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Little is known about the human intra-individual metabolic profile changes over an extended period
of time. Here, we introduce a novel concept suggesting that children even at a very young age can be
categorized in terms of metabolic state as they advance in development. The hidden Markov models
were used as a method for discovering the underlying progression in the metabolic state. We applied
the methodology to study metabolic trajectories in children between birth and 4 years of age, based
on a series of samples selected from a large birth cohort study. We found multiple previously
unknown age- and gender-related metabolome changes of potential medical significance.
Specifically, we found that the major developmental state differences between girls and boys are
attributed to sphingolipids. In addition, we demonstrated the feasibility of state-based alignment of
personal metabolic trajectories. We show that children have different development rates at the level
of metabolome and thus the state-based approach may be advantageous when applying metabolome
profiling in search of markers for subtle (patho)physiological changes.
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Introduction

Multiple technologies including genomics and proteomics
have been used to study human developmental and aging
processes (Kriete et al, 2006). However, little is known about
the intra-individual molecular changes in man over an
extended period of time, or dependence of these changes on
factors such as gender or lifestyle. In fact, omics data (e.g.,
metabolomics, proteomics or transcriptomics) providing
information about individuals followed up over extended
periods of time have not been reported to date.

Serum patterns of metabolites reflect to some extent the
homeostasis of the organism. Thus, changes in specific
metabolite groups may characterize systemic responses to
environmental or genetic alterations (Kell, 2006; Oresic et al,
2006). The metabolic phenotype is affected by factors such as
lifestyle, nutrition and gut microbiota (Lenz et al, 2004;
Nicholson et al, 2005; Rezzi et al, 2007). For characterization of
individual’s responses to environmental interventions such as
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introduction of a new diet or drug, discovery of disease markers
and elucidation of disease pathogenesis, understanding the intra-
and inter-individual variability of molecular profiles is essential
(van der Greef et al, 2004; Nicholson and Holmes, 20006).

One would expect that in particular during childhood
growth and diet would have a major impact on molecular
profiles and thus also on potential risks associated with
specific diseases. Here, we study the metabolic development in
healthy children between birth and 4 years of age, with specific
focus on the influence of the gender. Our sample series is based
on a unique birth cohort study (DIPP, the Type 1 Diabetes
Prediction and Prevention Study), which over an 11-year
period (1994-2006) frequently followed up more than 8000
children (Kupila et al, 2001). Owing to the diverse roles of
lipids in cell signaling and metabolism (Vance and Vance,
2004), the analysis of serum extended lipid profiles (lipidome)
was selected as the metabolomics strategy. A few examples of
lipid molecules commonly detected in human serum are
shown in Supplementary Figure S1.
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Longitudinal analysis of metabolomics data in medical
settings has commonly relied on application of linear multi-
variate methods such as principal components analysis
coupled to discriminant analysis (‘t Hart et al, 2003),
orthogonal projection to latent structures discriminant analy-
sis (Wang et al, 2007), weighted principal component analysis
(Jansen et al, 2004) and multivariate extensions of analysis of
variance (ANOVA), such as ANOVA-simultaneous component
analysis (Smilde et al, 2005). As the factors affecting metabolic
profiles are highly interdependent, specific to individual
subjects, as well as nonlinear, the assumption of linearity of
the progression and similarity of the time schedule of the
changes in different individuals are major drawbacks in
conventional multivariate analyses.

Here, we introduce a novel concept suggesting that children
even at a very young age can be categorized in terms of
metabolic state as they advance in development. These states
are not directly observable but each individual’s metabolism is
assumed to induce a characteristic metabolite concentration
profile in serum. A statistical model that fits well to our setting
is hidden Markov model (HMM) (Rabiner, 1989). An HMM
consists of a set of hidden states, the probabilities for the
transitions between the states and an emission distribution in
each state. HMM assumes that the observed data have been
generated by the emission distributions according to a process
visiting the unobserved states sequentially. The HMM states
can be thought of as clusters that average the state space over
an adaptive time window, which makes the HMM capable of
modeling time progressions from a relatively small number of
sample time series. In this study, we use HMMs as a method for
discovering the underlying metabolic state progression, and
apply the approach to study the gender-dependent progression
of metabolic trajectories in early childhood.

Results

Formulation of the model for metabolic state
progression with age

Longitudinal metabolic profiles of 27 boys and 32 girls
between the ages of approximately 3 months and 4 years,
with samples collected at an average interval of 3 months
(range 2-7 months), were available for this study. All children
included in our study were healthy and did not develop any
symptoms or early signs of potential progression to type I
diabetes or other chronic diseases. The total number of
samples analyzed by the lipidomics platform was 648,
corresponding to 11 samples per child on average. Following
data processing, a total of 64 identified lipid molecular species
were included in the analysis. The lipidomic data are available
as Supplementary information S1.

Owing to the real-life circumstances of the families, the
sampling times of the children did not match exactly, but
followed a pattern that allowed a coarse initial aligning of
samples into 12 time point groups (Supplementary Table S1).
To further reduce the number of independent variables, only a
set of 27 least correlated variables was included in the building
of the models. Each selected variable was a representative of
one of the 27 clusters including tightly correlated metabolites
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Figure 1 Structure of the HMM used in this study. The model is made to focus
on progressive changes over time by assuming that returning back in states is not
possible after state 2. Separate HMM models are developed for both genders.
The nodes in the graph represent the hidden states, each of which emits a
multivariate profile of metabolite concentrations, and arrows represent possible
transitions between the states.

(Supplementary Table S2). The final working data are
available as Supplementary information S2.

We assumed that the observed trends in metabolic profiles
were generated by a series of metabolic developmental states.
HMMs (Rabiner, 1989) were applied to model the states. When
designing the model structure, we assumed that the underlying
states form a chain (Figure 1), thus constraining the model to
focus on the progression of metabolite concentrations in time.
To study differences between sexes, two separate models were
trained, one for girls and one for boys.

The length of the chain determines the resolution of the
HMM model. The longer the chain, the more subtle changes
HMM can find in the data. However, if the number of states is
too large, the performance of the model on new data begins to
suffer, that is, the model becomes overfitted. To select the
optimal number of states, model performance was evaluated
by the ability to classify the sexes in bootstrap setting
(Supplementary Table S3). The HMM was fitted to data using
standard procedures as described in Materials and methods.

Progression trajectories in early childhood

Emission profiles of HMM states were studied to investigate age-
and gender-dependent changes in metabolic states. We assumed
that the states of the sexes are roughly comparable (i.e., the first
state in males corresponds to the first state in females, and so
on). The examination of validity of this assumption (Supple-
mentary Figure S2) showed that the features of the metabolic
states were indeed similar in the two sexes.

The changes in metabolic profiles of boys and girls during
the period of follow-up are shown in Figure 2A. Notably, most
of the changes in phospholipid profiles (e.g., lysophosphati-
dylcholines such as GPCho(18:0/0:0) or sphingomyelins such
as SM(d18:1/14:0)) and short- and medium-chain triacylgly-
cerols occurred in the transition between the first and second
HMM states, corresponding to approximately 1 year of age.
Changes between the second and third states were dominated
by longer chain triacylglycerols.

Gender differences in metabolic progression
trajectories

To evaluate if the HMM model does capture time-dependent
gender differences, we first investigated if the HMM findings
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Figure 2 Lipid changes and HMM states in early childhood. (A) Lipid changes between the HMM states. Each block shows the significance, based on the bootstrap
procedure, of the change for the marked lipid during the time period marked at the bottom (for instance, bottom left corner shows the change in metabolite TG(54:6) from
state 1 to 2). (B) HMM state distribution for different age groups. The images have been computed from 4000 bootstrap samples. For each sample, an HMM was
computed and the state progression of each individual was evaluated. The colors show the proportion of children and samples for which the child was in this specific state
at the given time. (C) Metabolites separating boys and girls as a function of HMM state.

are nonrandom in unseen data. The gender classifier based on
HMM was compared with random classifications. The
classification accuracies for unseen data (out-of-bag samples
in a bootstrap setting) were as follows: naive classifier 51 %,
randomized data classification with HMM 50% and the
original data classification with HMM 67%. As the results
are not random and can be generalized to unseen data, we
concluded that the HMM can detect gender-specific biological
effects.

To further investigate whether the observed gender differ-
ences are time-dependent, we classified the samples without
taking the time structure into account. Simple linear classifica-
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tion methods were applied, which assume independence of
time points inside the time series. Similar to HMMs, the
optimal number of components in partial least squares
discriminant analysis (PLS-DA) was chosen in a bootstrap
procedure; linear discriminant analysis (LDA) does not have
an analogous complexity parameter and does not need to be
optimized in such a way. Classification accuracy was 55%
with both LDA and PLS-DA, thus implying that the HMM
benefits from time information in detecting gender differences.

To test for the effect of sampling frequency, we excluded
every fourth, third and finally every second time point, and
trained the HMM for each of the reduced data sets. The
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Figure 3 Comparison of data variability in HMM states and in age-based groups. Gender-randomized data and time point-randomized data provide baselines for
the comparisons. Variability is measured with a simple sum of variances over the normalized metabolite concentrations, averaged over all bootstrap samples. In the

age-based grouping, the time points are divided into five groups in the time order.

classifier performance was 60, 55 and 53%, respectively
(Supplementary Table S4), confirming that if less then 25% of
the time points are excluded, HMM still performs marginally
better than PLS-DA with the full data.

After the initial validation steps, we studied the differences
between girls and boys by comparing the progressions of
metabolic states. The results in Figure 2B suggest that the
metabolic development between girls and boys might be
slightly different, in particular toward the end of the time
series.

We then studied differences between the sexes as a function
of the metabolic state (Figure 2C). The most notable difference
is a consistent increase of sphingomyelins in girls in all HMM
states studied. The most abundant lysophosphatidylcholine,
GPCho(18:0/0:0), is also consistently increased in girls from
state 2 onwards. State 1 was characterized by the largest
differences between the two sexes, mainly attributable to
phospholipids.

Correlation analysis performed in bootstrap setting sug-
gested that the between-lipid correlations changed between
the states and between the sexes (Supplementary Figure S3).
Strong negative correlations between triacylglycerols (e.g.,
TG(52:3)) and ether phospholipids (e.g., GPCho(0-38:4)) were
observed in state 2 in boys, with a similar trend in state 1,
whereas in girls all these correlations tended to be positive.

Metabolic state-based alignment of personal
metabolic trajectories

One benefit of the HMM is its ability to align individual’s time
series in such a way that the correspondence of the individuals
is based on the metabolic state but not on age. This will in
principle enable a better comparison of different individuals,
as individuals may have different metabolic progression
trajectories.
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Figure 3 demonstrates the feasibility of HMM in alignment
of the children according to their longitudinal metabolic
profiles, as compared to age-based alignment. Especially for
boys, the HMM-aligned data have consistently lower within-
group variance than the age-based alignment.

Discussion

In this study, we introduced a novel concept suggesting that
children even at a very young age can be categorized in terms
of metabolic state as they advance in development. We found
HMMs as a natural choice to implement our approach, because
HMMs allow (1) intuitive evaluation of the most important
metabolic factors characterizing different states as well as
transitions between the states, (2) alignment of multivariate
metabolic time trajectories for different individuals and (3)
modeling time-associated progression from a relatively small
amount of data.

We found that the metabolic trajectories of boys and girls
until age four could be adequately described by five HMM
states. The major metabolic changes occurred during the
transition from HMM state 1 to 2, corresponding approxi-
mately to 1 year of age. Interestingly, this transition was not
characterized by changes in major serum lipids, such as
phosphatidylcholines, major phospholipids in lipoproteins
and cellular membranes (Vance and Vance, 2004) or serum
transporters of dietary fat such as medium- and long-chain
triacylglycerols. Instead, the transition was mainly character-
ized by increases in proinflammatory lysophosphatidylcho-
lines (Mehta, 2005) and short-chain triacylglycerols. It is
possible that the increase in lysophosphatidylcholines is
linked with higher susceptibility to infections, major changes
in the diet and increased exposure to other environmental
challenges around the age of 1 year.
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Comparison of longitudinal metabolic trajectories between
boys and girls revealed higher levels of sphingomyelins, a
common sphingolipid in lipoproteins and membranes, in girls
than in boys in all metabolic states (Figure 2C). Although there
is no prior clinical evidence of this phenomenon, the
dependence of sphingomyelin levels on estrogen metabolism
has been recognized (Merrill et al, 1985).

It is clear that future investigations of development should
extensively cover the metabolome by applying multiple
analytical platforms (van der Greef et al, 2004; Oresic et al,
2006). The computational framework presented here might
also be suitable for more complex study designs, for example,
when state changes are searched for as indicators of disease
development or when interventions are launched to prevent or
cure the disease.

Materials and methods
Subjects

The healthy subjects included in this study were selected from a large
birth cohort study (DIPP) (Kupila et al, 2001). The DIPP project has
been carried out in three Finnish cities with a combined annual birth
rate of 11000, representing almost 20% of all births in Finland. The
project was launched in the city of Turku in November 1994; Oulu
joined the study 1 year later and Tampere 2 years after that. HLA-DQB1
alleles *02, *0301, *0302, *0602 and *0603 were analyzed, and males
positive for DQB1*02 were further typed for DQA1 alleles *0201 and
*05 in the Turku cohort. By June 6, 2006, 104 111 consecutive newborn
infants had been screened, and 8026 children with genetic risk
continued in the follow-up.

In Turku the children were monitored at 3-month intervals until 2
years of age and then twice a year, and in Oulu and Tampere at 3, 6, 12,
18 and 24 months and then annually (Kupila et al, 2002). At each visit,
a venous blood sample was collected from the children without
fasting. After 30-60 min at room temperature, serum was separated
and transferred to —70°C in cryovials within 3 h from the draw.

Lipidome analysis

The lipidome was analyzed as described previously (Laaksonen et al,
2006). In brief, serum samples (10 ul) diluted with 0.15 M NacCl (10 pl)
and spiked with a standard mixture containing 10 lipid species were
extracted with a mixture of chloroform and methanol 2:1 (100 ul). The
extraction time was 0.5h and the lower organic phase was separated
by centrifuging at 10000 r.p.m. for 3 min. Another standard mixture
containing three labeled lipid species was added to the extracts and the
lipids were analyzed on a Waters Q-Tof Premier mass spectrometer
combined with an Acquity Ultra Performance LC™ (UPLC). The
column, kept at 50°C, was an Acquity UPLC™ BEH C181 x 50 mm with
1.7um particles. The solvent system included water (1% 1M
ammonium acetate, 0.1% HCOOH) and a mixture of acetonitrile and
2-propanol (5:2, 1% 1M NHAc, 0.1% HCOOH). The flow rate was
0.2 ml/min and the total run time including column re-equilibration
was 18 min. Data were processed using MZmine software, version 0.60
(Katajamaa et al, 2006). Lipids were identified using the internal
spectral library or with tandem mass spectrometry in both positive and
negative ion modes as described (Yetukuri et al, 2007). Supplementary
Figure S1 shows few illustrative lipid molecular species analyzed by
the lipidomics approach. Our lipid notation follows the conventions
recommended by the LIPID MAPS consortium (Fahy et al, 2005).
Calibration was performed as follows: all monoacyl lipids except
cholesterol esters, such as monoacylglycerols and monoacyl-glycer-
ophospholipids, were calibrated with lysophosphatidylcholine
GPCho(17:0/0:0) (Avanti Polar Lipids, Alabaster, AL) as an internal
standard. All diacyl lipids except phosphatidylethanolamines were
calibrated with phosphatidylcholine GPCho(17:0/17:0) (Avanti Polar
Lipids), the phosphatidylethanolamines with GPEtn(17:0/17:0)
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(Avanti Polar Lipids) and the triacylglycerols and cholesterol esters
with triacylglycerol TG(17:0/17:0/17:0) (Larodan Fine Chemicals,
Malmo, Sweden).

The samples were analyzed in four separate runs within 12 months
(analytical runs are marked in Supplementary information S1). Data
were processed for each analytical run separately. Concentration value
of each lipid was then normalized to zero mean and unit variance
within each analytical run.

HMM for metabolic state progression

HMM is an extension of the Markov chain; in HMMs, the states are
invisible (‘hidden’) but produce emissions that are observed. An HMM
consists of a set of states S;, 1<i<N (Figure 1). The HMM is fully
defined by the following set of parameters: the probability of starting in
the state S;, m; the transition probability matrix P, containing the
probabilities p;; of transitioning from state S; to state S;; and the
emission probability distribution for each state 7, parameterized by 6;
(in this study, 0; contains the mean vector and covariance matrix of a
Gaussian distribution). At each time point, the HMM is in a certain
state and emits a metabolic profile (a vector containing normalized
concentrations) from an emission distribution specific to the state and
then proceeds to the next state (which may be the same as the current
state or a different one). In this study, the emission probabilities are
assumed to be Gaussian with a diagonal covariance matrix. Having a
diagonal covariance matrix is a strong assumption; it needs to be made
because of the small sample size. The assumption is made more
plausible by removing highly correlated variables in the preprocessing.

The parameters of the HMMs are initialized by estimating the mean
vector and covariance matrix of each state from the time points that
roughly correspond to the state: the two first time points are assumed
to correspond to state 1, the next two to state 2, and so on. The aim is to
estimate the set of parameters A to maximize the probability of the
given data P(O|L), where O is the given sequence of observations
available for the training, O=(0;, O,,..., Or), and A denotes all
parameters collected together. If we denote the possible fixed state
sequences by Q={q(1), q(2),..., q(T)}, the objective function can be
formulated as

PO) = (mq(1yP(O110g(1))
q(1),q(2),...q(T)
u 1)
prl(i*I)Q(i)P(Oileq(i))

=2

The training is carried out separately for males and females, resulting
in two sets of HMM parameters. The parameters are estimated with the
Baum-Welch algorithm, which gives a maximum likelihood estimate
(Rabiner, 1989). The HMM models were implemented with a MATLAB
toolbox (Murphy, 1998).

The uncertainty in HMM parameters is estimated with a bootstrap
procedure (Efron, 1994), which perturbs the observed data with re-
sampling and estimates the variability of a given statistic over the re-
samples. In the so-called nonparametric bootstrap, each subsample,
called a bootstrap sample, is sampled with replacement and is of the
same size as the original data. The value of the statistic is then
calculated for the bootstrap sample. The process is repeated many
times, resulting in many bootstrapped values for the statistics. The
distribution of the values then describes the uncertainty. We used
nonparametric bootstrap (Efron, 1994) to compute confidence inter-
vals for the classification accuracies. Technically, in the bootstrap
procedure, 10000 new data sets, called bootstrap samples, were
generated. Two separate models, one for girls and one for boys, were
trained for each bootstrap sample. The left-out-of-bag samples, that is,
the samples not used in the model training, were then labeled
according to which HMM, for boys or girls, gives higher log-likelihood
for the sample. The average number of out-of-bag samples in bootstrap
samples was 15. As the classification accuracy was about the same
with 4 and 5 states, we chose 5 states for the maximum resolution
model. Note that as the classification success for the unseen out-of-bag
data does not drop significantly from 4 to 5 state models, any
overfitting of the 5 state HMM is on the same level as for the 4 state
model.
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Classification methods

Two separate HMMs can be used to classify the individual time series
into male and female series as follows. Denote the HMMs by M,je
and Msemale, Tespectively, and train them separately for male and
female data. Let Oy ciassity be the time series we want to classify.
The probabilities P(Olo classify|Mmale) and P(Oloclassify‘Mfemale) can
be efficiently calculated with the forward algorithm (Rabiner, 1989).
A Bayesian classifier can now be constructed by assigning Oy classity tO
the class that maximizes the posterior probability as follows:

P(Oloclassifv‘Mi)p(Mi)
P(Om classify) (2)
= arg maXP(Oloclassify|Mi)P(Mi)

1

argmax P(M;| Oy classify) = arg max
i L

where i=male or female.

In this study, HMMs were compared with two linear classification
methods: LDA (Ripley, 1996) and partial least squares (PLS) regression
(Hastie et al, 2001). LDA is a statistical technique used to find the linear
combination of the features (here, metabolite concentrations) giving
the best separation between the classes (here, males and females). The
LDA classification rule is

arg ?laX (x— Hi)T Zil (X — 1) 3)

where x is a vector to be classified, y; is the mean vector of class i (male
or female) and X is the covariance matrix (assumed to be shared by
both classes). We estimated the covariance matrix from the pooled set
of all time points. LDA does not have complexity parameters analogous
to HMM states that should be optimized; it was thus fast to compute.

The second classification method, PLS, is a linear regression method
that extends and combines properties of multiple regression and
principal component analysis. It is especially useful when the number
of predictors is large compared with the number of observations. The
purpose of PLS is to predict the class y (here, males/females,
transformed to 0/1) with the feature matrix X (here, time series data
O broken down to single observations). PLS searches for a set of
components that performs a simultaneous decomposition of X and y,
with the constraint that the components should explain as much of the
covariance between X and y as possible. The actual PLS-DA, in other
words the classification, can then be performed by discretizing the
continuous prediction given by PLS regression to 0 or 1, corresponding
to boys and girls, respectively. The number of components in PLS was
not of primary interest here, and it was thus optimized with cross-
validation for each bootstrap sample and then the out-of-bag samples
were classified with PLS-DA based on the discovered, optimal set of
latent components.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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