
Frontiers in Immunology | www.frontiersin.

Edited by:
Hergen Spits,

University of Amsterdam, Netherlands

Reviewed by:
Guido Ferlazzo,

University of Messina, Italy
Jochem Bernink,

Hubrecht Institute (KNAW),
Netherlands

*Correspondence:
Zhihua Ran

zhihuaran1962@126.com

Specialty section:
This article was submitted to

NK and Innate Lymphoid
Cell Biology,

a section of the journal
Frontiers in Immunology

Received: 06 July 2020
Accepted: 30 September 2020

Published: 26 October 2020

Citation:
Song D, Lai L and Ran Z (2020)
Metabolic Regulation of Group 3

Innate Lymphoid Cells and Their Role
in Inflammatory Bowel Disease.

Front. Immunol. 11:580467.
doi: 10.3389/fimmu.2020.580467

REVIEW
published: 26 October 2020

doi: 10.3389/fimmu.2020.580467
Metabolic Regulation of Group 3
Innate Lymphoid Cells and Their Role
in Inflammatory Bowel Disease
Dongjuan Song, Lijie Lai and Zhihua Ran*

Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health,
Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
Institute of Digestive Disease, Shanghai, China

Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammatory
disorder of the intestine. IBD is associated with complex pathogenesis, and considerable
data suggest that innate lymphoid cells contribute to the development and progression of
the condition. Group 3 innate lymphoid cells (ILC3s) not only play a protective role in
maintaining intestinal homeostasis and gut barrier function, but also a pathogenic role in
intestinal inflammation. ILC3s can sense environmental and host-derived signals and
combine these cues to modulate cell expansion, migration and function, and transmit
information to the broader immune system. Herein, we review current knowledge of how
ILC3s can be regulated by dietary nutrients, microbiota and their metabolites, as well as
other metabolites. In addition, we describe the phenotypic and functional alterations of
ILC3s in IBD and discuss the therapeutic potential of ILC3s in the treatment of IBD.

Keywords: group 3 innate lymphoid cells, immunometabolism, intestinal inflammation, inflammatory bowel
disease, therapeutics
INTRODUCTION

Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the bowel
comprising ulcerative colitis (UC) and Crohn’s disease (CD). The increased incidence and
prevalence of IBD in recent years poses a significant challenge to society (1, 2). Mounting
evidence suggests that genetic background, environmental factors, diet, microbiotic dysbiosis and
immune dysregulation contribute to the initiation and progression of IBD (3). Innate lymphoid cells
(ILCs) belong to the same family as lymphocytes, however, they lack the rearranged antigen
receptors expressed by T cells and B cells and play a central role in immunity, inflammation and gut
barrier function (4, 5). The ILC family is classified into three groups: group 1 ILCs including natural
killer (NK) cells and ILC1s, group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s). Group 1 ILCs require
the transcription factor T-bet and secrete interferon gamma (IFN-g) upon stimulation with
interleukin (IL)-12, IL-15 and IL-18. ILC2s require the transcription factor GATA3 and produce
IL-4, IL-5 and IL-13 upon stimulation with IL-25 and IL-33. ILC3s express IL-22, IL-17 and
granulocyte macrophage colony-stimulating factor (GM-CSF) when stimulated with IL-23 and IL-
1b, which depends on RAR-related orphan receptor gamma t (RORgt) and arylhydrocarbon
receptor (AHR) (6, 7). In addition, regulatory ILCs (ILCregs), a novel regulatory subset of ILCs, can
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produce IL-10 and transforming growth factor b1 (TGF-b1) and
help to decrease intestinal inflammation (8).

Single cell analysis of ILC subsets in the small intestine of
mice revealed that genes expressed by ILC3s were highly
enriched for carbohydrate metabolism and glycolysis, which is
different from ILC1s and ILC2s and indicates that each subset of
ILC has a unique metabolic profile (9). Another study
demonstrated that ILC3 activation relies on the mTOR
complex 1(mTORC1)-hypoxia-inducible factor 1a (HIF1a)
pathway, which promotes glycolysis and RORgt expression, to
promote cellular proliferation as well as IL-22 and IL-17A
production. Meanwhile, mTORC1 signaling in ILC3s can
activate mitochondrial metabolism and the production of
mitochondrial ROS (mROS), which prolongs HIF1a activity,
promotes RORgt expression, and ultimately facilitates ILC3
activation. Briefly, ILC3s utilize both glycolysis and mROS
production to support effector function (10). ILC3s are
enriched in gut mucosal tissue and have a specialized capacity
to sense multiple exogenous and endogenous signals, and
function as “communication hubs” of the intestinal immune
system (11). Indeed, signals from nutrient-derived metabolites,
microbiota and microbial metabolites as well as other host
metabolites such as 7a,25-dihydroxycholesterol and
prostaglandin E2 can be interpreted by ILC3s to regulate
proliferation, migration and function of ILC3s as well as their
interactions with other cells, which is vital for tissue homeostasis.
Dysregulation of ILC3s has been implicated in the pathogenesis
of IBD and colorectal cancer (6, 12–14). A better understanding
of ILC3s biology in patients with IBD provides valuable insights
into potential therapeutic targets. Therefore, it is necessary to
evaluate the environmental cues that activate and suppress ILC3s
in the gut. In this review, we discuss recent work on how ILC3s
are regulated by environmental cues and summarize the
involvement of ILC3s in IBD as well as their potential
application in IBD therapy.
OVERVIEW OF GROUP 3 INNATE
LYMPHOID CELLS

ILC3s are a heterogeneous group of cells in humans and mice.
Single-cell sequencing analyses of ILCs in human tonsils revealed
at least three subsets of ILC3s based on the expression of NKp44,
human leucocyte antigen D-related (HLA-DR), and CD62L (15).
Furthermore, human NKp44+ILC3s are enriched in barrier
tissues such as colon and skin (16). MHCII+ ILC3s with
antigen presenting function have also been identified in the
colon and small intestine in humans and mice (17, 18). In
addition, single-cell sequencing analyses of CD127+ILCs from
the small intestinal lamina propria of mice identified five
transcriptional states of ILC3s (9). In mice, ILC3s can be
divided into CCR6+T-bet- and T-bet+ILC3s (19). CCR6+ILC3s
contain fetal lymphoid tissue inducer (LTi) cells, which are
indispensable for the organogenesis of secondary lymphoid
organs (20). Adult CCR6+LTi-like ILC3s have similar
phenotypes to fetal LTi cells and are essential for the
Frontiers in Immunology | www.frontiersin.org 2
development of cryptopatches (CPs) and isolated lymphoid
follicles (ILFs) in the gut (21). Although both fetal LTi and
adult LTi-like ILC3 express RORgt, they develop from a
progenitor distinct from all other ILC subsets (22). T-
bet+ILC3s can be further classified on the basis of the
expression of natural cytotoxicity receptor (NCR) (NKp46 in
mice). T-bet plays a critical role in the differentiation of NCR+

ILC3 from its NCR-ILC3 precursors as well as IFN-r and IL-22
production in NCR+ ILC3 (23, 24).
REGULATION OF ILC3s BY DIETARY
NUTRIENTS

Recent evidence indicates that dietary vitamins function as key
modulators of ILC3s biology (Table 1). For instance, mice fed a
diet deficient in vitamin D exhibit reduced abundance of ILC3s
and IL-22 secretion by colonic ILC3s, leading to increased
susceptibility to Citrobacter rodentium (C. rodentium) infection
(25). Consistently, global deletion of vitamin D receptor (VDR)
or deficiency in VDR ligand in mice leads to reduced colonic
ILC3s and impaired ILC3 response, leading to increased
susceptibility to bacterial infection compared with wild-type
mice (26). Furthermore, in vitro and in vivo studies revealed
that vitamin D/VDR signaling can stimulate colonic ILC3
proliferation, especially LTi cells (26). In contrast, another
study reported that VDR knockout (KO) mice had enhanced
resistance to bacterial infection due to increased frequencies of
ILC3s in the gut and enhanced expression of IL-22 as well as
anti-bacterial peptides (39). Of note, an in vitro study revealed
that 1a, 25-dihydroxy vitamin D3 (1,25D3), the active form of
vitamin D, downregulates the IL-23 receptor pathway in human
NKp44+ ILC3s, inhibiting IL-22 and GM-CSF production and
inversely enhancing IL-6 production, which encourages ILC3s to
maintain an innate-like cytokine expression profile (27).
Consequently, these results suggest vitamin D is not only
necessary for development and function of ILC3s at steady
state, but also can restrain the pro-inflammatory properties
of ILC3s.

Similar to vitamin D, lack of vitamin A in the diet results in
reduced numbers of ILC3s, IL-22-producing ILCs, CPs and ILFs
(29, 30) as well as decreased expression of CCR9 and a4b7 by
ILC3s and ILC1s (32) in the small intestine of mice.
Furthermore, retinoic acid (RA), a vitamin A metabolite, can
induce a homing receptor switch in ILC3s from CCR7 to CCR9
and a4b7 leading to migration of ILC3s to the gut in mice (32)
and enhance IL-22 secretion by ILC3s in the mouse small
intestine during intestinal inflammation (31). In line with the
findings in mice, RA works synergistically with IL-2 to induce
integrin a4b7 expression in human ILC3s in vitro. Interestingly,
1,25D3 antagonizes a4b7 expression in human ILC3s induced by
RA and IL-2, suggesting the biologically active metabolites of
vitamin A and D have antagonistic effects on the expression of
integrin in human ILC3s (28). Moreover, RA can accelerate the
differentiation of human CD127+ILC1s into IL-22-producing
ILC3s in the presence of IL-2, IL-1b and IL-23 (33).
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The aryl hydrocarbon receptor (AHR), which is expressed by
ILCs and other immune cells, can sense ligands generated from
diet, microbiota metabolism, cellular metabolism and
environmental pollutants (21). AHR mediates the regulatory
effects of dietary and microbial metabolites on ILC3s. AHR-
deficient mice exhibit increased vulnerability to colitis and
intestinal C. rodentium infection, which is mainly due to the
impaired accumulation of ILC3s and IL-22 production in the gut
(34, 40, 41) and a decrease in numbers of intraepithelial
lymphocytes (IELs) (42). Studies in mice have demonstrated
that AHR is indispensable for intestinal ILC3s maintenance and
function as well as postnatal development of intestinal lymphoid
tissues (34, 40, 41). For instance, AHR promotes the survival of
murine intestinal ILC3s, cooperates with RORgt to enhance
IL-22 expression and facilitates the expression of IL-7 in the
intestine and the expression of IL-7 receptor (IL-7R) by murine
ILC3s (40). This is in keeping with the effect of IL-7/IL-7R
signaling in the maintenance of ILC3s (43). Moreover, AHR
facilitates the expansion of murine CD4-ILC3s through
stimulation of cell proliferation, which is induced by AHR-
controlled transcription of Kit (34). Additionally, AHR
promotes the development of NCR+ILC3s and LTi-like ILC3s
by, and partially through activation of Notch signaling (41).
Notch signaling has been shown to be essential for adult ILC3s
differentiation, but not for fetal LTi development (44). Notably,
AHR is also known to block human IL-1R1+ILC3s differentiation
into cytolytic NK cells (45).
Frontiers in Immunology | www.frontiersin.org 3
The diet provides several exogenous and endogenous AHR
ligands or precursors, such as Indole-3-Carbinol (I3C), natural
flavonoids, resveratrol, curcumin and tryptophan (46, 47). The
absence of dietary AHR ligands increases bacterial load or
translocation and aggravates dextran sulfate sodium (DSS)-
induced colitis and C. rodentium infection in mice (35, 42).
The phenotype of mice fed with phytochemical-free diets mimics
that of AHR-deficient mice, which have decreased numbers of
ILC3s, insufficient postnatal proliferation of CD4-ILC3s, reduced
IL-22 production, and impaired development of intestinal
lymphoid follicles (Table 1). The addition of I3C to the diet
can counteract these abnormalities (34, 36). Consistently,
metabolic clearance of natural AHR ligands by constitutive
Cyp1a1 expression in mice contributes to loss of ILC3s and
Th17 cells as well as reduced IL-22 production, further
increasing vulnerability to C. rodentium infection (48). More
importantly, dietary supplementation of AHR ligands or
precursors ameliorates DSS-induced colitis and intestinal
infection in mice (35, 48–50).

Indeed, several studies showed that ILC3 development can be
regulated by maternal nutritional status (Table 1). Maternal
levels of dietary retinoids are important for regulation of LTi
cells differentiation, for ensuring the correct size of secondary
lymphoid organs and for maintenance of immune fitness in adult
offspring in mice (20). In addition, a maternal high-fat diet
(HFD) has been confirmed to induce the expansion of IL-17-
producing NKp46+ILC3s in mice offspring, dependent on the
TABLE 1 | Metabolic regulation of ILC3s by nutrient-derived metabolites.

Nutrients Function Species Refs

Vitamin D Promotes ILC3s population in both small intestine and colon
Regulates IL-22 production in colonic ILC3s

Mouse
In vivo

(25)

1,25D3 Modulates frequency of CD3-RORgt+ILC3s in colon, mainly LTi cells
Regulates IL-22 production in ILC3s
Regulates colonic ILC3s expansion, mainly LTi cells

Mouse
In vivo and in vitro

(26)

Inhibits IL-22 and GM-CSF production, whereas enhances IL-6 production in activated Nkp44+ILC3s Human
In vitro

(27)

Antagonizes a4b7 expression in human ILC3s induced by RA and IL-2 Human
In vitro

(28)

Vitamin A
Retinoic acid

Promotes ILC3s population and function
Controls a proliferative balance between ILC3s and ILC2s
Controls formation of solitary intestinal lymphoid tissue postnatally
Regulates the postnatal differentiation of intestinal ILC3s

Mouse
In vivo and in vitro

(29–31),

Regulates homing receptor switch in ILC3s, and thereby regulates the migration of ILC3s to the gut Mouse and human
In vivo and in vitro

(28, 32),

Accelerates the differentiation of human ILC1s to IL-22-producing ILC3s driven by IL-2, IL-1b and IL-23 Human
In vitro

(33)

Dietary AHR ligands Modulates postanal expansion of CD4-ILC3s
Controls the formation of intestinal lymphoid follicles
Regulates IL-22 production in ILC3s
Modulates ILC3s population

Mouse
In vivo

(34–36),

Maternal retinoids Controls fetal CD4+LTi cells differentiation via RORgt
Controls the size of secondary lymphoid organs
Determines the immune fitness in adult offspring

Mouse
In vivo

(20)

Maternal high-fat diet Increases IL-17-producing NKp46+ILC3s in the lamina propria of offspring Mouse
In vivo

(37)

Maternal TCDD Reduces colonic ILC3s population and
expression of RORgt in colonic ILC3s, and increases the frequency of colonic NKp46+ILC3 in offspring

Mouse
In vivo

(38)
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subsequent microbiota alterations (37). Moreover, exposure to
TCDD (a ligand of AHR) during pregnancy and lactation in mice
led to reduced frequency of colonic ILC3s and decreased
expression of RORgt in colonic ILC3s, and increased frequency
of colonic NKp46+ILC3 in offspring (38). These results suggest
that environment cues in pregnancy can modulate ILC3 biology
in offspring.

Taken together, these findings suggest that host nutritional
status can regulate the numbers and function of ILC3s, immune
response and susceptibility to colitis, thus dietary refinements
and nutrient supplementation may be beneficial in alleviating the
severity of IBD.
REGULATION OF ILC3s BY MICROBIOTA
AND MICROBIAL METABOLITES

Commensal flora has been demonstrated to promote or repress
the function or differentiation of NKp46+ILC3s in mice (51–53).
However, the development of murine ILC3s seems to be
programmed independent of the gut microbiota (41, 53, 54).
Moreover, human ILC3s from tissue exposed to the fecal stream
produce more IL-22 compared with ILC3s from that not
exposed, indicating that the function of human ILC3s is
influenced by microbiota (55). Herein, we review the influence
of microbiota and microbial metabolites on ILC3s biology
(Figure 1).
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The production of IL-22 rather than IFN-r by human colonic
ILC3s is significantly enhanced following stimulation with
commensal or pathogenic bacteria, which may be mediated
indirectly by IL-23-and IL-1b-producing CD11c+ myeloid
dendritic cells (mDC) and ligation of the NKp44 receptor (56).
Additionally, microbiota can stimulate IL-1b production by
macrophages through the MyD88 and Nod2 pathway to
promote IL-2 production in murine ILC3, which is essential
for maintaining Tregs and immunologic homeostasis in the
small intestine in mice (57). Moreover, Microbiota-driven
IL-1b secretion by intestinal macrophages enhances GM-CSF
production by ILC3s, which in turn regulates the frequency and
function of macrophages and dendritic cells, helping to maintain
colonic Tregs homeostasis (58) (Table 2). Notably, microbiota-
induced IL-23 can reduce MHCII expression through mTORC1
and STAT3 signaling in NCR- ILC3s in the small intestine of
mice, thereby negatively affecting their potential to induce CD4+

T-cell immune responses (18).Taken together, these findings
suggest that microbial signals can be sensed by myeloid cells to
regulate ILC3s function.

Tumor necrosis factor superfamily member 15 (TNFSF15)
has been identified as a susceptibility gene for CD and is
associated with the adaptive immune response (74). The
TNFSF15 gene encodes TNF-like ligand 1 A (TL1A) protein,
which is the ligand for death domain receptor 3 (DR3). Although
TL1A supplementation alone does not increase IL-22 production
and proliferation of human ILC3s, TL1A cooperates with IL-23
and IL-1b to promote IL-22 production, proliferation and
FIGURE 1 | Regulation of ILC3s by microbiota and microbial metabolites. Microbiota-driven IL-1b production by intestinal macrophages enhances IL-2 and
granulocyte macrophage colony-stimulating factor (GM-CSF) production by ILC3s, which is essential for regulatory T cells (Tregs) and immunologic homeostasis in
the small intestine and colon in mice, respectively. Microbiota-induced IL-23 reduces major histocompatibility complex class II (MHCII) expression in murine NCR-

ILC3s, thereby negatively affecting their potential to elicit CD4+T cell responses. TNF-like ligand 1 A (TL1A) cooperates with IL-23 and IL-1b to promote IL-22
production, proliferation and expansion of human ILC3s ex vivo. Additionally, TL1A can enhance IL-22 secretion by murine ILC3s. However, TL1A expression can
induce OX40L expression in MHCII+ILC3s, which promote Th1 cells activation in chronic T cell colitis in mice. Collectively, microbial signals can be sensed by
myeloid cells to regulate ILC3s biology. In addition, Short-chain fatty acids (SCFAs), the metabolites from gut microbial fermentation of dietary substrates, can
regulate murine ILC3s pool as well as their IL-22 production in a receptor-dependent manner. Dietary tryptophan can be metabolized into aryl hydrocarbon receptor
(AHR) ligands by commensal microbiota, which promote IL-22 secretion by murine ILC3s.
October 2020 | Volume 11 | Article 580467
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expansion of human ILC3s ex vivo (55, 75). Colonization of mice
with adherent IBD-associated microbiota such as segmented
filamentous bacteria (SFB) and adherent-invasive Escherichia
coli (AIEC) strain 2A enhance IL-22 production by ILC3s (76,
77). Further evidence revealed firstly that SFB and AIEC strain
2A facilitate TL1A expression from Cx3cr1+ mononuclear
phagocytes (MNPs) and secondly that TL1A enhances IL-22
production in murine ILC3s and protects mice against acute
colitis, which is dependent on DR3 expressed by ILC3s. Mice
with ILC3s-specific DR3 deletion show defective IL-22 secretion
by ILC3s and increased susceptibility to DSS-induced colitis (78).
Nevertheless, activation of DR3 contributes to the reduced
abundance of ILC3s in a GM-CSF-and IL-23-dependent
manner, which consequently exacerbates DSS-induced colitis
in mice (79). OX40L expression by ILC3s has been
demonstrated to be essential for homeostatic expansion of
intestinal regulatory T cells (Tregs) in mice, and the expression
of OX40L can be increased by TL1A and viral stimulation or
inhibited by CD4+ T cells (80). However, TL1A-induced OX40L
expression on MHCII+ILC3s promotes the activation of T-BET+

Th1 cells, which is essential for chronic T-cell colitis in mice (78).
Additionally, neutralization of TL1A can attenuate a-CD40-
induced colitis and DSS-induced chronic colitis in mice (79,
81). Taken together, these data suggest that TL1A/DR3 signaling
may help to maintain mucosal homeostasis and protect against
Frontiers in Immunology | www.frontiersin.org 5
acute injury, but play a detrimental role in chronic
intestinal inflammation.

Short chain fatty acids (SCFAs), the metabolites from gut
microbial fermentation of dietary substrates, exert modulating
effects on immune cells and provide energy support for intestinal
epithelial cells (IECs) (82). “Metabolite-sensing” free fatty acid
receptor 2 (FFAR2/GPR43), also known as a receptor for SCFAs,
is expressed by colonic ILC3s. Acetate and propionate (the
natural FFAR2 ligands) and synthetic FFAR2 agonists
contribute to the proliferation of colonic ILC3s and the
production of IL-22 in ILC3s from mice, subsequently
contributing to host defenses against DSS-induced colonic
injury and C. rodentium infection in mice (83). Further
evidence revealed that acetate facilitates IL-22 production in
murine ILC3s upon stimulation with IL-1b via enhancement of
IL-1 receptor expression in a FFAR2-dependent fashion (84). Of
note, butyrate inhibits the number of NKp46+ILC3s as well as
their IL-22 production in mouse terminal ileal Peyer’s patches
(PPs) through the GPR109a receptor under steady-state
conditions, which leads to a reduced frequency of Tregs and
antigen-specific immune induction in terminal ileal PPs (85). In
accordance with this, Gpr109a-/-Rag1-/- mice developed
spontaneous colonic inflammation and had increased ILC3s in
the gut relative to Rag1-/- mice especially IL-17-producing ILC3s.
Mechanistically, GPR109a suppresses ILC3s through inhibiting
microbiota-induced IL-23 production in intestinal dendritic cells
to regulate intestinal homeostasis (86). Taken together, the
regulation of SCFAs on ILC3 responses may depend on subset,
receptor or tissue environment as well as host conditions.

Tryptophan (Trp) metabolites from symbiotic microbiota can
promote epithelial barrier function and inhibit the inflammatory
response (87–89). Lactobacillus reuteri (L. reuteri) can
metabolize Trp into endogenous AHR ligands such as indole-
3-aldehyde (IAID) or indole-3-lactic acid under conditions of
Trp sufficiency, which promotes IL-22 secretion by ILC3s and
induces gut intraepithelial CD4+CD8aa+ T cells in an AHR-
dependent manner in mice (87, 90). The microbiota from mice
lacking caspase recruitment domain family member 9 (CARD9),
a susceptibility gene for IBD, fail to metabolize tryptophan into
AHR ligands, resulting in decreased production of IL-22 by
ILC3s and Th22 cells, and increased susceptibility in germ-free
recipients to colitis (91). Importantly, impaired AHR activation
and metabolism of tryptophan by the gut microbiota has been
identified in patients with IBD, which is associated with a
CARD9 phenotype (91). Administration of some strains of L.
reuteri alone or in combination with other Lactobacillus strains
has been reported to prevent DSS-induced colitis in mice due to
various mechanisms (91–94) and some studies suggest that AHR
activation and enhanced IL-22 production play a critical role in
the process (91, 92). In addition, it has been observed that rectal
administration of L. reuteri can attenuate mucosal inflammation
in children with active distal UC (95). Nevertheless, L. reuteri can
attenuate immune checkpoint blockade-associated colitis
through reducing the population of ILC3s (96).

Apart from bacterial tryptophan metabolism, tryptophan in the
gastrointestinal tract can also be metabolized through the
TABLE 2 | The dichotomous role of ILC3-derived cytokines in the intestinal
immune response.

Cytokine Protective Pathogenic

IL-22 Promotes epithelial regeneration,
proliferation and glycosylation (59–
61),

Contributes to the development
of acute innate colitis in mice
(62)

Promotes production of anti-
bacterial peptides and mucins (63)

Induces endoplasmic reticulum
stress (ER) in colonic epithelial
cells (64)

Protects intestinal stem cells from
genotoxic stress, limiting
tumorigenesis (36)

Increases the risk of colitis-
associated cancer (14, 65, 66),

Participates in intestinal fibrosis
(67, 68),

GM-CSF Maintains colonic Tregs
homeostasis and intestinal
homeostasis (58)
Suppresses wound-healing, pro-
fibrotic macrophage phenotype,
reduces progression to intestinal
fibrosis (69)

Mobilizes ILC3s from
cryptopatches into adjacent
tissue (70)
Promotes accumulation of
inflammatory monocytes in the
intestine (70, 71),.
Regulates intestinal
macrophage polarization,
drives pro-inflammatory
macrophage phenotype (69).

IL-17 Participates in intestinal fibrosis
(68)
Contributes to colitis
development in TRUC mice
(72) and bacteria-driven innate
colitis in mice (73)

IFN-r Controls production of mucin and
protects the epithelial barrier
against salmonella infection (23)

Contributes to colitis
development in bacteria-driven
innate colitis in mice (73)
GM-CSF, granulocyte macrophage colony-stimulating factor; IFN-r: interferon-r.
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kynurenine pathway via the rate-limiting enzyme indoleamine 2,3
dioxygenase-1 (IDO1) and the serotonin pathway via Trp
hydroxylase 1 (TpH1) (97). Increased IDO1 expression in the gut
negatively correlates with the number of ILC3s as well as IL-17 and
TNF-a production by ILC3s during simian immunodeficiency virus
infection (98). Interestingly, IDO1-knockout mice had increased
numbers of ILC3s in the lungs compared with wild-type mice after
paracoccidioides brasiliensis infection (99). Deficiency or inhibition
of IDO1 aggravates 2,4,6-trinitrobenzene sulfate (TNBS)-induced
colitis in mice (100, 101). In contrast, IDO1-knockout mice are less
susceptible to DSS-induced colitis (102). Mice lacking IDO1 had
increased abundance of bacteria with tryptophanase activity, which
results in the accumulation of microbiota-derived AHR ligands (87,
102). Thus, endogenous Trp metabolism may influence the gut
microbiota and bacterial Trp metabolism, thereby regulating the
innate lymphoid cells.
REGULATION OF OTHER METABOLITES

G-Protein-Coupled Receptor 183 (GPR183) and its ligand 7a,25-
dihydroxycholesterol (7a,25-OHC), a hydroxylated metabolite of
cholesterol, are critical for modulating the distribution of ILC3s,
and subsequent interactions between ILC3s and T follicular
helper cells (TfH) and B cells (103–105). The GPR183 receptor
expressed on LTi-like ILC3s can sense 7a,25-OHC that is
produced from fibroblastic stromal cells located in lymphoid
structures, which contributes to ILC3s migration to CPs and ILFs
and the formation of colonic lymphoid tissues at steady state in
mice (103). In addition, GPR183 and 7a,25-OHC regulate the
distribution or accumulation of ILC3s in the mesenteric lymph
nodes (mLNs), PPs and small intestine of mice (104, 105). ILC3s
located within the interfollicular border of mLNs limit TfH-
driven B cell responses and IgA production through antigen
presentation in the colon at steady state in mice, which is
beneficial for the maintenance of host-microbiota mutualism
(105). Moreover, GPR183 can protect mice against C. rodentium
infection through promoting the enrichment of IL-22-expressing
ILC3s in the small intestine of mice (104). However, mice treated
with CD40 Ab had enhanced 7a,25-OHC production, which in
turn promotes colitis through activating the migration of
GPR183+ ILC3s and myeloid cells to inflammatory foci (103).
In addition, prostaglandin E2 (PGE2) promotes homeostasis and
functionality of murine ILC3s via its receptor EP4, leading to the
inhibition of systemic inflammation in mice (106). Adenosine 5′-
triphosphate (eATP) and its metabolite adenosine inversely regulate
IL-22 secretion frommurine ILC3s. Inhibition of NTPDases, which
hydrolyzes extracellular eATP into adenosine, can aggravate DSS-
induced colitis in mice dependent on reduced frequency of IL-22-
producing ILC3s (107).
ILC3s IN IBD

Decreased frequency of NKp44+ILC3s has been observed in
inflamed tissue from IBD patients compared with non-IBD
Frontiers in Immunology | www.frontiersin.org 6
controls, which was related to disease severity regardless of
whether patients were newly diagnosed or had established
disease. However, the frequency of ILC1s and ILC2s was
increased in newly-diagnosed CD and UC, respectively, and
the frequency of ILC1s and ILC2s were both increased in
patients with established IBD (12). Reduced frequency of
NKp44+ ILC3s in inflamed intestinal tissues from CD patients
was accompanied by enrichment of IFN-g-secreting
CD127+ILC1s, indicating that an imbalance between ILC3 and
ILC1 may contribute to the pathogenesis of CD (33, 108).
Furthermore, the frequency of NKp44+ ILC3s was shown to
have an inverse association with the accumulation of IL-17A+

IFN-g+ and IL-22+IFN-g+ T cells in inflamed regions of adults
with CD (13). In addition, MHCII+ILC3s were significantly
reduced in inflamed regions of CD patients compared with
non-inflamed regions (13). MHCII+ ILC3s have been reported
to mediate negative selection via antigen presentation together
with IL-2 withdrawal, leading to cell death of activated
commensal bacteria–specific T cells in mice (17). These results
suggest that downregulation of MHCII expression may be
associated with aberrant immune responses in IBD.

IL-22 functions as a dichotomous cytokine in intestinal
inflammation (Table 2). IL-22 deficient mice exhibit
aggravated experimental colitis following DSS exposure (109),
and IL-22 orchestrates epithelial regeneration, proliferation and
glycosylation, the production of mucins and anti-bacterial
peptides and protects intestinal stem cells from genotoxic
stress (36, 59–61, 63). NKp44+ILC3s produced less IL-22, but
acquired the ability to secrete IFN-g in the inflamed terminal
ileum of CD patients compared with unaffected tissue (13).
However, IL-22-expressing ILC3s have been confirmed to be
responsible for the development of acute innate colitis in mice
(62). Foxp3+ Treg cells can attenuate IL-22+ ILC3s-mediated
colitis in mice through inhibiting the secretion of IL-23 and
IL-1b by Cx3cr1+macrophages (110). Additionally, patients with
active mild-to-moderate IBD had increased production of IL-22
in colonic ILC3s compared with controls (55). Serum IL-22
concentrations were markedly increased in CD patients
compared with healthy volunteers, and positively correlated
with disease activity (111). Furthermore, IL-22 can induce
endoplasmic reticulum stress (ER) in colonic epithelial cells,
which is functionally important in chronic colitis. Importantly,
IL22-responsive transcripts and ER stress response modules were
enriched in the colons of patients with IBD compared with non-
IBD controls, and the IL22-responsive transcriptional modules
positively correlated with the severity of mucosal injury (64). In
addition, IL-22 may be implicated in intestinal fibrosis (67, 68).
Increased expression of the IL-23/IL-22 axis regulated by mTOR/
autophagy signaling in Cx3cr1+MNPs exacerbates fibrosis in the
mouse model of TNBS-induced intestinal fibrosis. Interestingly,
neutralization of either IL-23 or IL-22 can attenuate the fibrosis
reaction. And ILCs, but not T and B cells, are likely participated
in intestinal fibrosis (67).

The production of GM-CSF was elevated in LPMCs from the
inflamed mucosa of patients with IBD compared with non-
inflamed mucosa and non-IBD controls (112). In addition, the
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secretion of GM-CSF was also increased by blood ILCs in patients
with IBD compared with healthy volunteers (70). Increased
production of GM-CSF from ILC3s during colitis mobilizes the
migration of ILC3s into adjacent tissue from cryptopatches and
promotes inflammatory monocyte accumulation, which mediates
the pathogenic role of ILC3s in anti-CD40-induced colitis in mice,
and neutralization of GM-CSF can ameliorate intestinal colitis in
mice (70, 71) (Table 2). However, GM-CSF gene knockout mice
are more susceptible to acute DSS-induced colitis compared with
wild-type mice (113). Importantly, elevated levels of GM-CSF
auto-antibodies (Ab), which are associated with reduced GM-CSF
bioactivity, have been proven to be associated with stricturing/
penetrating behavior and higher incidence of intestinal resection
in CD patients (114), surgical recurrence in ileal CD patients (115)
and disease relapse in IBD patients (116). Importantly,
sargramostim (recombinant GM-CSF) is not superior to placebo
for inducing clinical improvement or remission in active CD
(117). Notably, a recent study revealed the complex role of
ILC3-derived GM-CSF in the context of intestinal infection and
inflammation. GM-CSF can regulate the activation and
polarization of intestinal macrophages in humans and mice,
driving the differentiation of pro-inflammatory and microbicidal
M1 macrophages, while suppressing wound-healing, pro-fibrotic
macrophages (69) (Table 2). Importantly, compared with “non-
complicated” biopsies, biopsies from CD patients with
complicated disease (stricturing and penetrating behavior) had
enrichment of genes that are upregulated in ILC-depleted
macrophages, suggesting that ILC3-derived GM-CSF controls
the progression of intestinal fibrosis (69). This is consistent with
a study that revealed reduced GM-CSF bioactivity was associated
with stricturing/penetrating behavior in CD (114). Thus, the role
of ILC3s-derived GM-CSF remains to be elucidated.

The frequency of IL-17-expressing CD56− ILC3s was
increased in the inflamed ileum and colon of CD patients
compared with non-IBD controls, but not patients with UC
(118). IL-17A expression by NCR− ILC3s has been demonstrated
to drive colitis development in T-bet−/−.Rag2−/− (TRUC) mice
(72). Additionally, production of IL-17 and IFN-r in murine
ILC3 contributes to colitis development in H. hepaticus-
mediated innate colitis in mice, and neutralization of IL-17 or
INF-r can significantly attenuate colitis (73). Interestingly, Rora+

ILC3s result in fibrosis mediated by IL-22 and IL-17 production
in a salmonella-induced intestinal fibrosis mouse model, and
neutralization of IL-17A can attenuate fibrosis, but the effect of
neutralized IL-22 expression was not explored in the study (68)
(Table 2). However, secukinumab, a human anti-IL-17A
monoclonal antibody, failed to show efficacy in CD (119), and
this may be due to severe weakening of intestinal epithelial
barrier function induced by IL-17 inhibition (120, 121).
Additionally, Rag2−/− mice that received T cells from IL17A−/−

mice had increased frequency of ILC3, mainly CD4+ILC3 and
ILC1s as well as enhanced expression of IL-6 and IL-22, which
may partly account for the failure of IL-17A inhibitors in
CD (122).

Ectopic or tertiary lymphoid tissues (TLTs) are regarded as
ectopic clusters of immune cells in response to chronic non-
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resolving inflammation, and are a pathologic hallmark of CD
(123). TLTs have been observed in the mesenteric creeping fat of
patients with CD. Furthermore, the formation of functional LTLs
in CD-affected mesentery may be attributed to high local levels of
CXCL16, CCL20, CCL21, CXCL13, and CCL19, produced by the
mesenteric adipocytes (124). It has been reported that human
neuropilin-1(NRP1)+ LTi-like ILC3s were observed in lung
tissues from patients with chronic obstructive pulmonary
disease, which may participate in ectopic lymphocyte
accumulation (125). Additionally, the frequency of human
NKp44+ILC3s was significantly reduced in advanced colorectal
cancer and non-small cell lung cancer. Furthermore, the
accumulation of NKp44+ILC3s may be implicated in the
formation of tumor-associated TLTs (126, 127). Studies in
mice with IL-7 overexpression provide evidence for the
indispensable role of LTi cells in the formation of TLTs (128).
However, the formation of TLTs was observed in the intestine of
RORgt-deficient mice treated with DSS, indicating that TLTs
development seems to be independent of LTi cells (129).
Collectively, these findings suggest that future work is required
to clarify the role of LTi-like ILC3 in the formation of LTLs in
both humans and mice. In addition, although the formation of
TLTs aggravates colitis in mice (129), the precise role of TLTs in
the pathogenesis of IBD must be further explored, and are
reviewed in detail elsewhere (123).

Patients with IBD have an increased risk of developing
colorectal cancer (CRC). ILC3s and IL-22 seem to play a
pathogenic role in the onset or progression of colorectal cancer
(14). ILC3s are vital for IL-23-mediated initiation of gut
tumorigenesis (130). IL-22 stimulates STAT3 activation in
intestinal epithelial cells to promote cell proliferation, playing a
predominant role in the maintenance of tumor development (65,
66). Impaired production of IL-22 by ILC3s and insufficient
STAT3 activation thereafter account for the protection of
Card9-/- mice from colitis-associated cancer (65). Moreover,
NKp46-ILC3s drive the transition from colitis to CRC in
Helicobacter hepaticus (Hh)+AOM mice and neutralization of
IL-22 can ameliorate established colitis and reduce tumor burden
(66). Besides, the absence of IL-22BP, a neutralizing soluble
IL-22 receptor, accelerates tumorigenesis in AMO/DSS treated
mice (131). However, IL-22 secretion by ILC3s and gd T cells
regulates the DNA damage response (DDR) in colon stem cells
and protects them from acquiring dangerous mutations after
genotoxic exposure, thus limiting tumorigenesis (36) (Table 2).
THERAPEUTIC POTENTIAL OF ILC3s
IN IBD

Anti-TNF treatment has dramatically improved the treatment of
IBD over the past two decades, but primary non-response and
secondary loss of response are commonly observed (132).
Importantly, anti-TNF agents can result in some adverse
events in a fraction of patients (133). Thus, safe and effective
therapies for IBD are urgently needed.
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IL-23 is a heterodimeric cytokine composed of an IL-23-
specific P19 subunit and a P40 subunit shared with IL-12. IL-23
responsive ILC3s participate in the pathogenesis of IBD.
Ustekinumab, a monoclonal antibody that targets IL-12/IL-
23p40, is effective at inducing and sustaining clinical remission
in patients with CD, and has shown some evidence of efficacy in
UC patients (132). Moreover, IL-23p19 inhibitors including
risankizumab, brazikumab, and mirikizumab have been shown
to be effective in patients with moderate-to-severe active CD
(134, 135) or UC (136) in clinical studies. However, the influence
of IL-23 blockade on ILC3s remains to be elucidated. Compared
with placebo, brazikumab can significantly reduce the serum
levels of IL-22, and CD patients with baseline serum IL-22
concentration ≥15.6 pg/ml are more likely to experience a
clinical response or remission at week 8 following treatment
with brazikumab compared with patients with low baseline IL-22
concentration (<15.6 pg/ml) (135).

AHR activation may be a potential therapeutic strategy for the
treatment of UC. The AHR pathway mediates crosstalk between
particular metabolites in the environment and immune cells,
which is important for gut barrier protection and mucosal
immunity. I3C can prevent TNBS-induced colitis in mice
primarily through inducing IL-22 production by ILC3s (137).
Furthermore, fecal microbiota transplantation (FMT) and indigo
naturalis (IN), a traditional herbal medicine used for UC, can
attenuate DSS-induced colitis in mice by up-regulating the
expression or activity of AHR (138, 139). Besides, FMT
significantly modulates bacterial metabolism of tryptophan
indicated by increased levels of indole-3-acetic acid, which is in
line with AHR activation in the colon of recipient piglets (140). A
randomized controlled clinical trial showed that 8-week
treatment with IN was able to induce clinical responses and
mucosal healing in patients with UC. However, the long-term
administration of IN should be carefully considered in view of
potential adverse effects (141). NPD-0414-2 and NPD-0414-24,
novel chemical AHR ligands, up-regulate IL-22 and down-
regulate IFN-g transcripts in LPMCs from IBD patients in
vitro, which can attenuate TNBS-induced colitis in mice with
enhanced expression of IL-22 and reduced expression of IFN-g in
an AHR-dependent manner, without clinical signs of systemic
toxicity (142). Of note, PY109, an AHR agonist that has
physiochemical drug-likeness properties, ameliorates DSS-
induced colitis in mice by promoting the expansion of ILC3s
and gd T cells and expression of IL-22 and IL-17 (143).
Collectively, novel AHR agonists with good safety profiles may
be effective therapeutic options for the treatment of UC.

Deficiency of Vitamin D is frequently observed in patients
with IBD and is associated with increased disease activity and
elevated healthcare utilization (144). A prospective study has
shown that low serum vitamin D levels (≤ 35 ng/ml) during
clinical remission are associated with increased risk of UC
relapse (145). In another observational study, CD patients with
vitamin D deficiency (25-OH-D concentration < 50 nmol/L) had
more relapses during the previous year (146). Importantly, IBD
patients with low vitamin D levels who received vitamin D
supplements had a significant reduction in their healthcare
Frontiers in Immunology | www.frontiersin.org 8
utilization (144) and correction of 25(OH)D status was
associated with reduced risk of CD-related surgery (147).
Furthermore, vitamin D status may affect the initial response
to TNF inhibitor therapy and IBD patients who had normal
vitamin D levels at the initiation of treatment with TNF-a
inhibitors had increased odds of remission at 3 months (148).
In addition, administration of vitamin A for two months can
significantly facilitate clinical remission, clinical response and
mucosal healing in UC patients. However, excessive vitamin A
supplementation should be avoided due to increased risk of bone
fracture and liver toxicity (149). As there are limited data from
clinical trials of vitamin D and A in IBD, further studies are
needed to conclude whether their administration is clinically
effective. In addition, further study to define the optimal levels of
vitamin D and A in serum to achieve clinical response is needed.
CONCLUSIONS

ILC3s function as “communication hubs”, which respond to
environmental cues and propagate signals to the broader
immune system. Herein, we highlighted the dependence of
ILC3s on dietary metabolites such as vitamin D, vitamin A as
well as its metabolite RA and AHR ligands, microbiota and
microbial metabolites such as SCFAs and microbial tryptophan
metabolites. In addition, other metabolites such as PGE2 and
7a,25-OHC can also be sensed by ILC3s and give rise to
functional outputs. Moreover, maternal nutritional status can
modulate ILC3s biology in offspring. Group 3 innate lymphoid
cells maintain mucosal homeostasis dependent on moderate
production of IL-22, IL-17 and GM-CSF in the steady state.
However, excessive production may contribute to the
progression of IBD and colorectal cancer. Importantly, IL-22
and IL-17 produced by ILC3s may be involved in the
development of intestinal fibrosis. Targeting ILC3s hold
promise for treating IBD. Antibodies targeting IL-23-specific
P19 or P40 have shown clinical efficacy. In addition, AHR
agonist with good safety profiles may be effective treatments
for UC. Importantly, nutritional interventions and dietary
modifications should always be considered in patients with IBD.
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