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Cell-Free Tumor DNA (cf-tDNA)
Liquid Biopsy: Current Methods and
Use in Brain Tumor Immunotherapy
Jack Wadden*, Karthik Ravi , Vishal John, Clarissa May Babila and Carl Koschmann*

Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States

Gliomas are tumors derived from mutations in glial brain cells. Gliomas cause significant
morbidity and mortality and development of precision diagnostics and novel targeted
immunotherapies are critically important. Radiographic imaging is the most common
technique to diagnose and track response to treatment, but is an imperfect tool. Imaging
does not provide molecular information, which is becoming critically important for
identifying targeted immunotherapies and monitoring tumor evolution. Furthermore,
immunotherapy induced inflammation can masquerade as tumor progression in images
(pseudoprogression) and confound clinical decision making. More recently, circulating cell
free tumor DNA (cf-tDNA) has been investigated as a promising biomarker for minimally
invasive glioma diagnosis and disease monitoring. cf-tDNA is shed by gliomas into
surrounding biofluids (e.g. cerebrospinal fluid and plasma) and, if precisely quantified,
might provide a quantitative measure of tumor burden to help resolve pseudoprogression.
cf-tDNA can also identify tumor genetic mutations to help guide targeted therapies.
However, due to low concentrations of cf-tDNA, recovery and analysis remains
challenging. Plasma cf-tDNA typically represents <1% of total cf-DNA due to the blood-
brain barrier, limiting their usefulness in practice and motivating the development and use
of highly sensitive and specific detection methods. This mini review summarizes the
current and future trends of various approaches for cf-tDNA detection and analysis,
including new methods that promise more rapid, lower-cost, and accessible diagnostics.
We also review the most recent clinical case studies for longitudinal disease monitoring
and highlight focus areas, such as novel accurate detection methodologies, as critical
research priorities to enable translation to clinic.
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INTRODUCTION

Gliomas are a diverse set of brain tumors derived from glial brain cells. While a relatively small
fraction of total cancer deaths per year, Gliomas cause significant morbidity and mortality with a five
year survival rate as low as 7.2% depending on the tumor subtype (1). Current treatment options are
mostly limited to surgical resection and chemoradiation, however, immunotherapy has recently been
evaluated as an exciting new therapy to combat this disease (2–6).
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Effective immunotherapy relies on an accurate diagnosis to
guide treatment selection, and disease monitoring to identify if
the glioma is responding to treatment or progressing. Because of
their sensitive location in the brain, repeat biopsies are not
feasible (7). Thus, radiographic imaging is commonly used for
both initial diagnosis and disease monitoring. However, these
images can be difficult to interpret due to various factors such as
immunotherapy-induced swelling, leading to incorrect
assumptions about a tumor’s response to treatment (8–12); a
classic example is “pseudoprogression”, where immunotherapy-
induced swelling is misinterpreted as tumor progression.
Especially for immunotherapy response monitoring, which has
a minimum four week iRECIST monitoring interval (13),
misinterpretation can lead to unnecessarily long treatment and
improper or delayed course correction (10). Additionally,
imaging does not capture molecular information, which is
becoming increasingly important for proper diagnosis (14, 15),
identification of personalized targeted immunotherapies (16),
and monitoring of tumor evolution to detect resistance
mutations (17, 18).

To address these issues, liquid biopsies have emerged as a
promising new diagnostic and disease monitoring approach for
gliomas. Liquid biopsies work by recovering and quantifying
tumor-related biomarkers shed by dying tumor cells into
surrounding biofluids. Various studies have shown that
biomarker levels correlate with tumor burden, and/or disease
state, and may even be able to detect disease progression before it
is evident in imaging (19, 20). Thus, liquid biopsies promise a
minimally invasive and accurate alternative diagnostic to tissue
biopsy, and a less error prone approach to quantify tumor
response than radiographic imaging (13).

Circulating tumor cells from primary brain tumors have been
identified in blood (21, 22), however since primary brain tumors
rarely metastasize, these cells are exceptionally rare (23). In this
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mini-review, we focus on the use of cell-free tumor DNA (cf-
tDNA) as a biomarker for gliomas and its potential to aid in
development and clinical use of immunotherapies targeting
gliomas. We first summarize the mechanism of glioma cf-
tDNA release. We then discuss both established and novel cf-
tDNA detection methods used in the literature and their
strengths and weaknesses. We then discuss translational uses
of cf-tDNA liquid biopsies in clinic focusing on efforts to
improve immunotherapy-based treatment. Finally, we discuss
current difficulties and open questions about the practical use of
liquid-biopsy and new approaches to cf-tDNA detection that
attempt to improve accuracy, accessibility, and cost.
CF-TDNA LIQUID BIOPSY IN GLIOMAS:
AN OVERVIEW AND KEY PRINCIPLES

As glioma cells proliferate and die via apoptosis, necrosis, or
immune response, tumor DNA is immediately shed into the
surrounding interstitial fluid and CSF. During apoptosis, tumor
chromosomal DNA is fragmented via endonucleases around
nucleosome boundaries (~140bp-180bp) resulting in a
characteristic pattern of fragmentation (24). cf-tDNA
fragments spread throughout the central nervous system before
eventually permeating the blood-brain barrier (25). Due to the
low molecular weight of post-apoptotic cf-tDNA, the molecules
are more able to permeate selective filters in the body such as the
blood-brain barrier and glomerulus structures in the kidneys. To
date, glioma cf-tDNA has been successfully identified in CSF,
plasma, and even urine (24). Figure 1 shows an overview of cf-
tDNA release, recovery, current detection methods, and
clinical applications.

cf-tDNA signals can be distinguished from background
cfDNA (from non-tumor tissue) by using either aggregate or
FIGURE 1 | An overview of cf-tDNA release into biofluids, recovery, detection methods, and current clinical applications benefiting immunotherapies for glioma.
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specific detection techniques. Aggregate detection relies on
biomarkers that are shared by both healthy and tumor-derived
DNA but are up- or down-regulated in tumors. Prior work has
detected glioma via structural variation, copy number alterations
(26), methylation status of certain genomic regions (25, 27), and
even cfDNA fragmentation patterns (24). However, these
aggregate signals cannot uniquely discriminate tumor- vs.
normal-derived cfDNA and are thus less likely to be useful
when the relative amount of cf-tDNA is low (e.g., <1%). A
more precise approach is to directly identify cf-tDNA by
detection of genetic tumor driver mutations via probe-based
quantitative PCR or cfDNA sequencing. These assays report the
ratio of mutated to total cfDNA reads – i.e., the mutant or variant
allele fraction (MAF/VAF) –identified in the sample.

Recovered cf-tDNA concentrations can vary widely and have
been found to correlate with variables such as disease grade (28),
tumor burden, tumor location relative to CSF reservoirs (29) and
biofluid proximity to the tumor (30). Due to the highly-selective
nature of the blood brain barrier, glioma cf-tDNA concentrations
are generally several orders of magnitude higher in CSF than
plasma (31) or urine (24), where typical plasma VAFs are <1%
(17, 32) with suspected positives detected as low as 0.02% (32).
Thus, CSF is considered the gold standard biofluid for liquid
biopsy of gliomas. However, lumbar punctures to obtain CSF are
significantly more invasive than blood draws and urine collection,
making plasma and urine-based liquid biopsies much more
desirable. This motivates ultra-sensitive detection techniques to
enable accurate monitoring of both CSF-derived cf-tDNA and
allow for practical use of plasma and urine-based biopsies.
CF-TDNA DETECTION METHODS

Multiple cf-tDNA detection methods have been used to
successfully quantify cf-tDNA related biomarkers and uncover
diagnostically relevant information that might guide
personalized treatment. In this section we review popular cf-
tDNA detection methods and their benefits and weaknesses.

Cell-Free DNA Concentration and
Other Methods
Total cfDNA concentration is the level/amount of DNA per
volume of biofluid (blood, CSF, or urine). Because tumor cell
turnover is higher than that of normal tissue, research has found
that glioma patients tend to have higher absolute amounts of
cfDNA in glioma than healthy patients (24, 33–35). However, total
cfDNA can be impacted by many other factors unrelated to tumor
burden (e.g. inflammation) reducing its sensitivity to detect disease
without supplementary analysis (36, 37). Furthermore,
concentration as a biomarker lacks molecular information that
might inform targeted treatments and clinical management.
Methylation of cf-DNA and recovery via methylation-specific
PCR (27) or sequencing (38) has also been proposed as method
of detecting disease via measurement of hypo/hyper-methylation
at various genomic loci but is not discussed in this review.
Frontiers in Immunology | www.frontiersin.org 3
Droplet Digital PCR (ddPCR)
qPCR (quantitative polymerase chain reaction) is a
quantification method that uses sequence specific primers or
fluorescent probes to detect and quantify tumor-specific somatic
mutations (39). However, qPCR suffers from a variety of
shortcomings that limit its sensitivity and specificity (40–42).
Droplet digital PCR (ddPCR) is a modification of qPCR that
improves precision and limit-of-detection (42). By dividing a
typical qPCR reaction into many isolated droplets with ~1
template copy, a precise VAF can be computed from the ratio
of mutant positive to wildtype droplets, with a VAF limit of
detection around 0.001% (43). ddPCR has supplanted itself as a
highly-accurate technique, and is considered a gold standard
approach to quantify VAFs from liquid samples (36, 44).
However, accurate and reproducible ddPCR assays require
careful development and optimization of input template
concentration, target-specific primers, and fluorescent probes
and are restricted for use on a limited set of known hotspot
mutations (44).

Next-Generation Sequencing
Next-generation sequencing (NGS) refers to a group of massively
parallel sequencing technologies including Ion Torrent (45, 46),
PacBio (47), and Illumina (48, 49), with the latter used most
often for liquid biopsy due to its accuracy (50). Illumina
sequencing uses synthesis of fluorescent dNTPs to clusters of
template strands to recover the original template sequence (45).
Unlike ddPCR, sequencing of cf-tDNA does not rely on sequence
specific probes or any prior knowledge of mutations. Various
library preparations enable sequencing of the whole genome
(WGS), whole exome (WES), targeted hybridization capture, or
amplicons from targeted panels with each technique trading
genome coverage for read depth. For example, WGS can provide
20x-50x coverage over the entire genome, which enables
detection of high-frequency somatic mutations and copy
number variation but is too shallow to precisely measure cf-
tDNA allele fractions below ~2-5%. Targeted amplicon
sequencing can generate >10,000x coverage of specific genomic
loci, improving VAF limit of detection but reducing the number
of analyzed loci. Illumina sequencing has proven highly-
accurate, with an error rate ranging between 0.5%-1% (50–52).
However, this approach is relatively expensive, slow, and due to
its error rate, cannot reliably detect allele fractions below the
sequencer error rate without further assay modifications (53–56).

Nanopore Sequencing
Nanopore sequencing is a relatively new technology (57) that has
been used for liquid biopsies (58, 59). Nanopore sequencers work
by feeding DNA strands through small pores embedded in a
membrane. As they flow through the pore, each DNA base-pair
creates a unique electrical disturbance that can be measured and
used to call each base. Nanopore devices are low-cost, can
sequence any length DNA strand, have a small form factor,
and offer a rapid time to result making them ideal devices for
liquid biopsy. However, the device’s error rate has traditionally
April 2022 | Volume 13 | Article 882452
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prevented it from being applied to liquid samples where allele
frequencies are less than ~2% (58). Our group previously
analyzed CSF samples from 12 pediatric high grade glioma
patients and found that nanopore had a 85% sensitivity and
100% specificity in CSF samples (58), which compared favorably
to Illumina-based targeted sequencing. More recent
improvements to basecaller accuracy, and also the use of
circular consensus sequencing (59–61) have improved accuracy
to <0.05%, comparable with ddPCR-based approaches (59).

While not perfect, these cf-tDNA detection methods have
been used to demonstrate a variety of potential uses for glioma
diagnosis and monitoring. In the next section, we highlight
translational research that attempts to utilize these instruments
to improve disease management.
CLINICAL APPLICATIONS OF LIQUID
BIOPSY FOR IMMUNOTHERAPY

Accurate cf-tDNA-based liquid biopsies have several promising
clinical applications for immunotherapy. Here, we highlight
recent translational research (also summarized in Table 1)
attempting to use liquid biopsy diagnostics that could help
guide the use of personalized immunotherapy and monitor
disease response in gliomas.

Personalized Diagnostics and
Treatment Selection
Identifying tumor-specific molecular information in cf-tDNA that
provides an accurate diagnosis, prognosis, and predicts response of
a particular treatment is a “holy grail” clinical application for
liquid biopsies. There is some work linking molecular markers
(e.g. SNVs or CNVs) to the predicted response to radiation or
chemotherapy in gliomas [reviewed in Birko et al. (75)]. However,
minimal work has explored cf-tDNA diagnostics to personalize
immunotherapy treatment. Studies looking at other solid tumors
have identified several cell free DNA biomarkers as predictors of
immunotherapy response (76), most notably increased tumor
mutational burden (TMB) (77–79) and reduced copy number
variations (80, 81). Pepe et al. showed feasibility for assessment of
TMB in cytological samples from patients with NSCLC using a
NGS platform (82). Studies have aimed to identify specific hotspot
mutations that predict response to immune checkpoint inhibition
or other immunotherapies. Guibert et al. identified that mutations
in KRAS or TP53 without PTEN loss lead to increased PD-L1
expression and increased tumor mutational burden, increasing
response to PD-1 immune checkpoint inhibition (77). This work
was done in lung cancer, but the aforementioned mutations are
also commonly present in gliomas, raising a potential opportunity
to use glioma cf-tDNA to predict immunotherapy efficacy.

Tumor Evolution Monitoring
Another important clinical application of liquid biopsy for
gliomas is the monitoring of tumor evolution. It has been
shown that tumors undergo considerable evolution over the
course of treatment, resulting in genetic changes that might
Frontiers in Immunology | www.frontiersin.org 4
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suggest a new diagnosis and an adjustment to disease
management (69). Several studies have investigated tumor
evolution in glioma, with estimates ranging from 33-73% of
genetic mutations at recurrence matching with alterations at
biopsy (83, 84). However, as previously discussed, serial biopsies
are discouraged due to the increased chance of morbidity. Miller
et al. used CSF-derived cf-tDNA to monitor tumor evolution in
adult gliomas (17) and was able to identify cf-tDNA in 42 of 85
patients who underwent CSF collection and NGS sequencing. In
patients with hypermutated tumors, the median percentage
match between the CSF derived cf-tDNA mutations and the
initial tissue alterations was only 19.6%, while non-hypermutated
tumors had an 81.7% match. These results indicate that CSF-
based liquid biopsies can capture tumor heterogeneity and used
to monitor tumor evolution over time. While this work was not
applied to immunotherapy-based treatment, tumor evolution
monitoring could be used to identify increased TMB and PD-1
sensitivity (77), or acquired resistance markers (85).

Treatment Response Monitoring and
Resolution of Pseudoprogression
In addition to tumor evolution, several studies have shown the
utility of serial cf-tDNA sampling for treatment response
monitoring and resolution of pseudoprogression in gliomas
(19, 37, 58, 62, 68, 69, 74, 86). One of the largest studies thus
far from Panditharatna et al. collected serial CSF samples and
concordant MRI from 22 patients (74). They found that cf-tDNA
decreased in response to radiotherapy in 83% of patients, which
was corroborated by a decrease in tumor size on MRI. The first
prospective high grade glioma clinical trial with serial liquid
biopsy was recently published by our group (19). We collected
serial CSF and plasma samples from 24 patients and found that
patients with decreased H3K27M CSF and plasma cf-tDNA VAF
had prolonged progression free survival (19). A similar trend
was identified by Jensen et al. while tracking response to
immunotherapy over a variety of cancers (20).

We also compared serial ct-DNA levels with corresponding
radiographic imaging. In individual cases, they were able to
identify instances of suspected pseudoprogression, where
radiographic progression was accompanied by a decrease in cf-
DNA VAF. In another patient, a large increase in cf-tDNA VAF
(>25%) preceded radiographic progression in many patients,
suggesting that cf-tDNA VAF changes may act as an earlier
warning sign of tumor progression versus radiographic imaging.
For immunotherapy-based response, Jensen et al. used shallow
WGS (0.3x) of cf-DNA to identify copy number alterations
(CNAs) and report a metric of “genome instability” over a variety
of cancers (20). This study demonstrated that dynamic changes in
CNAs could track immunotherapy response and were able to
resolve pseudoprogression, but specific use in gliomas has yet to
be demonstrated. A common theme among these studies is relative
changes in cf-tDNA signals—rather than absolute values—are better
indicators of tumor response. Taken together, these results reaffirm
the potential clinical utility of serial liquid biopsies for improved
molecular profiling and effective therapeutic monitoring for gliomas.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

While exciting progress is being made developing liquid biopsies
that can support immunotherapy-based treatment of gliomas,
further work is required to improve understanding tumor-
specific biomarker release and how it corresponds to tumor
burden, improve detection accuracy of various assays, and
investigate novel liquid biopsy approaches that offer improved
sensitivity and specificity.

Current Issues in Understanding cf-tDNA
Release and Dissemination
Our current understanding of glioma cf-tDNA release and
dissemination to various biofluids is still limited. Research has
highlighted variability depending on a tumor’s proximity to CSF
reservoirs in the brain (17, 69). This raises concerns about the
ability of liquid biopsies to accurately track tumor burden if
disease spreads. Blood-brain barrier permeability can also vary
highly case-to-case, further complicating efforts to correlate
tumor burden with cf-tDNA levels in blood. It is also unclear
how various treatments (e.g. radiation, chemotherapy, and
immunotherapy) impact both normal cfDNA and cf-tDNA
release over time, which could bias cf-tDNA levels and VAF if
not properly accounted for (10, 12). Future work might
incorporate variables such as tumor ventricle proximity, tumor
biology, and treatment type to better understand these patterns.

Are Detection Method Precision
and Accuracy Holding Back
Plasma-Based Approaches?
Even though there is a general consensus that the sensitivity and
specificity of CSF-based assays are superior to plasma (18, 28, 70,
87, 88), plasma- and urine-based liquid biopsies are still highly
desirable due to the ease of sample collection. It is likely that the
large disparity between CSF- and plasma-derived results are
partly due to limitations of current gold standard detection
methods. As an example of the difficulty of implementing
precise detection methods, Li et al. measured the performance
of multiple ddPCR-based assays for the detection of H3.3K27M
mutations in matched tissue, CSF, and plasma samples across
three independent labs using two commercially available ddPCR
machines (44). Results indicated that ddPCR was capable of
precisely measuring small VAFs from plasma-derived cfDNA,
but discovered high-variation among replicates, and statistically
significant differences across assays and ddPCR instrument
vendors. Significant protocol optimizations were required to
improve the sensitivity, repeatability, and reliability of the
assay (44). When considering NGS detection methods, even
the most accurate NGS instruments have an established raw
error rate of ~0.1%, which is most likely too high to precisely
resolve plasma-derived cf-tDNA levels that fluctuate between 1%
and 0.05%. These results highlight the need for highly optimized
and standardized versions of current approaches, as well as
improved detection methods to enable proper translation
to clinic.
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Future Directions
The current limitations with ddPCR, NGS, and Nanopore-based
liquid biopsy approaches are not easy to solve, but progress is
being made via improved assay design and bioinformatic error
correction. For example, the use of universal molecular
identifiers (UMIs) during targeted amplification can help
resolve sequencing errors targeted amplification, enabling
detection of 1 mutant molecule in 10,000 (89), with other
assay design techniques further improving detection sensitivity
by several orders of magnitude (53–56). Nanopore, long-read
sequencing offers the ability to sequence single-molecule
tandem-repeats constructed from small cf-tDNA fragments
using rolling circle amplification. Even though the native error
rate for Nanopore sequencing is relatively high (58), its ability to
sequence long DNA strands with multiple redundant copies of a
single cf-tDNA template allows for accuracy beyond any
available NGS or ddPCR approach (59–61). Some of these
methods are so accurate, that they are limited by polymerase
error rather than sequencer error rate (59). Furthermore,
continual improvements to basecalling software, library
preparation methods, and assay design are certain to further
reduce false positive rates. Because of these factors we expect
long-read, consensus sequencing approaches to become a gold
standard liquid biopsy approach for plasma cf-tDNA in
the future.

Recent work has explored the effectiveness of CAR-T cell
therapy in diffuse midline gliomas, administered serially into
CSF via Ommaya reservoirs (6, 90). Ommaya reservoirs are used
for intra-cranial administration of immunotherapies as well as
frequent, minimally invasive recovery of CSF without the need
for lumbar punctures. Ommaya reservoirs would allow for more
practical, and frequent use of CSF to monitor disease and apply
liquid biopsy techniques more frequently. More frequent
sequencing-based liquid biopsies might add undue cost to
Frontiers in Immunology | www.frontiersin.org 6
treatment. This motivates use of lower-cost techniques such as
ddPCR as well as investigation of cost-effective sequencing
approaches like single-use Oxford Nanopore flow-cells (91).
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