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Abstract

Motivation: Recent developments in technology have enabled researchers to collect multiple OMICS datasets for
the same individuals. The conventional approach for understanding the relationships between the collected datasets
and the complex trait of interest would be through the analysis of each OMIC dataset separately from the rest, or to
test for associations between the OMICS datasets. In this work we show that integrating multiple OMICS datasets to-
gether, instead of analysing them separately, improves our understanding of their in-between relationships as well
as the predictive accuracy for the tested trait. Several approaches have been proposed for the integration of hetero-
geneous and high-dimensional (p � n) data, such as OMICS. The sparse variant of canonical correlation analysis
(CCA) approach is a promising one that seeks to penalize the canonical variables for producing sparse latent varia-
bles while achieving maximal correlation between the datasets. Over the last years, a number of approaches for
implementing sparse CCA (sCCA) have been proposed, where they differ on their objective functions, iterative algo-
rithm for obtaining the sparse latent variables and make different assumptions about the original datasets.

Results: Through a comparative study we have explored the performance of the conventional CCA proposed by
Parkhomenko et al., penalized matrix decomposition CCA proposed by Witten and Tibshirani and its extension pro-
posed by Suo et al. The aforementioned methods were modified to allow for different penalty functions. Although
sCCA is an unsupervised learning approach for understanding of the in-between relationships, we have twisted the
problem as a supervised learning one and investigated how the computed latent variables can be used for predict-
ing complex traits. The approaches were extended to allow for multiple (more than two) datasets where the trait
was included as one of the input datasets. Both ways have shown improvement over conventional predictive mod-
els that include one or multiple datasets.

Availability and implementation: https://github.com/theorod93/sCCA.

Contact: tr1915@ic.ac.uk or m.evangelou@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nowadays, it is becoming a common practice to produce multiple
OMICS (e.g. Transcriptomics, Metabolomics, Proteomics, etc.)
datasets from the same individuals (Hasin et al., 2017; Hass et al.,
2017; TCGA, 2012) leading to research questions involving the in-
between relationships of the datasets as well as with the complex
traits (responses). The datasets obtained through different mecha-
nisms lead to different data distributions and variation patterns. The
statistical challenge is how can these heterogeneous and high-
dimensional datasets be analysed to understand their in-between

relationships. A follow up question to address is how can these rela-
tionships be used for understanding the aetiology of complex traits.

Over the past years, a number of data integration approaches
have been proposed for finding in-between dataset relationships (Li
et al., 2018; Sathyanarayanan et al., 2019; Subramanian et al.,
2020; Wu et al., 2019). These approaches can be split by their strat-
egy: (A) Early: combining data from different sources into a single
dataset on which the model is built; (B) Intermediate: combining
data through inference of a joint model; and (C) Late: building mod-
els for each dataset separately and combining them to a unified
model (Gligorijevi�c and Pr�zulj, 2015). Huang et al. (2017) present a
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review of available methods for data integration and argue the need
for direct comparisons of these methods for aiding investigators
choosing the best approach for the aims of their analysis. A number
of data integration approaches have been proposed in the literature
for clustering disease subtypes (Mariette and Villa-Vialaneix, 2018;
Swanson et al., 2019), whereas only few approaches have been pro-
posed for supervised learning, i.e. for predicting the disease outcome
(Jiang et al., 2016; Zhao et al., 2015). Van Vliet et al. (2012) investi-
gated early, intermediate and late integration approaches by apply-
ing nearest mean classifiers for predicting breast cancer outcome.
Their findings suggest that multiple data types should be exploited
through intermediate or late integration approaches for obtaining
better predictions of disease outcome.

The focus of this paper is on canonical correlation analysis
(CCA), an intermediate integrative approach proposed by Hotelling
(1936). CCA and its variations have been applied in various disci-
plines, including personality assessment (Sherry and Henson, 2005),
material science (Rickman et al., 2017), photogrammetry
(Vestergaard and Nielsen, 2015), cardiology (Jia et al., 2019), brain
imaging genetics (Du et al., 2018, 2019) and single-cell analysis
(Butler et al., 2018).

In the case of integrating two datasets CCA produces two new
sets of latent variables, called canonical (variate) pairs. Suppose that
there are two datasets with measurements made on the same sam-
ples (X1 2 R

n�p1 and X2 2 R
n�p2 , assuming w.l.o.g. p1 > p2). For

every ith pair, where i ¼ 1; . . . ;minðp1; p2Þ, CCA finds two canonic-
al vectors, w

ð1Þ
i and w

ð2Þ
i , such that CorðX1w

ð1Þ
i ;X2w

ð2Þ
i Þ is maxi-

mized based on the constraints described below. For the first pair,
the only constraint to satisfy is VarðX1w

ð1Þ
1 Þ ¼ VarðX2w

ð2Þ
1 Þ ¼ 1. In

computing the rth canonical pair, the following three constraints
need to be satisfied:

1. VarðX1w
ð1Þ
r Þ ¼ VarðX2w

ð2Þ
r Þ ¼ 1.

2. CorðX1w
ð1Þ
c ;X1w

ð1Þ
r Þ ¼ CorðX2w

ð2Þ
c ;X2w

ð2Þ
r Þ ¼ 0;

8c ¼ 1; . . . ; r� 1.

3. CorðX1w
ð1Þ
c ;X2w

ð2Þ
r Þ ¼ CorðX2w

ð2Þ
c ;X1w

ð1Þ
r Þ ¼ 0;

8c ¼ 1; . . . ; r� 1.

Orthogonality among the canonical variate pairs must hold: that
is, not just between the elements of each feature space, but also
among all combinations of the canonical variates; except the ones in
the same pair, for which the correlation must be maximized.
Complete orthogonality is attained when these constraints are
satisfied.

In other words, CCA finds linear combinations of X1 and X2

that maximize the correlations between the members of each canon-
ical variate pair (X1w

ð1Þ
i ;X2w

ð2Þ
i ), where X1w

ð1Þ
i ¼ w

ð1Þ
i1 X11 þ � � � þ

w
ð1Þ
ip1

X1p1
and X2w

ð2Þ
i ¼ w

ð2Þ
i1 X21 þ � � � þw

ð2Þ
ip2

X2p2
. By assuming that

there exists some correlation between the datasets, we can look at
the most expressive elements of canonical vectors (and indirectly,
features) to find relationships between datasets.

CCA can be considered as an extension of principal component
analysis (PCA) applied on two datasets rather than one dataset.
Similarly to PCA, CCA can be applied for dimension reduction pur-
poses, as the maximum size of the new sets of latent variables is
k ¼ minfp1;p2g.

A solution to CCA can be obtained through singular value de-
composition (Hsu et al., 2012). The canonical vector w

ð1Þ
i is an

eigenvector of R�1
X1X1

RX1X2
R�1

X2X2
RX2X1

, while w
ð2Þ
i is proportional to

R�1
X2X2

RX2X1
w
ð1Þ
i . Each pair i of canonical vectors corresponds to the

respective eigenvalues in a descending order.
In the case of high-dimensional data (p� n), the covariance ma-

trix is not invertible and a CCA solution cannot be obtained. Over
the years, a number of different methods have been proposed in the
literature for finding solutions to this problem. These variations are
called sparse CCA (sCCA) methods.

In recent years, several sCCA methods have been proposed,
using different approaches, formulations and penalizations. Chu
et al. (2013) implemented a trace formulation to the problem,
Waaijenborg et al. (2008) applied Elastic-Net, while Fang et al.

(2016) used a general fused lasso penalty to simultaneously penalize
each individual canonical vector and the difference of every two ca-
nonical vectors. Other authors proposed methods based on sparse
partial least squares. Lê Cao et al. (2009) assume symmetric rela-
tionships between the two datasets, Hardoon and Shawe-Taylor
(2011) focus on obtaining a primal representation for the first data-
set, while having a dual representation of the second, and the
method proposed by Mai and Zhang (2019) that does not impose
any sparsity on the covariance matrices.

In this paper, three sCCA methods that share similar characteris-
tics in their formulation and optimizing criteria are discussed, inves-
tigated and extended. The first method, penalized matrix
decomposition CCA (PMDCCA) proposed by Witten and
Tibshirani (2009) obtains sparsity through l1 penalization, widely
known as least absolute shrinkage and selection operator (LASSO;
Tibshirani, 1996). The bound form of the constraints is used in
order to reach a converged solution by iteratively updating wð1Þ and
wð2Þ. One of the assumptions of the PMDCCA approach is that the
two datasets are independent, i.e. the covariance matrix of each in-
put dataset is assumed to be the identity matrix. The second method
proposed by Suo et al. (2017) relaxes the assumption of independ-
ence by allowing dependent data to be analysed through proximal
operators [for the rest of the article, we are referring to this method
as RelPMDCCA (relaxed PMDCCA)]. Even though, the additional
restrictions make RelPMDCCA practically more applicable, it is
computationally more expensive than PMDCCA. The third sCCA
method we investigated is conventional CCA (ConvCCA) proposed
by Parkhomenko et al. (2009). Similarly to PMDCCA sparsity is
obtained through l1 penalization. ConvCCA estimates the singular
vector of XT

1 X2 while iteratively applies the soft-thresholding oper-
ator. Chalise and Fridley (2012) extended ConvCCA to allow for
other penalty functions and through a comparative study found the
smoothly clipped absolute deviation (SCAD) penalty to produce the
most accurate results. Motivated by this finding, in our work we
have modified both ConvCCA and RelPMDCCA to be penalized
through SCAD.

Section 2 starts with a description of the three sCCA approaches:
PMDCCA, RelPMDCCA, ConvCCA, followed by a description of
our proposed extension of ConvCCA and RelPMDCCA to allow for
multiple input datasets. A comprehensive simulation study has been
conducted for comparing the performance of the three methods and
their extensions on integrating two and multiple datasets. To our
knowledge, a comparison of the three sCCA methods has not been
made elsewhere. The simulated datasets and scenarios considered
are presented in Section 3.1.

We have further addressed the second important question; how
can data integration be used for linking the multi-OMICS datasets
with complex traits/responses? For addressing this question, we
have looked the problem as both a supervised and an unsupervised
one. For the supervised model, we have used the computed canonic-
al pairs as input predictors in regression models for predicting the re-
sponse. On the flip side, we have explored adding the response
vector as an input matrix in the setting of multiple datasets integra-
tion. We have found both these approaches to have a better predict-
ive accuracy than conventional machine learning methods that use
either one or both of the input datasets. Section 4 presents the ana-
lysis of real datasets with the aim of predicting traits through sCCA.

2 Materials and methods

All sCCA methods share a common objective function, given by:

minwð1Þ ;wð2Þ � CorðX1wð1Þ;X2wð2ÞÞ þ psw1
ðwð1ÞÞ þ psw2

ðwð2ÞÞ; (1)

where psw1
ðwð1ÞÞ and psw2

ðwð2ÞÞ represent penalty functions on wð1Þ

and wð2Þ, respectively. It is a bi-convex optimization where, if wð1Þ is
fixed, then Equation (1) is strictly convex in wð2Þ and vice versa.
Hence, one can find a solution through an iterative algorithm.

In this section, the computation of the first canonical pair is pre-
sented. To derive additional pairs, we have extended an approach
proposed by Suo et al. (2017), which is presented in Section 2.6.
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2.1 Conventional CCA
Parkhomenko et al. (2009) proposed a solution of sCCA based on
approximating the sample correlation matrix and applying l1 penal-
ization through the soft-thresholding operator proposed by

Tibshirani (1996). An iterative procedure updates both canonical
vectors, wð1Þ and wð2Þ, at each iteration k. The procedure is illus-

trated in the following steps where one of the vectors (e.g. wð1Þ) is
updated while the second (e.g. wð2Þ) is kept fixed:

1. Compute sample correlation matrix K12 ¼ R
�1

2

X1X1
RX1X2

R
�1

2

X2X2

2. ðwð1ÞÞkþ1  K12ðwð2ÞÞk

3. Normalize ðwð1ÞÞkþ1 ¼ ðwð1ÞÞkþ1

jjðwð1ÞÞkþ1 jj

4. Apply soft-thresholding: ðwð1Þl Þ
kþ1 ¼ Sððwð1Þl Þ

kþ1; 1
2 sw1
Þ

5. Normalize ðwð1ÞÞkþ1 ¼ ðwð1ÞÞkþ1

jjðwð1ÞÞkþ1 jj
,

where Sððwð1Þl Þ
kþ1; 1

2 swj
Þ ¼ jðwð1Þl Þ

kþ1j � 1
2 swj

� �
þ

Signððwð1Þl Þ
kþ1Þ and

ðxÞþ ¼ f
x if x � 0
0 if x < 0

; SignðxÞ ¼ f
�1 if x < 0
0 if x > 0
1 if x ¼ 0

;8l ¼ f1; . . . ;p1g

swj
represents the tuning parameter for each dataset Xj (j¼1, 2) and

ðwð1ÞÞk is the value of wð1Þ at the kth iteration. To update wð2Þ, the

same procedure is followed with the difference of replacing the se-
cond step with ðwð2ÞÞkþ1  KT

12ðwð1ÞÞ
kþ1.

2.2 Penalized matrix decomposition CCA
Witten and Tibshirani (2009) formulated the problem as:

minwð1Þ;wð2Þ � CorðX1wð1Þ;X2wð2ÞÞ þ sw1
jjwð1Þjj1 þ sw2

jjwð2Þjj1
subject to jjwð1Þjj2 � 1; jjwð2Þjj2 � 1

:

(2)

An iterative algorithm based on penalized matrix decomposition
(PMD) is applied with the update formula:

wðiÞ  SðXT
i Xjw

ðjÞ;DiÞ
jjSðXT

i XjwðjÞ;DiÞjj2
; (3)

where Di > 0 is chosen such that jjwðiÞjj1 ¼ 1 holds, or Di ¼ 0 if
jjwðiÞjj1 � 1, for i; j ¼ 1;2; i 6¼ j. Although the PMDCCA solution is
different from the ConvCCA solution, both approaches assume that

the features are independent within each dataset (i.e.
XT

i Xi ¼ Ipi
; i ¼ 1; 2).

2.3 Relaxed PMDCCA
Suo et al. (2017) proposed a solution that relaxes the independence
assumption and applies penalization through proximal operators.

Their formulation of the problem is similar to (2):

minwð1Þ;wð2Þ � CorðX1wð1Þ;X2wð2ÞÞ þ sw1
jjwð1Þjj1 þ sw2

jjwð2Þjj1
subject to VarðX1wð1ÞÞ � 1; VarðX2wð2ÞÞ � 1

:

(4)

The solution to this optimization is obtained through linearized

alternating direction method of multipliers (Boyd, 2010; Parikh and
Boyd, 2014). The iterative updates on the canonical variate pairs are
computed through proximal algorithms. Due to space limitations, to

view the updates, we refer the readers to the original paper by Suo
et al. (2017).

2.4 Implementing SCAD penalty
The SCAD (Fan and Li, 2001) penalty with tuning parameter s
applied on w is given as follows:

pSCAD
s ðwÞ ¼

sjjwjj1 if jjwjj1 � s

� jjwjj
2
1 � 2asjjwjj1 þ s2

2ða� 1Þ if s < jjwjj1 � as

ðaþ 1Þs2

2
if jjwjj1 > as

8>>>><
>>>>:

(5)

where a is fixed and suggested by Fan and Li to be set as a¼3.7.
Motivated by the findings of Chalise and Fridley (2013), we have
modified RelPMDCCA to perform penalization through SCAD.

Even though SCAD is a non-convex penalty function,
Mazumder et al. (2011) argue that if the optimizing function is
strictly convex, then penalization via SCAD is well-behaved and
converges to a stationary point. In the objective functions of
ConvCCA [Equation (1)] and RelPMDCCA [Equation (4)],

sw1
jjwð1Þjj1 þ sw2

jjwð2Þjj1 is replaced by pSCAD
sw1
ðwð1ÞÞ þ pSCAD

sw2
ðwð2ÞÞ.

As a result the iterative updates of the canonical vectors are differ-
ent. In ConvCCA, the algorithm is adjusted accordingly by replacing
the soft-thresholding operator in Step 4 with:

ðwð1Þl Þ
iþ1 ¼

ðjðwð1Þl Þ
iþ1j � sw1

ÞþSignððwð1Þl Þ
iþ1Þ if jðwð1Þl Þ

iþ1j � 2sw1

ða� 1Þðwð1Þl Þ
iþ1 � Signððwð1Þl Þ

iþ1Þasw1

a� 2
if 2sw1

< jðwð1Þl Þ
iþ1j � asw1

ðwð1Þl Þ
iþ1 if ðwð1Þl Þ

iþ1 > asw1

:

8>>><
>>>:

(6)

The updates of canonical vectors in RelPMDCCA with SCAD
penalty are performed by:

proxlf ðxjÞ ¼

xj þ lcj � lsw1
if lsw1

< xj þ lcj � sw1
þ lsw1

xj þ lcj ¼ þlsw1
if � sw1

� lsw1
� xj þ lcj < �lsw1

xj þ lcj � lg2

1þ 2lg1

if w1 þ lg2 < xj þ lcj � aw1 þ lg2

xj þ lcj þ lg2

1þ 2lg1

if � aw1 � lg2 � xj þ lcj < �w1 � lg2

xj þ lcj if jxj þ lcjj > asw1

0 else

;

8>>>>>>>>><
>>>>>>>>>:

(7)

where g1 ¼ � 1
2ða�1Þ ; g2 ¼

2asw1

2ða�1Þ ; w1 ¼ sw1
ð1þ 2lg1Þ; c ¼

XT
1 X2wð2Þ and x ¼ ððwð1ÞÞk � l

k XT
1 ðX1ðwð1ÞÞk � zk þ nkÞÞÞ

�
. The

parameter sw1
controls the sparseness level while the algorithm

parameters l and k must satisfy 0 < l � k
jjX1 jj22

(Parikh and Boyd,

2014). wð2Þ is updated through the same proximal operators, with
sw2

acting as the tuning parameter. The update functions of z and n

remain the same.

2.5 Multiple sCCA
In OMICS studies, it is common for a study to have more than two
datasets (such as transcriptomics, genomics, proteomics and metab-
olomics) on the same patients. Incorporating all available data sim-
ultaneously through an integrative approach can reveal unknown
relationships between the datasets. This section presents extensions
of the three sCCA methods we have seen, for the integration of mul-
tiple (more than two) datasets simultaneously.

Suppose we have M separate datasets denoted by X1; . . . ;XM,
where Xm 2 R

n�pm ; 8m ¼ f1; . . . ;Mg. The problem of Equation (1)
is then generalized as:

minwð1Þ ;...;wðMÞ

X
i< j

�CorðXiw
ðiÞ;Xjw

ðjÞÞ þ
XM
m¼1

pswm
ðwmÞ (8)

As sCCA is bi-convex, multiple sCCA is multi-convex, i.e. if

wðjÞ; 8j 6¼ i are fixed, then the problem is convex in wðiÞ. Instead of
producing maximal correlated canonical variate pairs (2-tuple), mul-
tiple sCCA produces canonical variate list (M-tuple), e.g. for
i ¼ 1; . . . ;minðp1; . . . ;pMÞ, the ith canonical variate list would be

(X1w
ð1Þ
i ; . . . ;XMw

ðMÞ
i ). Each XmwðmÞ is taken such that, it is max-

imally correlated with the rest of the latent features
P

j 6¼m Xjw
ðjÞ.

In multiple ConvCCA, we propose to update wðiÞ iteratively, by
keeping wðjÞ; 8j 6¼ i and computing Kij; 8j 6¼ i. On the kth
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iteration, wðiÞ is updated by ðwðiÞÞkþ1  
P

j 6¼i KijðwðiÞÞk (Algorithm 1
in Supplementary Material).

Witten and Tibshirani (2009) proposed an extension to their so-

lution, by assuming that XT
mXm ¼ Ipm

; 8m ¼ f1; . . . ;Mg. To up-

date wðiÞ, the canonical vectors wðjÞ; 8j 6¼ i are kept fixed. Multiple
PMDCCA can then be performed by minimizing

wðiÞ
T

XT
i

�P
j6¼i Xjw

ðjÞ
�
; 8i ¼ f1; . . . ;Mg, with constraint functions

jjwðmÞjj2 � 1.
We have extended RelPMDCCA for multiple datasets by follow-

ing the approach of PMDCCA. The constraint functions
VarðXmwðmÞÞ � 1; 8m ¼ ð1; . . . ;MÞ and the proximal operators
remain the same. If wðjÞ 8j 6¼ 1 are kept fixed, we can update wð1Þ,
by replacing �wð1Þ

T

XT
1 X2wð2Þ in Equation (4) with

�wð1Þ
T

XT
1

P
j 6¼1 Xjw

ðjÞ.
The tuning parameters in sCCA and multiple sCCA are selected

as the ones producing maximal correlation through cross-validation.
A detailed description of the procedure is presented in the
Supplementary Material.

In this work, we have explored the performance of the methods
in predicting the response of interest when the response is included
as one of the datasets being integrated.

2.6 Computing the additional canonical vectors
We have only addressed the computation of the first canonical vari-
ate pair so far but this might not be adequate for capturing the vari-
ability of the datasets and of their relationships. Similarly to PCA as
the number of computed principal components is increased the total
amount of variability explained is increased. By computing the add-
itional canonical vectors of CCA additional constraints must be sat-
isfied as illustrated below.

Suo et al. (2017) compute the remaining canonical vectors by
adding the second constraint to the optimization. Let W1 ¼
ðwð1Þ1 ; . . . ;w

ð1Þ
r�1Þ and W2 ¼ ðwð2Þ1 ; . . . ;w

ð2Þ
r�1Þ define the r - 1 canonical

vectors which were computed. The rth canonical vector of wð1Þ is
found through the optimization problem:

minwð1Þ �wð1Þ
T

XT
1 X2wð2Þ þ psw1

ðwð1ÞÞ þ 1fwð1Þ : jjX1wð1Þjj2 � 1g
subject to WT

1 XT
1 X1wð1Þ ¼ 0

;

(9)

where psw1
ðwð1ÞÞ and psw2

ðwð2ÞÞ represent the penalty functions on
wð1Þ and wð2Þ with parameters sw1

and sw2
, respectively. This solu-

tion would successfully result in producing latent features that are
uncorrelated within the new datasets of canonical vectors, although
the correlation is not restricted between the two new datasets.

In an attempt to include the additional constraint to the opti-
mization problem, we propose the following extension to Equation
(9):

minwð1Þ �wð1Þ
T

XT
1 X2wð2Þ þ psw1

ðwð1ÞÞ þ 1fwð1Þ : jjX1wð1Þjj2 � 1g
subject to X1wð1Þ ¼ z; WT

1 XT
1 z ¼ 0r�1; WT

2 XT
2 z ¼ 0r�1

:

(10)

The solution to this optimization problem is obtained by letting

~X ¼
h X1

WT
1 XT

1 X1

WT
2 XT

2 X1

i
, and ~Y ¼

h Y
WT

2 XT
2 X2

WT
1 XT

1 X2

i
. The rth canonical vector

is then computed by applying an sCCA method on ~X and ~Y to ob-

tain w
ðjÞ
r ; j ¼ 1; 2, respectively. The exact algorithm in computing

the additional canonical vectors is presented in Algorithm 2 in
Supplementary Material.

Witten and Tibshirani (2009) proposed to update the cross-
product matrix Y ¼ XT

1 X2 after the computation of each canonical
pair, by Yjþ1  Yj � ðwð1Þ

T

j Yjw
ð2Þ
j Þw

ð1Þ
j w

ð2ÞT
j , where w

ð1Þ
j and w

ð2Þ
j

are the jth canonical vectors. The authors of ConvCCA proposed to
take the residual of K by removing the effects of the first canonical
vectors and repeat the algorithm in order to obtain the additional ca-
nonical pairs.

3 Results

3.1 Simulation studies
Simulated datasets were generated for assessing the performance of
the three methods on (i) integrating two datasets, (ii) the orthogonal-
ity attained by each method and (iii) integrating multiple datasets.
PMDCCA was implemented by using the existing functions in R
package PMA. We used our own code for ConvCCA and
RelPMDCCA, as they were not found publicly available; our code is
available in the github link provided in the abstract.

3.1.1 Models, scenarios and evaluation measures

3.1.1.1 Models. Three models were used for simulating data with
similar characteristics as OMICS datasets. All three data-generating
models are based on five parameters, n; p1; p2; p

ðccÞ
1 ; p

ðccÞ
2 , where n

represents the number of samples, pi is the total number of features
in Xi and p

ðccÞ
i represents the number of features in Xi which are

cross-correlated with the rest of datasets (p
ðccÞ
i � pi). Different types

of scenarios were examined covering a range of possible data char-
acteristics. The data were generated based on the assumption of hav-
ing high canonical correlation. Further, a separate null scenario was
designed in which canonical correlation was taken to be low.

Simple model. A simple data-generating model that generates
data for M � 2 datasets:

Xi ¼ uwðiÞ
T

þ �i; i ¼ f1; . . . ;Mg; (11)

where u 2 R
n; wðiÞ 2 R

pi and �ij � Nð0; 1Þ; j ¼ 1; . . . ;pi. Only the
first p

ðccÞ
i elements of wðiÞ are non-zero, representing the cross-

correlated features that we seek to identify.
Single-latent variable model. Parkhomenko et al. (2009) pro-

posed a single-latent variable model in assessing ConvCCA. An ex-
tension of this model is presented here, allowing the generation of
multiple datasets. M datasets, Xm 2 R

n�pm ;m ¼ f1; . . . ;Mg, are
generated, such that the first p

ðccÞ
m features of each Xm would be

cross-correlated. In other words, w.l.o.g. the first p
ðccÞ
m of Xm will be

correlated with the first p
ðccÞ
j of Xj; 8j 6¼ m. These groups of features

are associated with each other according to the same (single-latent
variable) model. A latent variable, wðiÞ, explains a subset of observed
variables in Xi, i.e. fXi;1; . . . ;X

i;p
ðccÞ
i

g. Through a common higher-
level latent variable, l, wðiÞ 8i, are correlated. The rest of the fea-
tures are independent within their respective datasets.

After simulating a random variable l � Nð0; r2
lÞ, the data are

generated as follows:

1. For the cross-correlated variables:ðxmÞij ¼ aðmÞj li þ exmij for

i ¼ 1; . . . ;n; j ¼ 1; . . . ;p
ðccÞ
m ; m ¼ 1; . . . ;Mwhere we assume

P
i¼1

aðmÞi ¼ 1; 8m, and exmij � Nð0; r2
e Þ; 8i; j;m.

2. For the independent variables:ðxmÞij ¼ exmij for i ¼ 1; . . . ;n; j ¼
p
ðccÞ
m þ 1; . . . ; p1; m ¼ 1; . . . ;M

where again we assume exmij � Nð0; r2
e Þ; 8i; j;m.

Supplementary Figure S1 paints a picture of the single-latent
variable data-generating model.

Covariance-based model. Suo et al. (2017) proposed simulations
based on the structure of the covariance matrices of both datasets
(X1 and X2). Three types of covariance matrices were considered in
this study: (i) Identity, (ii) Toeplitz and (iii) Sparse. We have utilized
this model for generating two datasets. Details regarding this data-
generating model can be found in Supplementary Material.

3.1.1.2 Scenarios and evaluation measures. In comparing the three
sCCA methods for integrating two datasets, six scenarios of differ-
ent data characteristics were examined (Table 1). The first scenario
acts as a baseline for the rest. A single parameter is changed for each
additional scenario. In addition to the six scenarios, a null scenario
was implemented, at which the two datasets were generated through
the covariance-based model with true canonical correlation,
q ¼ 0:1. The purpose of this null simulation model is to understand
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better how the methods work, and determine the likelihood of
obtaining a high correlation by chance.

We assessed the performance of the sCCA methods for integrat-
ing multiple datasets by generating three datasets through three
scenarios as shown in Table 1.

The sCCA methods in both simulation studies were evaluated by
measuring: (i) the canonical correlation; (ii) the correct identification
of sparsity in the data, by computing accuracy, precision and recall
of the true non-zero elements of the estimated canonical vectors;
and (iii) the loss between true and estimated canonical vectors. A
detailed description of the evaluation measures is presented in the
Supplementary Material.

An additional simulation study was conducted to evaluate or-
thogonality. Two datasets were generated, with each of the follow-
ing scenarios used in all three data-generating models: (i)
n ¼ 500; p1 ¼ 100; p2 ¼ 200;p

ðccÞ
1 ¼ 20; p

ðccÞ
2 ¼ 40, (ii) n ¼

150;p1 ¼ 100; p2 ¼ 200; p
ðccÞ
1 ¼ 20; p

ðccÞ
2 ¼ 40 and (iii)

n ¼ 50;p1 ¼ 100;p2 ¼ 200; p
ðccÞ
1 ¼ 20; p

ðccÞ
2 ¼ 40.

3.1.2 Simulation outcomes

3.1.2.1 Integrating two datasets. In the conducted simulation study,

the performance of sCCA methods was assessed on the three data-
generating models and six scenarios shown in Table 1. The results

are based on the first canonical pair.
Figure 1a depicts the resulting ROC curves and their area under

the curve (AUC) values, averaged over all data-generating models
and scenarios. ConvCCA with SCAD had the best performance in
identifying correctly the sparseness and the non-zero elements of ca-

nonical vectors, as it produced the highest AUC. RelPMDCCA with
SCAD obtained the lowest AUC value, which shows that the opti-
mal choice of penalty function depends on the sCCA method. While

Table 1. Data characteristics and simulation scenarios used to evaluate the three sCCA methods for integrating two or three datasets

Scenarios Data characteristics

Integrating two datasets

Null n ¼ 100; 1000;10000; p1 ¼ 80; ; p2 ¼ 60; p
ðccÞ
1 ¼ 5; p

ðccÞ
2 ¼ 15

1 n ¼ 40; p1 ¼ 80; ; p2 ¼ 60; p
ðccÞ
1 ¼ 5; p

ðccÞ
2 ¼ 15

2 n ¼ 150; p1 ¼ 80; ; p2 ¼ 60; p
ðccÞ
1 ¼ 5; p

ðccÞ
2 ¼ 15

3 n ¼ 40; p1 ¼ 200; ; p2 ¼ 60; p
ðccÞ
1 ¼ 5; p

ðccÞ
2 ¼ 15

4 n ¼ 40; p1 ¼ 80; ; p2 ¼ 200; p
ðccÞ
1 ¼ 5; p

ðccÞ
2 ¼ 15

5 n ¼ 40; p1 ¼ 80; ; p2 ¼ 60; p
ðccÞ
1 ¼ 50; p

ðccÞ
2 ¼ 15

6 n ¼ 40; p1 ¼ 80; ; p2 ¼ 60; p
ðccÞ
1 ¼ 5; p

ðccÞ
2 ¼ 50

Integrating three datasets

1 n ¼ 40; p1 ¼ 80; ; p2 ¼ 60; p3 ¼ 40; p
ðccÞ
1 ¼ 15; p

ðccÞ
2 ¼ 10; p

ðccÞ
3 ¼ 5

2 n ¼ 40; p1 ¼ 200; ; p2 ¼ 60; p3 ¼ 40; p
ðccÞ
1 ¼ 15; p

ðccÞ
2 ¼ 10; p

ðccÞ
3 ¼ 5

3 n ¼ 150; p1 ¼ 80; ; p2 ¼ 60; p3 ¼ 40; p
ðccÞ
1 ¼ 15; p

ðccÞ
2 ¼ 10; p

ðccÞ
3 ¼ 5

Note: n represents the number of samples, while p
ðccÞ
i and pi represent the cross-correlated and total number of features, respectively, in dataset i, for i¼ 1, 2.

Fig. 1. sCCA performance on simulated data for integrating two datasets. (a) ROC curve plots on all five sCCA methods after averaging over all data-generating models and

all scenarios. (b) Box-plots of the overall loss of the first canonical vector (X1wð1Þ) averaged over all data-generating models and scenarios, and (c) canonical correlation in the

simulation studies for sCCA. (d) ROC curve plots, showing averaged results (over the models) for each scenario on X1wð1Þ. (Results on X2wð2Þ can be seen in the

Supplementary Material). (e) ROC curve plots, showing averaged (over the scenarios) results for each model on X1wð1Þ
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the second dataset (and latent features X2wð2Þ) obtained slightly
reduced sensitivity, the sCCA methods performed in a similar fash-
ion as with the first dataset.

RelPMDCCA produced the highest loss between the true and
estimated canonical vectors (Fig. 1b), but it also provided the highest
canonical correlation (Fig. 1c). Its overall averaged correlation is
close to 1, while for the other two methods, it is closer to 0.9.

Figure 1d shows the performance of the first canonical vector
(X1wð1Þ) averaged over all data-generating models. As expected, by
increasing the number of samples in a case where n>p (Scenario 2),
the AUC values on all sCCA increased, with RelPMDCCA showing
the largest improvement. However, a decrease in the performance of
all sCCA methods is observed when the number of non-zero ele-
ments is increased. This can be seen on Scenarios 5 and 6, for wð1Þ

and wð2Þ, respectively. We can argue that in cases where the non-
zero elements of a canonical vector are at least half of its length
(total number of elements), the methods fail to correctly identify
some of them. That might be due to the fact that sCCA methods
force penalization and expect a sparser outcome. Furthermore, since
the performance on wð2Þ in Scenario 6 is worse than that on wð1Þ in
Scenario 5, we can argue that the higher the ratio of non-zero ele-
ments over the total number of elements, the less accurate the identi-
fication. On Scenarios 3 and 4, where the total number of features is
increased while the non-zero elements are not, sCCA methods per-
formed as well as on the baseline scenario.

After averaging over the scenarios, the methods’ performance
on each data-generating model is shown in Figure 1e. The methods’
performance seems to be overall influenced by the choice of data-
generating model. In the case of single-latent variable model,
ConvCCA clearly produced the least errors, while in the simple
model, PMDCCA produced the highest AUC values. In the
covariance-based models, all sCCA methods performed equally
well in estimating correctly non-zero elements of the canonical vec-
tors. Methods on Toeplitz model produced higher AUC values
than on Identity model, where Sparse model contained the most
errors out of all data-generating models. Based on this observation,
we can argue that the sparser the data, the less accurate the
methods.

3.1.2.2 Null simulation model. To conclude our simulation study in
integrating two datasets, we applied the three sCCA methods on
two datasets, simulated to have low canonical correlation. Two
datasets were generated by following the covariance-based model
and setting the true correlation q ¼ 0:1 on different sample sizes,
n¼100, 1000, 10 000. The rest of the simulation parameters
remained constant as presented in Table 1.

As sample size increases, the correlations obtained by all meth-
ods are decreasing (Table 2). Even though the datasets were simu-
lated to have low correlation, it is possible that a certain
combination of their respective features could have high correlation
by chance due to the small sample size. ConvCCA and
RelPMDCCA captured this relationship and produced high canonic-
al correlation on low-sampled simulations, while PMDCCA did a
better a job in avoiding it even with n¼100. PMDCCA produced
the highest AUC on simulations with small sample size, while on
n¼10 000, RelPMDCCA captured the true non-zero features more
accurately than PMDCCA and ConvCCA (Fig. 2).

The results of this simulation, along with the results of Section
3.2.1, suggest that although ConvCCA and RelPMDCCA are cap-
able in producing a larger canonical correlation than PMDCCA, the
likelihood of that correlation being due to chance is greater. The
same conclusions were reached after repeating this process on two
independent and uncorrelated datasets.

3.1.2.3 Orthogonality and sparsity. A third simulation study was
conducted, with the aim of evaluating orthogonality of the three
sCCA methods. For each method, orthogonality was enforced differ-
ently. For RelPMDCCA the solution proposed in Section 2.6 was
applied, while for ConvCCA and PMDCCA we applied the solu-
tions proposed by Parkhomenko et al. (2009) and Witten and
Tibshirani (2009), respectively.

The scenarios in this study are split into three cases, based on the
data sparsity: (i) n > p2 > p1, (ii) p2 > n > p1 and (iii) p2 > p1 > n.
Table 3 shows the classification of each case with one out of three
classes: (A) Full (Orthogonality): all pairs were found to be orthog-
onal; (B) Partial: most, but not all pairs were found to be orthogon-
al; and (C) None: none, or limited pairs were found to be
orthogonal. Different colours in Table 3 refer to the different simu-
lation models: simple model, single-latent variable model, identity
covariance-based model.

As summarized in Table 3, orthogonality is not always pre-
served, and that depends on the sCCA method, as well as on the
data characteristics. The choice of data-generating model did not
have a high impact in attaining orthogonality. All sCCA methods
were penalized through l1 during this simulation study.

In case (i), ConvCCA has attained full orthogonality on the first
five canonical variate pairs, where PMDCCA and RelPMDCCA
failed to do so (except between some pairs). In the other two cases,
none of the canonical variates obtained from ConvCCA were or-
thogonal. PMDCCA preserved complete orthogonality in p2 > p1 >
n case and most when p2 > n > p1. Complete orthogonality was
attained in both of those cases when RelPMDCCA was imple-
mented. Parkhomenko et al. (2009) and Witten and Tibshirani
(2009) only consider the first canonical pair in their examples and
do not explicitly discuss the performance of their respective methods
on additional canonical pairs.

Fig. 2. sCCA performance on Null scenario. ROC curves of the first canonical vec-

tor by all three sCCA on Null scenario with sample sizes n¼100, 1000, 10 000

Table 2. Null simulation model

Canonical correlation on Null simulation model

PMDCCA ConvCCA ConvCCA RelPMDCCA RelPMDCCA

Sample size LASSO LASSO SCAD LASSO SCAD

n ¼ 100 0.55 (0.08) 0.81 (0.05) 0.80 (0.02) 0.96 (0.05) 0.98 (0.02)

n ¼ 1000 0.22 (0.03) 0.48 (0.02) 0.48 (0.04) 0.51 (0.01) 0.50 (0.02)

n ¼ 10 000 0.12 (0.03) 0.26 (0.05) 0.24 (0.03) 0.26 (0.04) 0.26 (0.04)

Note: Canonical correlations of PMDCCA, ConvCCA and RelPMDCCA averaged across 100 runs on the null scenarios.
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3.1.2.4 Integrating three datasets. A simulation study on multiple
sCCA was performed by generating three datasets through the (i)
simple model and (ii) single-latent variable model. The same evalu-
ating measures as with the case with the two datasets were com-
puted. Canonical correlation was evaluated by computing the
average canonical correlation of each dataset with the rest.

Figure 3a presents the averaged (arithmetic) canonical correl-
ation observed by each method. RelPMDCCA produced the highest,
as it did in with the case of two datasets. PMDCCA produced the
least correlated and least sparse solution, suggesting that it is not
performing very well with multiple datasets where the objective of
sCCA is to maximize the correlation between the datasets. Figure 3b
shows the sparsity obtained by each method with RelPMDCCA pro-
viding the sparsest solution.

Overall, PMDCCA produces the highest AUC values.
RelPMDCCA was superior only when the number of samples was
increased (Scenario 3). RelPMDCCA and ConvCCA showed a decrease
in their performance when the number of non-zero elements was
increased, but PMDCCA was able to maintain its good performance.

3.2 Real datasets
3.2.1 NutriMouse

Martin et al. (2007) have performed a nutrigenomic study, with
gene expression (X1 2 R

n�p1 ) and lipid measurements (X2 2 R
n�p2 )

on n¼40 mice, with p1 ¼ 120 genes and concentrations of p2 ¼ 21
lipids were measured. Two response variables are available: diet and
genotype of mice. Diet is a five-level factor: coc, fish, lin, ref, sun
and genotype is recorded as either Wild-type (WT), or Peroxisome
Proliferator-Activated Receptor-a (PPARa). NutriMouse data are
perfectly balanced in both responses, in which an equal number of
samples is available for each class.

Through the analysis of the nutriMouse datasets we aimed to (i)
evaluate which of three considered sCCA approaches performs bet-
ter and (ii) determine whether data integration of datasets can im-
prove prediction over conventional approaches that only analyse a
single dataset. For addressing the second question, we have imple-
mented the following off the shelf statistical machine learning
approaches: (A) Principal Components Regression (PCR)—logistic
model with first 10 principal components acting as predictors; (B)
Sparse Regression (SpReg)—penalized (through LASSO and SCAD)
logistic and multinomial models, when the response was diet and
genotype, respectively; (C) k-Nearest Neighbours (kNN) for super-
vised classification; and (D) k-means for unsupervised clustering—
acting as a benchmark in splitting the data by ignoring the labels.
Since two datasets are available, these four methods were imple-
mented on the following three cases of input data: (i) only X1, (ii)
only X2 and (iii) Xboth ¼ ðX1;X2Þ 2 R

n�pboth , where pboth ¼ p1 þ p2.
The aforementioned machine learning methods and the three sCCA
approaches were applied on 100 bootstrap samples of the datasets,

Table 3. Orthogonality of sCCA methods

Orthogonality of all simulations with five canonical variates

Methods � > PMDCCA ConvCCA RelPMDCCA

n > p2 > p1 None Orthogonality

Partial Orthogonality

Partial

Full Orthogonality

Partial

Full

Partial

None

None

p2 > n > p1 None

Partial

Full

None

None

None

Full

Full

Partial

p2 > p1 > n Full

Full

Full

None

None

None

Full

Full

Full

Note: The table shows whether the algorithms succeed in obtaining orthogonal pairs. None refers to not obtaining orthogonality at all; Full refers to obtaining

orthogonality between all pairs; Partial for some, but not all. For each scenario, simulations via the simple simulation model, single-latent variable model and co-

variance-based model are represented by the first, second and third rows, respectively.

Table 4. A summary on the performance of sCCA methods based on both the simulation studies conducted and the analysis of real data

Summary on the performance of sCCA methods

On two datasets ConvCCA Great performance on simulation studies, especially on single-latent model

Over-fitted cancerTypes data and performed well on nutriMouse

Low time complexity

PMDCCA Good performance on simulation studies, especially on simple model

Over-fitted cancerTypes data and performed well on nutriMouse

Low time complexity

RelPMDCCA Moderate to good performance on simulation studies

Had the best performance in analysing two real datasets

High time complexity

Multiple datasets ConvCCA Good performance on simulation studies

Avoided over-fitting and improved performance in both data studies

Low time complexity

PMDCCA Very good performance on simulation studies

Avoided over-fitting and improved performance in both data studies

Low time complexity

RelPMDCCA Moderate to good performance on simulation studies

Overall obtained the best results in both data studies

High time complexity

Note: It is an intuitive evaluation of the methods, split into having two datasets or multiple.
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taking separate training and test sets at each repetition, for assessing
the predictive accuracy of the methods. For the machine learning
methods applied, the version with the input dataset obtaining the
smallest error was compared with the sCCA approaches. In predict-
ing the genotype response using only X1 (i.e. gene expression data)
was preferred, but Xboth was chosen with diet acting as the response
(Supplementary Material).

Figure 4 shows the predictive accuracy of the methods on both
diet (Fig. 4a) and genotype (Fig. 4b). PCR and k-means were the
least accurate methods (Supplementary Material). In predicting
either response, sCCA methods outperformed the conventional
machine learning methods. Both the sCCA approaches and the
conventional machine learning approaches had very high accuracy
for predicting the genotype response whereas their accuracy was
lower for predicting the diet response. All the methods had an
accuracy between 0.7 and 0.86, except RelPMDCCA that had the
highest accuracy 0.92. The precision and recall measures showed
similar patterns with RelPMDCCA obtaining the highest values
for both measures against all other methods (Supplementary
Material).

Multiple sCCA with response matrix. We applied our proposed
extensions of the sCCA approaches for multiple datasets, where one
of the input datasets is the matrix of the two response vectors.

Figure 4c presents the canonical vectors of the first canonical
variate pair. The first column of plots shows the canonical vectors
obtained without considering a response matrix. On a two-setting
integration, the data are not separated well for neither response.
However, by including the response matrix, multiple sCCA methods
separated clearly the samples between WT and PPARa mice, as
shown in the second column of Figure 4c. A slight improvement in
their separation between diets was also observed. All multiple sCCA
methods performed equally well, although visually RelPMDCCA
indicates the clearest separation in terms of genotype.

3.2.2 CancerTypes

Due to the abundance of data in the Cancer Genome Atlas (TCGA)
database, a lot of researchers have applied various integrative algo-
rithms for cancer research (Lock et al., 2013; Parimbelli et al., 2018;
Poirion et al., 2018; Wang et al., 2014). Gene expression, miRNA
and methylation data from three separate cancer types were taken:
(i) breast, (ii) kidney and (iii) lung. For each patient, we also have in-
formation about their survival status. Thus, the goal of this analysis
was to assess whether (multiple) sCCA can improve conventional
classification methods in determining the cancer type, and survival
status.

Fig. 4. sCCA performance on nutriMouse data. Box-plots presenting the accuracy of sCCA methods, k-NN and SpReg with LASSO and SCAD with the response being (a) diet

and (b) genotype. (c) Scatter plots of the canonical vectors from the first canonical variate pair of a random nutriMouse test set, after applying sCCA and multiple sCCA

Fig. 3. Multiple sCCA performance on simulated data for integrating three datasets. (a) Box-plots showing the canonical correlation along the ConvCCA, RelPMDCCA and

PMDCCA methods in a multiple setting. (b) An example of a scatter plot for the first estimated canonical vector. (c) ROC curves on multiple sCCA simulations
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The data consist of 65 patients with breast cancer, 82 with
kidney cancer and 106 with lung cancer, from which 155
patients are controls. The data in this study cover 10 299 genes
(X1), 22 503 methylation sites (X2) and 302 mi-RNA sequences
(X3). Data cleaning techniques such as removing features with low
gene expression and variance were used, leaving us with a
remaining of 2250 genes and 5164 methylation sites. Similarly to
Section 4.1, k-NN, PCR and SpReg were applied, along with sCCA
algorithms. After investigating the best combination, miRNA ex-
pression and methylation datasets were selected for integrating
two datasets. Multiple sCCA was implemented on all three
available datasets.

Figure 5a presents the accuracy, precision and recall of each
method in predicting the patients’ survival status. SpReg, ConvCCA
and PMDCCA produced perfect recall, while their precision was
recorded around 60%. Such finding suggests over-fitting as a single
class is favoured. Thus, a solution providing good results while
avoiding over-fitting would be preferable.

PCR and k-NN did not show any signs of over-fitting, but did
not perform well (PCR had accuracy below 0.5 and k-NN had con-
sistently low values on all three measures). RelPMDCCA did not
over-fit the data and produced high measure values, especially with
LASSO being the penalty function. Multiple RelPMDCCA produced
the most accurate and precise solution out of all methods applied.
Multiple PMDCCA and ConvCCA improved the results of their re-
spective integration method on two datasets, as they avoided over-
fitting, with precision and recall values being more balanced.
Regardless of the response, same conclusions were reached, i.e.
implementing multiple sCCA can avoid over-fitting.

Figure 5b presents the scatter-plots of the test set of the canonical
vectors of the first canonical variate pair. In contrast with the
nutriMouse study, visually there is no clear separation observed be-
tween cancer types or survival status of the patients. Since the ob-
jective of sCCA is to maximize canonical correlation, it is important
to preserve it. The canonical vectors of the test set are computed by
linearly combining the estimated canonical vectors (through train-
ing), with the original test datasets. RelPMDCCA produced the
highest correlation in all three combinations of canonical vectors
(Fig. 5b).

4 Discussion

The increasing number of biological, epidemiological and medical
studies with multiple datasets on the same samples calls for data in-
tegration techniques that can deal with heterogeneity and high-
dimensional datasets.

Over the years, a lot of methods for sCCA have been proposed
that integrate high-dimensional data. In this study, we have focused
on ConvCCA, PMDCCA and RelPMDCCA, as these methods pen-
alize the same optimizing function [Equation (1)]. We modified
RelPMDCCA to penalize canonical vectors through SCAD and we
compared its performance against LASSO penalty. Further, we pro-
posed an extension in computing the additional canonical pairs. The
extension satisfies necessary conditions in enforcing orthogonality
among them. Finally, we extended ConvCCA and RelPMDCCA for
integrating more than two datasets instead of just two as their ori-
ginal version.

By collectively reducing the dimensions of the datasets, while
obtaining maximal correlation between the datasets, sCCA methods
were found to have better accuracy in predicting complex traits than
other conventional machine learning methods. Through our pro-
posed extensions of the ConvCCA and RelPMDCCA approaches
for integrating more than two datasets and for incorporating the re-
sponse matrix as one of the integrated datasets, we have showed
that over-fitting can be avoided and higher predictive accuracy can
be obtained.

Through the analysis of the two real datasets, we illustrated that
the sCCA methods can improve our predictions of complex traits in
both cases: (i) when a regression model is built with the new canon-
ical matrices as input matrices and (ii) when the response matrix is
one of the input matrices in the data integration. For both cases, the
sCCA methods can improve the predictions of the response.

Table 4 summarises our conclusions on each of the three sCCA
methods applied on two or multiple datasets. Even though both
nutriMouse and cancerTypes datasets have small sample sizes, the
latter has a large number of features, providing an indication of a
true genomic-wide scale analysis. We found that RelPMDCCA
obtained the best results, but it is also more computationally expen-
sive than the other methods. We conclude that in cases where data-
sets with large number of features or samples, PMDCCA might be a

Fig. 5. sCCA performance on cancerTypes data. (a) Model performance for the prediction of samples’ survival status. The best overall performed model is shown with bold.

(b) Scatter-plots of canonical variates in cancerTypes analysis through multiple sCCA
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more appropriate method to consider due to its advantage regarding
computational time. This observation calls for further optimizing
RelPMDCCA in reducing its complexity and increasing its feasibility
on large-scale analysis. The computation times of the methods are
presented in the Supplementary Material.

Our simulation study findings are in agreement with Chalise and
Fridley (2012) that showed that ConvCCA has better results with
SCAD penalty rather than LASSO. When analysing two uncorre-
lated datasets both ConvCCA and RelPMDCCA had a greater likeli-
hood of obtaining high correlation compared to PMDCCA, when
the number of samples is small. With larger sample sizes, all meth-
ods obtained smaller correlations. With no exception, RelPMDCCA
provides the highest canonical correlation in all simulation studies
and all real-data analyses performed in this paper.

To preserve orthogonality, the results of our simulation study
suggest different methods based on data characteristics. If the data
satisfy n > p1 > p2, then ConvCCA is a more sensible choice. In the
other cases (p1 > n > p2 or p1 > p2 > n), ConvCCA failed to pro-
vide orthogonal canonical pairs, while PMDCCA and
RelPMDCCA, attained orthogonality on synthetic data from all
three data-generating models. We observed the performance of the
sCCA methods to depend on the structure of the input data. For
sparse datasets, we recommend the use of the RelPMDCCA ap-
proach as it is the one that performed better for such datasets.

Huang et al. (2017) argued the need for a comparison of data in-
tegration approaches. This paper has addressed this by evaluating
the performance of three sCCA approaches. We have further illus-
trated that integrating datasets through multiple sCCA could im-
prove the prediction power, suggesting that researchers with access
to two or more datasets should aim for an integrative analysis.
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