Models 1,2).24 Similarly, in adulthood, both MetS severity and MetS 

by traditional criteria were positively associated with insulin (p<0.01) and negatively 

associated with adiponectin (p<0.01)(Models 3,4). Finally, in a model that included MetS 

severity score at LRC and the change in this score from childhood to adulthood, both 

childhood MetS severity score and the change in score were highly associated with insulin 

and negatively associated with adiponectin (p<0.01)(Model 5).

Insulin, adiponectin and MetS severity predicting T2DM and CVD

Odds of future disease by PHU based on levels of insulin, adiponectin and MetS Z-score are 

shown in Table 3. Higher levels of insulin (Model 1) were significantly linked to odds of 

future T2DM and CVD (for each unit increase in log of insulin, the odds increased eight-

fold for T2DM (p<0.0001) and three-fold for CVD (p=0.0009) while lower levels of 

adiponectin (Model 2) were only linked to odds of future T2DM (for each increasing unit of 

log of adiponectin: OR=0.25, p<0.0001) and not CVD. In this cohort MetS Z-score (Model 

3) was linked to both future T2DM and CVD (OR=5.6, p<0.0001 and 3.5, p<0.0001, 

respectively). In models that included both insulin and MetS Z (Model 4), both measures 
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were linked to future T2DM (insulin OR=3.4, p=0.0120; MetS Z OR=3.4, p=0.0012) while 

only MetS Z was linked to future CVD (OR=3.4, p=0.0002). In a model including 

adiponectin and MetS Z-score (Model 5), only MetS Z-score was linked to future disease 

(T2DM: 5.0, p<0.0001; CVD: 4.4, p<0.0001). Finally, in a model that included all 3 

measures (Model 6), adiponectin was not linked to future disease, while both insulin and 

MetS Z-score were linked to future T2DM (3.0, p=0.0269 and 3.4, p=0.0019, respectively) 

and only MetS Z-score was linked to future CVD (4.0, p<0.0001). In each of these models, 

VIF’s were <2, reassuring against excess collinearity in the analyses.

Discussion

Obesity-associated insulin resistance can be an important forerunner to future risk of both 

T2DM and CVD.29 We evaluated three measures related to insulin resistance for inter-

relationships and for potential independent associations with future disease. As 

hypothesized, we found that a linear estimate of MetS severity had a strong cross-sectional 

association with fasting insulin and an inverse correlation with adiponectin. What was more 

surprising was that these associations persisted when assessing childhood measures of MetS 

severity with adult levels of insulin and adiponectin 26 years later. Nevertheless, despite 

these strong inter-correlations, the severity of MetS exhibited independent associations with 

future T2DM and CVD. This suggests that MetS severity may capture additional risk 

beyond what is associated with insulin resistance as estimated by fasting insulin and 

adiponectin. While MetS as a concept has been criticized as not being more than the sum of 

its parts,30, 31 these data support that as an overall assessment of long-term risk, this MetS 

severity score may help to integrate risk associated with the aggregate of individual 

components. Because this score can be followed within individuals over time,32 it may 

provide a means of following for risk reductions in response to treatments. This is 

particularly true should the score be able to be calculated automatically from MetS-related 

data in the electronic medical record.

MetS appears to be produced by genetic factors and multiple underlying pathophysiological 

processes including cellular dysfunction, oxidative stress, and low-grade inflammation—

processes that are also associated with insulin resistance.3, 4, 33 The MetS severity scores 

that we evaluated here had previously been shown within individuals to be associated with 

surrogates for these underlying processes, including uric acid and hsCRP.14, 28 Low levels of 

adiponectin have also been evaluated as an assessment for the underlying processes behind 

MetS, with potential utility in distinguishing “healthy obese” individuals without 

cardiovascular risk factors from those with MetS-related risk factors.34, 35 The present 

findings of correlations between MetS severity scores in childhood and fasting insulin and 

adiponectin in adulthood suggest either durability of these underlying processes or that 

genetic susceptibility is manifest already in childhood. The long-term nature of these risks is 

further supported by the ability of these MetS severity scores in childhood to identify risk 

for future T2DM16 and CVD,17 as reported previously from this cohort. However, even more 

important than childhood MetS severity in predicting future insulin and adiponectin was the 

change in MetS severity over time (Table 2), potentially as a reflection of the worsening of 

underlying pathophysiological processes in the interim.
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Previous studies have reported mixed relationships between insulin and adiponectin in their 

relationship to future disease. While higher levels of fasting insulin weakly correlate with 

risk of future T2DM36 and CVD,37 as a clinical measure, fasting insulin is typically replaced 

by other measures of islet cell function such as oral glucose tolerance tests and related 

indices of insulin secretion and resistance,38 Insulin levels as a marker of risk are further 

complicated by non-standardized assay variability, making it difficult to compare between 

assays. Adiponectin levels correlate consistently better with risk of future T2DM than of 

future CVD. A meta-analysis of 13 longitudinal studies of 15,000 patients with follow-up 

periods of 1–12 years revealed that the relative risk of future T2DM was 0.72 for every 1-log 

rise in adiponectin levels. Regarding adiponectin and future CVD, however, data are 

mixed,8–10 with a meta-analysis of 16 studies comprising almost 24,000 patients with 

follow-up of 6–20 years demonstrating that a 10 ug/mL increase in adiponectin conferred a 

non-significant relative risk of 0.91 (0.8, 1.03) for future coronary heart disease.10 Our 

findings are thus in line with prior studies on these measures as risk factors. Interestingly, in 

our combined analysis of these predictors of future T2DM (Model 6), we found tighter 

independent associations of fasting insulin than adiponectin. The cause of this is unclear, 

though it may be that the MetS severity score was able to account for much of the risk 

conferred by adiponectin. In our combined analysis of CVD risk using all three factors, 

neither adiponectin nor insulin was associated with future CVD risk.

The identification of risk underscores the potential importance of targeting intensive lifestyle 

therapy to reduce risk in individuals exhibiting early abnormalities in metabolic parameters 

prior to progression to T2DM or CVD.39 While uncertain, discovery of future disease risk 

could be used as a motivator to change among adolescents.24 One potential use of a MetS 

severity score is to follow the score within individuals over time to assess for response to 

therapy, including lifestyle modification.32 Given the increase in odds of disease with 

interval increases in MetS Z-score over time,16, 17 there is potential that reductions in MetS 

severity score could lower long-term risk.

This study had several limitations. Our analysis was based on outcomes (incidence of T2DM 

and CVD) that had occurred in only 22 and 19 individuals, respectively, by PHU, thus 

limiting our ability to statistically assess for sex and race differences. For the PHU study, 

follow-up was incomplete, and we relied on self-report of outcomes, without adjudication or 

in-person assessments of MetS severity status. This study was performed in a long-term 

cohort of white and African Americans in the Cincinnati area, potentially limiting 

generalizability to individuals from other areas and different racial/ethnic backgrounds. 

Finally, we measured total adiponectin instead of HMW adiponectin, which is the most 

metabolically active form.40 However, prior studies assessing both forms in the same cohort 

have demonstrated similar correlations of total adiponectin and HMW adiponectin as a 

predictor of T2DM.41 However, the study also had several strengths, including long-term 

follow-up in a biracial cohort originally studied as children in the 1970’s.

In conclusion, we found that the severity of MetS exhibits tight long-term correlations with 

adiponectin and insulin but confers independent associations with future T2DM and CVD. 

This score may be useful in identifying individuals at higher risk for future disease who 

could be targeted for interventions to reduce risk. Future research will be needed to clarify 
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which underlying processes are associated with each of these markers and to set thresholds 

of MetS severity that are particularly associated with elevated risk of disease.
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Figure 1. Inter-relationships between MetS severity score, adiponectin and fasting insulin
Scatterplots from Princeton Follow-up Study data (mean age 38 years) reveal correlations 

between adult MetS severity scores and log adiponectin (A) and log insulin (B) and between 

log insulin and log adiponectin (C).
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Figure 2. Correlations between childhood MetS severity scores with adult adiponectin and 
insulin
Scatterplots from childhood MetS severity scores from Princeton Lipid Research Clinic 

(mean age 13 years) with adult log adiponectin (A) and log insulin (B) from Princeton 

Follow-up Study (mean age 38 years).
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Table 1
Descriptive Statistics

Primary sample: those with valid MetS severity scores, fasting insulin and adiponectin at the PFS Visit (n = 

711). From those 711 participants, the LRC column provides data at the LRC (child) visit for the n = 595 

participants < 20 years old and who had valid MetS severity scores at the time. The PHU column provides data 

on those 417 individuals from the 711 who were followed up during the 2010–2014 period.

Primary Analysis Sample (n = 711)

LRC Visit
1973–1976

PFS Visit
1998–2003

PHU Contact
2010–2014

N 595 711 417

Mean (SD):

 Age (years) 12.9 (3.3) 39.5 (4.7) 50.9 (4.9)

 BMI (kg/m2) 20.0 (4.3) 28.8 (6.8) --

 Waist (cm) -- 97.5 (16.9) --

 Glucose (mg/dL) 85.4 (8.2) 90.6 (27.7) --

 HDL-C (mgl/dL) 54.5 (12.1) 45.3 (14.3) --

 Triglycerides (mg/dL) 74.7 (38.3) 136.7 (115.5) --

 Systolic blood pressure (mm Hg) 102.8 (12.7) 121.0 (15.2) --

 Diastolic blood pressure (mm Hg) 63.1 (11.3) 79.8 (11.1) --

 Metabolic syndrome severity score (z-score) −0.5 (0.8) 0.1 (1.1) --

 Fasting insulin -- 10.9 (9.0) --

 Adiponectin 10.4 (6.8) --

Frequency (Percent):

 Male 259 (43.5%) 316 (44.4%) 174 (41.7%)

 White 418 (70.3%) 502 (70.6%) 321 (77.0%)

 Overweight* 71 (11.9%) 231 (32.5%) --

 Obese* 57 (9.6%) 247 (34.8%) --

 Metabolic syndrome 22 (3.7%) 231 (32.5%) --

 High Insulin (≥ 16) -- 132 (18.6%) --

 T2DM** -- 37 (5.4%) 60 (14.4%)

 Myocardial Infarction** -- 6 (0.9%) 15 (3.7%)

 Stroke** -- 3 (0.4%) 11 (2.8%)

 Angioplasty, Stent, Bypass, or other Heart Surgery** -- 1 (0.1%) 14 (3.5%)

 Cardiovascular Disease** 10 (1.4%) 29 (7.1%)

 Deceased** -- 0 7 (1.7%)

*
Overweight = BMI ≥ 85th percentile for LRC, ≥ 25 for PFS; Obese = BMI ≥ 95th percentile for LRC, ≥ 30 for PFS

**
Cumulative frequencies by the designated visit
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Table 2
Relationship between MetS severity and levels of fasting insulin and adiponectin

Linear regression of Ln(Insulin) and Ln(Adiponectin) measured at PFS as a function of MetS or MetS Severity 

during childhood (LRC, 1973–1976) and adulthood (PFS 1998–2003) (only using the n = 595 participants 

with LRC data).

Ln(Fasting Insulin) Ln(Adiponectin)

Parameter Estimate (SE) p-value Parameter Estimate (SE) p-value

Baseline (LRC) Models

 Model 1: Pediatric ATP-III MetS at LRC

  Intercept 2.10 (0.03) < 0.001 2.17 (0.02) < 0.001

  MetS at LRC 0.41 (0.15) 0.007 −0.24 (0.13) 0.069

  R-squared 0.01 0.01

 Model 2: MetS severity at LRC

  Intercept 2.23 (0.03) < 0.001 2.13 (0.03) < 0.001

  MetS z-score at LRC 0.24 (0.04) < 0.001 −0.08 (0.03) 0.010

  R-squared 0.07 0.01

PFS-Only Models

 Model 3: ATP-III MetS at PFS

  Intercept 1.88 (0.03) < 0.001 2.32 (0.03) < 0.001

  MetS at PFS 0.79 (0.05) < 0.001 −0.51 (0.05) < 0.001

  R-squared 0.28 0.15

 Model 4: MetS severity at PFS

  Intercept 2.09 (0.02) < 0.001 2.19 (0.02) < 0.001

  MetS z-score at PFS 0.38 (0.02) < 0.001 −0.24 (0.02) < 0.001

  R-squared 0.38 0.20

Models over both Time Periods

 Model 5: MetS severity over time

  Intercept 2.09 (0.03) < 0.001 2.23 (0.03) < 0.001

  MetS z-score at LRC 0.38 (0.03) < 0.001 −0.18 (0.03) < 0.001

  Change in MetS z-score (PFS-LRC) 0.38 (0.02) < 0.001 −0.27 (0.02) < 0.001

  R-squared 0.38 0.21
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